41
d EPA MENT OF THK NAVY' N4 AERODYNAMICS 0 I 0 APPUJED- MAPIEMATICS H'D K~-XN1ZLBVTE 0 RESEARCH AMD DEVELOPMENT REPORT VIBRATION N:vember Ppprtr K PRNC -TM - 648 (Rev. 12-64)

SERIE 64

  • Upload
    csarmvs

  • View
    107

  • Download
    0

Embed Size (px)

DESCRIPTION

porque yo tambien se lo dificil que es encontrar esta informacion

Citation preview

Page 1: SERIE 64

d EPA MENT OF THK NAVY'

N4

AERODYNAMICS

0 I

0

APPUJED-MAPIEMATICS

H'D K~-XN1ZLBVTE0

RESEARCH AMD DEVELOPMENT REPORT

VIBRATIONN:vember Ppprtr K

PRNC -TM - 648 (Rev. 12-64)

Page 2: SERIE 64

MERIT cCAJDSOFTESRU ¾

£uge~ F. Oer-.ernt

.Aoverncer245L

Page 3: SERIE 64

TABLE OF CONTENTS

Page

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

:'NM DO! CT TON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

THXE HULL FORms OF SEES 64 .. . . . . . ............... 2

KX OD OF RESIXT.CE COMPUTATION AND FORM OF DATA PRESENTATION .... 3

DISCJSSION OF THE RELATIVE RESISTANCES OF THE HULL FORMS OF SERIES 64. 5

At.•.iOWLE C NT . . . . . . . . . . . . . . . . . . . . . . . . . . ... 7

.t C . . . . . . . . . . . . . . . . . . . . ......... 7

lIST OF FIGURES

Figure 1 - Lines and Hull Form Coefficients for the Parent Model

of Series 64 . . . . . . . . . . . . . . . . . . . . . 8

Figure 2 - Curves of A/AX and B/BX fcr the Models of Series 64 .... 9

Figure 3 - Body Plans for Three Representative Models of Series 64 . 10

- 2igure 4 - Variation of Volume t-oude Number with Speed and

Displacement .*. . . ..l. . . . . . . . . . . . . . 11Figure 5 - Resistance-Weight Ratio versus Volme Froude Number for

Three of the Hull Forms of Series 64. Resistance Values

are for Boats of 200 Tons Gross Weight; LCf = 0.0004 . . 12

Figure 6 - Resistance-Weight Ratio versus Slenderness Ratio with

Volume Froude Number as Parameter for the Hull Forms

of Series 64. Resistance Values are for Boats of 200

Tons Gross Weight; LZCf = 0.0oo4 .f.t. . . . . . . .... 1

Figure 7 - Relationship Between Slenderness Ratio and Displacemen:t-

IU&ngth Ratio .f.t . . . . . . . . . . . . .f.f.f.t.f.t.f.t. 16

Figure 8 - Relationship of Slenderness Ratio to Length and

Displacement . .f.t . . . . . . .f.f.f.t. . . . . . . ..f. 1-7

ii

Page 4: SERIE 64

Page

Figure 9 - Values of Resistance-Weight Ratio from the Test of Model

4797, for Boat Weights of' 203 Tons and 50 Ton .

Figure 10- Values of the Ratio of R/W for Various Displacements ti

RiW for 200 Tons Displacement, from the Test of

Model 4797 . . . . ...................... 19Figure 11- Values of Wetted Surface Coefficient fcr the Hull Forms

of Series 6 . . . . . . . . . . . . . . .. .

Figure 12- Values of R/W and R f/W for the More Efficient Hull Forms

of Series 64. These Resistance Values are for Boars of

200 Tons GrossWeight; nCf = 0.000....... .... . 21

LIST OF TABLES

Table T Form Coefficients for the Hulls 7,t S-ries 64 .... ...... 24

Table II Dimensiors of the Models of Series 64 . . . . . . . . . . 25

Table III Series 64 - Values of Model Speed and Model Resistance . 26

iii

Page 5: SERIE 64

NOTATION

A Sectional area

AX Maximum sectional area

B Breadth on waterline

BX Breadth on waterline at maximum sectional area

CB Block coefficient

C Prismatic coefficient

C f Coefficient of frictional resistance

4C f Correlation allowance

Cr Coefficient of residual resistance, R/p/2 Sv2

g Acceleration due to gravity

Nx jr-aft at maximum sectional area

L Length on waterline

LCB Longitudinal location of 7-- of buoyancy

LCF Longitudinal location of center of flotation

R Total resistance

Rf Frictional resistance

R Residual resistance (R - Rf)

