17
November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 1 Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns Nitin Yogi and Vishwani D. Agrawal Auburn University Auburn, Alabama 36849, USA

Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns

  • Upload
    lavonn

  • View
    59

  • Download
    0

Embed Size (px)

DESCRIPTION

Sequential Circuit BIST Synthesis using Spectrum and Noise from ATPG Patterns. Nitin Yogi and Vishwani D. Agrawal Auburn University Auburn, Alabama 36849, USA. Outline. Specifying a BIST problem Proposed method Spectral Analysis BIST implementation Results Fault Coverage Area Overhead - PowerPoint PPT Presentation

Citation preview

Page 1: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 1

Sequential Circuit BIST Synthesis using Spectrum and Noise

from ATPG Patterns

Nitin Yogi and Vishwani D. Agrawal

Auburn University

Auburn, Alabama 36849, USA

Page 2: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 2

Outline

Specifying a BIST problemProposed method

Spectral Analysis BIST implementation

Results Fault Coverage Area Overhead

Conclusion

Page 3: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 3

Two Types of BIST methods Scan-based testing

Advantages: High fault coverage

Disadvantages: Area & delay overhead, yield loss, large vector size and

testing times

Non-scan based testing Advantages:

Disadvantages of scan-based testing eliminated Disadvantages:

Requires sequential ATPG High test generation complexity and low fault coverages

Alleviated using DFT schemes Sequential ATPG-like vector generation in BIST environment

Problem definition

Page 4: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 4

Proposed Method

Step 1: Spectral analysis Sequential vectors (ATPG or any other type)

analyzed in the spectral domain Significant spectral components chosen for BIST

implementation

Step 2: BIST implementation Hardware synthesis of significant spectral

components to generate ATPG-like vectors

Page 5: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 5

Test vectors and bit-streams

Sequential Circuit (CUT)

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

Inp

ut

1

Inp

ut

2

Inp

ut

3

Inp

ut

4

Inp

ut

5

Inp

ut

J

Vector 1 →Vector 2 →Vector 3 →Vector 4 →Vector 5 →

. . . . . .

. . . . . .. . . . .. . . . .. . . . .Vector K →

Outputs

Tim

e

A bit-stream

Page 6: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 6

Spectral Characterization of a Bit-Stream

1 1 1 1 1 1 1 11 -1 1 -1 1 -1 1 -11 1 -1 -1 1 1 -1 -11 -1 -1 1 1 -1 -1 11 1 1 1 -1 -1 -1 -11 -1 1 -1 -1 1 -1 11 1 -1 -1 -1 -1 1 11 -1 -1 1 -1 1 1 -1

H8 =

w0

w1

w2

w3

w4

w5

w6

w7

Wal

sh f

unct

ions

(or

der

8)

• Walsh functions: a complete orthogonal set of basis functions that can represent any arbitrary bit-stream

• Walsh functions form the rows of a Hadamard matrix

Example of Hadamard matrix of order 8time

Page 7: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 7

Analyzing Bit-Streams of ATPG vectors

Spectral Analysis

Vector 1Vector 2

.

.

.

Inp

ut

1

Inp

ut

2

. . .

Sets ofbit-streamsof Input 2

input 2set 1

. . . . .

. . . . .

Bit stream

Spectral coeffs.

C(2,1) input 2

set 1

0s to -1s

Tim

e

Set 1

Set j

Page 8: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 8

Determining Significant Components

Set 1 . . . .

. . . .

. . . .

Set J

Co

mp

on

ent

Sp

ectr

um

Po

wer

S

pec

tru

m

Averaging

Averaging

Averaged Spectrums

For input i

M significant components chosen

Phases of significant

components

Page 9: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 9

Input Vector Holding Hold input vectors constant while applying system clock. Holding length related to sequential depth. Sequential depth: Maximum number of FFs on any path between

PI and PO. Holding a vector constant for number of clock cycles equal to

sequential depth propagates a fault through the activated sequential path[1].

Holding maps combinational ATPG onto acyclic sequential circuit [2].

However, all testable combinational ATPG faults not detected by holding [3].

[1] L. Nachman, K. Saluja, S. Upadyaya, and R. Reuse, “Random Pattern Testing for Sequential Circuits Revisited,” in Proc. Fault-Tolerant Computing Symp., pp. 44–52, June 1996.

[2] H. B. Min and W. A. Rogers, “A Test Methodology for Finite State Machines using Partial Scan Design,” J. Electronic Testing: Theory and Applications, vol. 3, no. 2, pp. 127–137, 1992.

[3] Y. C. Kim, V. D. Agrawal, and K. K. Saluja, "Combinational Automatic Test Pattern Generation for Acyclic Sequential Circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no.6, pp. 948-956, June 2005.