S eAra of wetted surface

V Speed in knots

v Speed

W Gross weight in pounds

Crose weight in tons

v Volume of displacement

P Mass density of water

Subscripts:

m Model

IV

Page 6: SERIE 64

ABSTRACT

Va~lies of residuary resistaLnce from model tests were pre-

viously presented for a methodical series of slender displacement

huUl forma which had been tested up to bhigh speeds. The present

report gives values of total resistance for the hull forms of

the series so that their relative merits can readily be seen.

The vLlues of total resistance were calculated for boats of 200-

ton displacement to facilitate comparison with resistance data

for U. S. Navy hydrofoil boats. The form of the data presenta-

tion is such as to provide guidance for the design of high-speed

displacement and catamaran hull forms.

INTRODUCTION

Reference 1* presented the results of model resistance tests of a

methodica.l series of slender displacement hull forms designed for operatiocn

at high speed. Twenty-seven models were tested in the series, which waE

designated II• Series 64. The purpose of the work was to provide informa-

tion for guidance in designing efficient high-speed displacement hulls

and also to provide data for evaluating the performanc- of other designS

of fast craft.

The results of the tests of the Series 64 hull forms are presented

in Reference 1 as values of residuary resistance coefficient and values of

residuary resistance per ton of displacement. Values of wetted surface

and wetted-surface coefficient are also given so that the resistance of a

ship of &ay size can readily be calculated from the results of any one of

the model tests. However, values of total resistance for the hull forms

tested are not given in Reference 1, and therefore the relative merits of

the different designs of the series are not readily apparent.

* References are listed on page 7

Page 7: SERIE 64

In the preseni. report comparisons of the total resistances of the

hull forms of Series 64 are presented so th&i. the relative efficiencies of

the different hulls can be readily seen. It was necessary, to calculate

values of total resistance, to make a selection of the size of the full-

scale cr&ft to which the model resistance values were to be converýed.

For this report, the resistance values from the tests of the models of

Series 64 were corrected to correspond to a boat having a gross weight

of 200 tons. This was done so that the rcsulting reslstance values could

conveniently be compared with resistance values for the Navy's hydrofoil

boats. [The average of the displacements of the first two large-scale

Navy hydrofoil boats, PC (H.) and AG(FEH), is approxtma.- - 200 t C!,] Also

the data are presented in such a form as to provide guid&nce for designing

displacement and catamaran-type hull forms for lcw drag.

THE HULL FORMS OF SERIES 64

As expliiixed in Reference I, the hull forms of -ne series were

derived by first developing an efficient parent form, and -hen making

systematic variations of the most significant hull form parameters. 'The

lines and hull form coefficients for the parent form are shown I.n Fig-ur,

The parameters selected for variation in derivirg The hull fcrms cf he

series were block coefficient, bear!-draf& ra' io, an,! di -•i• - .g .u

ratio [ 6/(O.OlL)3]. Three values of each of these parameters were

selected ad all possible combinations were tested; aciordingly hert

were 27 models in the series.

The values of block coefficien! selected for testing were 0.35,

0.45, and 0.55; the values cf beam-draft ratio were 2, ,, e-id 4. The ranage

of values of displacement-length ra& io varied wi-h block coeff:-ien-. '-he

values are given in Table I. The curves of sectioral ai -a anA of ratio of

local waterline breadth -o breadth at the maxamum section are show-.

Figure 2. These curves apply to all the models of The series.

The waterline 2ength of each of the models was 10 feet. - hfr model

dimensions are given in Table 1L The f7rm parameter hav-rng hF- mos-

Page 8: SERIE 64

pronounced effect on model shape was the block coefficient, Body p.a:-:

for three representative models (one for each value of block cseff:c>•c.-

are shown in Figure 3. Body •lans for all the models, and also va!,-f-

additional coefficients of fo....., can be found in Reference I

METHOD OF RESISTANCE C-. JUTATION AND F.`O OF DATA PRESENTA:2c¢';

Values of speed and resistance from the tests of the 2'1",i :e f

series 64 are given in Table III. The air drag of the towing gear ha:

beer. subiracted from the measured resistance values.

For this report the model values of speed and resistance were

corrected to full scale for a boat weight of 230 tons. The 19L.7 1"'

friction coefficients and the standard correlation allowance ( Acj cf

O.O00a were used in correcting the values of model resistance to lull

scale. The full-scale values of resistance and speed were then ccnvr-:

to the dimensionless form of R/W and F,7 (equals v/ V gVl73). (Figzt

show's the relationship of F, 7 to speed and displacement.) The values c'

R/W and F,7 were next plotted for each model and curves were faired rr; _

the spots. Examples of these plots for three of the hull forms of -he

series are shown in Figure 5. Values of R/1 for evenly spaced vaL4._--

Fv were then rei off the curves. These values are plotted agai.°-

slenderness ratio in Figure 6, (The relationship between sleneer'e

rawic and displacement-length ratio is shown in Figure 7.) Each se-- "c--. Cf

Figure 6 presents values of R/W for the 27 models of the series, a- a

particular value of F7 . This method of presentation is such -ha he

relative resistances of the different hull forms are compared c,. 'he ba.

of equal speed, equal gross weight, and equal length. The relat 4c-S hit i*

L/ •7 to length and displacement is shown -r Figure 8. AE ar. exampl-

cf the use of Figures 4, 6, and 8, consider the problem of ddsjg-irg a

320-tar. boa' which is to have a speed of 45 knots. Figu•re 4 4'.-a-!:

Iha: the value of F 7 ccrresponding to this displacemei!" a-,d Epeec- iF-

approximately 5.0. Accordingly: the upper part cf Figure 6b c&a: b• us-

Page 9: SERIE 64

to determine values of resistance/weight ratio for a range of values or

block coeffilent, beam-draft ratio, and hull length. A hull lengt-h of

180 feet gives, from Figure 8, a value of L/7 13 equal to 9.4, and +hE 'op

par' of Figure 6b then indicates that with this value of slendernezs ratVo,

a block coeffliclEnt of 0.45, and a beam-draft ratio of 2, the resis w-,2e

will be approximately 10 percent of the iross iieight. With the same

slenderness ratio and block coefficient, and a beam-draft ratio of 4

the resistance "will be 11 percent of the gross weight if thelegth 1E

SItcreased to 210 feet, then from Figure 8 L/V / equals 11.0. In ý;

case the upper part of Figure 6b indicates that a block coefficient of 0.45

and a beam-draft ratio of either 2 or 3 will result in a value of ies;-sance

equal to about 9.5 per'o of the gross weight. The same graph shows ha- a

block coefficient of 0.35, together with a beam-ratio of 4, woula r~sI

in a value of resisttnct equal to 12 percent, of the gross weigh', wiii-:h I E

I percent higher than the resistance value Just mentioned.

* It should be evident that although it was necessary to selec' a

specific displacement in order to calculate the values of total resis'n-,

the graphs presented here are neve--theless applicable for desjgn s4ud Cs

of boats of a fairly wide range of displacenent both above and below 20C

tons. To illustrate this point, Figure 9 compares data from a repreE*.- a-

tive model of the series (Model 4797) as corrected to a boat, weigh-_ c:'

200 tonc, =nd as corrected t) a boat weight of 50 tons- In thIF y -'al

inst.ance the difference in resistance/weight ra-io for most of 'he spýec

ran,-- is about 5 percent. Figure 10 presents values of the ratio of 5

for various displacements to R/W for 200 tons displacement (again from

,he test of Model 4797). Figure 10 indicates that if -he values of

resistance/weight ratio in this report (which have been calcula'ed f-• a

boat weighi of 200 tons) are used +o determine the resis&ance ct a Oca

having a gross weight of 100 tons, the value will be too lo,; by aboru

2 1/2 percent. This results from the fact that the fric Ioonal res-a_:-

coefficients increase with a decrease in size and a corresponditg dt-raý-

in Reynolds numbers. However, the graphs in this report are ir.'eýi- -c

be useful chiefly rs an aid to selecting coefficients of form -.hat will'

Page 10: SERIE 64

result in efficient designs. It will be evident that their usefulness for

this purpose will cover a wide range of displacements above and below 2,-J ...