Page 10: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 10

Holding and Weighted Random Patterns

Circuit Total No. of faults

Number of faults detected

64k random vectors64k weighted random

vectors

Without holding

With holding

Without holding

With holding

s298 308 269 273 273 273

s820 850 414 449 744 764

s1423 1515 891 1217 1449 1469

s1488 1486 1161 1369 1443 1443

s5378 4603 3222 3424 3288 3537

s9234 6927 1268 1305 1293 1303

s15850 13863 5249 6270 5847 6696

s38417 31180 4087 4185 4803 4949

Page 11: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 11

To CUT

BIST Architecture

Weighted pseudo-random pattern generator

Spectral component synthesizer

Input 1

Input 2

Input 3

Hadamard Components

2

3

1

1

1

To CUT

Randomizer

Hadamard wave generator

Clock divider and holding circuit

System clock

BISTclock

Weighted pseudo-random

bit-streams

M-bit counter divides system clock frequency

repeatedly by 2 and generates BIST clock

N-bit counter with XOR gates

SC1

SC2

SC3

Weighted random

bit-stream (W=0.5)

Weighted random

bit-stream (W=0.5)

Proportion:

SC1 = 0.5 SC2 = 0.5 Proportion:

SC1 = 0.25 SC2 = 0.25SC3 = 0.5

Cellular Automata Register with

AND-OR gates

Weighted random bit-stream (W = 0.25)

Bit-stream of spectral component

Noise inserted

bit-stream

System clock

BIST clock

Page 12: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 12

Hadamard BIST Results

CircuitTotal No. of faults

Number of faults detected

FlexTest

ATPG

64k random vectors

64k weighted random vectors

Hadamard BIST (64k vectors)

Haar BIST1

(64k vectors)

s298 308 273 273 273 273 273

s820 850 793 449 764 777 710

s1423 1515 1443 1217 1469 1468 1468

s1488 1486 1446 1369 1443 1443 1441

s5378 4603 3547 3424 3537 3603 3609

s9234 6927 1588 1305 1303 1729 1413

s15850 13863 7323 6270 6696 6844 5888

s38417 31180 15472 4185 4949 17020 4244

1. S. K. Devanathan and M. L. Bushnell, “Test Pattern Generation Using Modulation by Haar Wavelets and Correlation for Sequential BIST,” in Proc. 20th International Conf. VLSI Design, 2007, pp. 485–491.

Equal or more faults detected than ATPG in

5 / 8 circuits

Equal or more faults detected than ATPG in

5 / 8 circuits

Page 13: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 13

Hadamard BIST Results

CircuitTotal No. of faults

Number of faults detected

FlexTest

ATPG

64k random vectors

64k weighted random vectors

Hadamard BIST (64k vectors)

Haar BIST1

(64k vectors)

s298 308 273 273 273 273 273

s820 850 793 449 764 777 710

s1423 1515 1443 1217 1469 1468 1468

s1488 1486 1446 1369 1443 1443 1441

s5378 4603 3547 3424 3537 3603 3609

s9234 6927 1588 1305 1303 1729 1413

s15850 13863 7323 6270 6696 6844 5888

s38417 31180 15472 4185 4949 17020 4244

Maximum faults detected in 6 / 8 circuits

Page 14: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 14

Longer BIST Sequences

Circuit

FlexTest Hadamard BIST

Fault coverage

(%)

No. of vectors

Fault coverage (%) at 64K

vectors

Fault coverage

(%) at 128K vectors

BIST vecs. for FlexTest ATPG cov.

s298 88.64 153 88.64 88.64 757

s820 93.29 1127 91.41 91.88 (!)

s1423 95.25 3882 96.90 96.90 22345

s1488 97.31 736 97.11 97.11 (!)

s5378 77.06 739 78.27 78.67 8984

s9234 22.92 15528 24.96 25.25 8835

s15850 52.82 61687 49.37 52.15 198061

s38417 49.62 55110 54.59 63.07 43240

ATPG fault coverage achieved in 6 / 8 circuits

Page 15: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 15

Area Overhead

CircuitNo. of

transistors in circuit

Hadamard BIST Haar BIST1

No. of transistors

% Area overhead

No. of transistors

% Area overhead

s298 890 908 102.02 834 93.71

s820 1896 1472 77.64 1612 85.02

s1423 4624 1637 35.40 1555 33.63

s1488 4006 1069 26.68 1078 26.91

s5378 12840 2342 18.24 2487 19.37

s9234 23356 2700 11.56 2552 10.93

s15850 43696 4908 11.23 4595 10.52

s38417 108808 3606 3.31 2135 1.96

1. S. K. Devanathan and M. L. Bushnell, “Test Pattern Generation Using Modulation by Haar Wavelets and Correlation for Sequential BIST,” in Proc. 20th International Conf. VLSI Design, 2007, pp. 485–491.

Approximately similar area overheads

Page 16: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 16

Conclusion Proposed a novel method for test generation for sequential

circuit BIST Proposed unique circuits for mixing spectral components

and noise Method detects equal or more faults than ATPG vectors in

6 out of 8 ISCAS’89 benchmark circuits Moderate area overhead compared to existing methods

Proposed method is flexible and adaptable Any other suitable vectors can be used instead of ATPG

vectors. Any compatible transform for binary bit-streams can be

used for spectral analysis instead of Hadamard transform. BIST coverage limited by coverage of ATPG vectors

DFT for sequential circuits to improve ATPG coverage

Page 17: Sequential Circuit BIST Synthesis using Spectrum and Noise  from ATPG Patterns

November 25 Asian Test Symposium 2008, Nov 24-27, Sapporo, Japan 17

Thank You!

Any questions please ?