Assume, for example, that we wish to design an efficient hull form for a boa

having a gross weight of 100 tons. If we consider the result of adjusting ý.he

values of resistance/weight ratio corresponding to 200 tons so that they

correspond to a gross weight of 100 tons, it is evident that all the values

will be increased by about 2 1/2 percent. Accordingly, the relative resistn&ce

valý2b w-11 evidently not be significantly chLnged. Thereýfore, we are led to

the conclusion that it is not necessary to convert the data for 200 *ons to eaech

particular design displacement in order to use the Series 64 results as pre-

sented here for designing efficient hull fDrms of a variety of displacemen` c.

DISCUSSION OF THE RELATIVE RESISTANCES OF TEE IPJLL FC-4MS OF SEPT1E 64

The graphs for F 7 equals 1.0 and 1.5, in Figure 6a, indicate that al>

these low speeds the resistance is affected chiefly by variation in slender-

ness ratio (and therefore, displacenent-length ratio also). The other para-

meters of the series generally have considerably less effect on resistar.ne.

The fact that at these speeds the resists.ce of round-bilge boats Is determ: td

mainly by the value of slenderness ratio has been remarked on before (in

Reference 2, for example). At higher val ?s of speed (or F7 ), therF i a

considerable spread of the resistance values, and a clear indication as -c he

relative merits of the different values of block coefficient end of beam-

draft ratio. The poor performance (i.e., high resistance) of the models w*.-h

block coefficient equal to 0.35, is readily apparent. Also apparent is -he

consistent superiority of the models with block coefficient equals C.45. bhe

resistance values for block coefficient equals 0.55 lie between those for -Ic

block coefficients of 0.35 and 0.45 - which suggests that the optimu bm._k

coefficient lies somewhere between 0.45 and 0.55. The graphs of Fivare 6

ý.ndicate a consistent decrease in resistance with decrease In beam-draft

rat.io. The extent to which beam-draft ratio can be decreased, however, ds

limited by stability considerations.

5

Page 11: SERIE 64

Figure 11 presents values of wetted-surface coefficient for the models

of the aeriee. This graph shows relative ma Ltu4e of wetted surface for

boats of equal gross weight. It indicates clearly that for a given value

of slenderness ratio (i.c., given length of boat), the hull forms of the

series havix.g a block coefficient equal to 0.35 have considerably larger

magnitudes of wetted surface than the hull forms having block coefficients

of 0.45 or 0.55. This difference in magnitude of wetted surface presumably

is the chief explanation for the high resistance values of the 0.35 block

hull forms.

The graphb of Figure 6 have indicated that the hull forms which are of

particular interest, because of their low values of resistance, are the ones

--having a block coefficient of 0.45, and beam-draft ratio of either 2 or 3.

According4, a further anal' 3is of these is offered by the graphs of Figure

12. In these graphs, the values of resistance-weight ratio are presented

only for the more efficient models of the series (the values and the form

of presentation are the same as in Figure 6). Also presented in each graph,

however, are values of the ratio of frictional resistance to weight for the

same efficient models of the series. The difference between the open symbols

(R/W) and the filled symbols (R f/W) is obviously Rr/W, which is the ratio

of residual resistanc' gross weight.

Figure 12 indicates roughly how far it is practical to g in reducing

resistance by increasing slenderness ratio. The extrapolation lines drawn

on the graph for F7 equals 3.5 indicate that slenderness ratio for minimum

resistance will be about 13.5, and the corresponding minimum attainable

resistance-weight ratio will be about 0.12. At this point the resistaance

is almost entirely frictional, and the wavema•ing resistance is negligible,

so that there is no possibility of additional improvement by farther

increase in -'enderness ratio. A similar conclusion can be drawn from

the graph for FV equals 4. At this speed the optimum value of slenderness

is again about 13.5, corresponding to a minim= attainable value c'

resistance-weight ratio of about 0.15.

Figure 12 is also of interest as a guide to the design of the individual

hulls for high-speed displacement-type catamarans. Assume, for example, tha'

6

Page 12: SERIE 64

a 200-ton catamaran is to be designed for a speed of 40 knots. The dis-

placement of each hull will be 50 tons; Figure 4 then shows that the corres-

ponding value of F17 is approximately 3.5. The lower part of Figure 12b

can accordingly be used to determine an appropriate length for the hulls.

(It is assumed that the hullk are to be spaced far enough apart so that

interaction effects are avoided.) As discussed previously, the resistance/

weight ratio can be expected to be a minimum at a value of L/,71/3 of

approximately 13.5. Accordingly, from Figure 8 the optimum lengtn for each

of the catamaran hulls is about 160 feet. The lower graph of Figure 12b

also indicates that the value of R/W for this length is about 0.12. However,

Figure 10 indicates that this value should be increased by 5 percent for a

hull having a gross weight of 50 tons. Accordingly, the resistance of each

cf the hulls of the catamaran can be expected to be:

0.12 x 1.05 x 50 x 2240 = 14,10C lb

and the total resistance of the craft will be double this amount.

AC K••.I]E

The author gratefully acknowledges the contributions of Mr. Charles

W. Tate, who performed the essential tasks of preparing the graphs and the

tables of this report.

IREYEKTNCE?7

1. Yeh, H. Y. V.,"Series 64 Resiscance Experiments on High-Speed Dis-

placement Forms," Marine rechnolcK;, Vcl. 2., No. 3 (Jul 1965).

2. Nordstrom, H.F., "5ome res-s with Models of Small Vecsels,' Publication

No. 19 of the Swedish S-ate Shiptuilding Experimenmal Tan•k 1951).

7

Page 13: SERIE 64

06

co

t~

a C

C 'S1~ -+I

lb I i

_ _ _ _I I

I I• I •' I ,I'

' -- 3

'-4 I . I I

I i I

o II I I

Page 14: SERIE 64

m,

~0

SCO

I ,' 4 ' • i i :

m I--'

SI-

(1:)

cm1-4

o.b

Page 15: SERIE 64

IT

XI

01

.050

oo

~ Lr200

c~300

Oi

I K-4 500

- II 400(DI

-~ 500

00

120

Page 16: SERIE 64

OT 0 -

0 0

Ln N Ln - N L

tito

00

* *C -DF

h C I~ ,,' / AN

zz~Q U' I

N) J0

Page 17: SERIE 64

0.28 IModel No. BX/HX: Line

4787 2 II

4800 3 - -----4803 4 --- -- -

CB - 0.45 L/7 1 '3 - 9.58/(0. OIL)3 32 .5

0.20 ... ! . ..

W 0.16 '"J

1;7/

III

,7 ,

"o -.--s 6 -c V-_ _ _ _ _ _ _

0.121 t 12

0.04 --

7 I I

0 1 2 3 4

F7

Figure 5 -Reslstanze-.Weight Ratio versus VolumeFroude Number for Th-ee of the Hull Formsof Series 64. Resistance Values are for-=c;•: of 200) Tons Gross Nelght; aCf = 3

12

Page 18: SERIE 64

I I

0.02

0 .04 • i j. i . . . . . .. .

R 1 5 13 .. 45.5

'4 --C--

2 -C

.060.03 5 ___ __-_

B/H .35 .45 .~55R , -_W 0.07__4 4 -

7 8 1 2 - 1 -0.06 __ __ __ _ ? - .- - . _ _ _ _ _ _ _ _ _ _ _ _

-,-o

0,09 Fv' 2 "5•-

0.08 14

78 1 0 II 12 13 14

L/?Vt

Figure 6a - FV equals 1.0, 1.5, 2.0, and 2.5

Figure 6- Resistance-Weight Ratio versus Slenderness Ratiowith Volume Froude Number as Parameter, for theHull Forms of Series 64. Resistance Values arefor Boats of 200 Tons Gross Weight; LCf 0.9004

13

Page 19: SERIE 64

0.13 ", . . .

0. 11_

I CBI I--

*_ . ________

i B/H .35 .4 .5 .

0.14 6

0.13, i- - -___"

0.120

:: II' I

8 10 11 12 13 14

Figure 6b P equalS 3.0 and 3.5

1. 4

* -- --- - - ~ --- -

Page 20: SERIE 64

0 pFv-4.0O0.22 --.---.- - --

0.20--

0. 18-7- -CB

0.16- B/H .35 .45 .55

4Irv " 4. 5 --o c

0.26 _

n .2 4 . . . . . ..'2 4..... . . . . .... . .

0 .22 . . . . . .. . . . . ..,-'4 -c

-0

7 8 9 10 11 12 13 14

L/ L'3

Figure 6c - F7 equals 4.0 and 4.515

Page 21: SERIE 64

-LT

o c0

ol

- -\ , \ " .-- "----"--- ".-

r-1 - \ - \ . - ,

, "," "7-i 15

S__ 40'3

-%C O I0C c

-__ N

Page 22: SERIE 64

C4T

~ 77. 7.

toD . . . . . ...

to -- el- ..... Ll

tnI

\\J1

-.-

Page 23: SERIE 64

R, / '•

R/W tor 200 tons

C 0 ' 0' C

o I

-1= -

o 1 III / I

! -- I II -

V ~1•

- -'

q 7 I - F,. _ _ ; I I

' I~I.--.-.----}-ii f

o- I , i/t-

" I I ,

Page 24: SERIE 64

Z.rve Displacemen~t Angrt.-.- -

-_ - -- -- --

-12

I- Z

Re-lsan1- .z-:2 t o

* _ i__ , aSE .E er .; T

Flg~re allu s R s~s arce we.g,-, Ra ,:ý fror th -es :ý '/

of I3 7o/1ýý I,-n

--- ___ --- ------------------ -.-------------- 4 _18

Page 25: SERIE 64

I I

0.05

m • 0.03

"•!1 . ..i 1 -- -- -4• C

B/• i! .4 .550.01 -

-3 1-0 2' -

R Rf

0 .03 0--------....... ..

S -C F7 -2.5

0. 060 .0 C'4~.

7 8 9 10 11 12 13 14

Llv

Figure 12a- F. equals 1.0, 1.5, 2.0 and 2.5

Figure 12- Values of RNW and R,/W for the More Efficlent HullForms of Series 64. These Resistance V,'alues are

for Boats of 200 Tons Gross Weight; ACf - 0.0004.

21

Page 26: SERIE 64

U)

CD

CD~

~CD1

++ c-

I I

C+ I

Page 27: SERIE 64

0.12

0.10 O-----

0.081-

C.06-

R R

w w

o * •0.12 _-__

- 1-~0.10 I

B/Hi .4C-) .55

-] I

' 0 1 4....... . .. . . ... .

o~~~ --.2 0...

8 9 10 11 12 11

Figure 12b- F7 equals 3.0 and 3.5

22

Page 28: SERIE 64

0.21

0.19- - : r- •

0.17

0.15 --

u 3

2/

II !

R 0.13 -< ,

o *I0.22-o * - -N F7 .4.b

0.20'

*~-U.

-UI-4 _

0.14 -.

"7 9 10 11 12 4

L / V A

Figure 12c- F. equals 4.0 anI 4.523

Page 29: SERIE 64

TABLE I

Form Coefficients for the Hulls of Series 64

LCF/L equals o.601 aft of FP. and LCB/L equals 0,586 aftof F,P. for all models,

Cp equals 0.63 and Cw equals 0,761 for all models,

No. CB Cx (O.OiL)3X 2

4787 0.55 0.873 2 55 11.956 5,54788 0.55 0.873 2 40 14,020 4,74789 0.55 0.8'3 2 25 17.73,4 3.7

4790 0.55 0.873 3 55 9,762 6,74791 0.55 0.873 3 40 11.447 5.84792 0.53 0.873 3 25 14.479 ,5

4793 0.55 0.873 4 55 8.454 7 .8

4794 0.55 0.873 4 40 9.914 6 .64795 0.55 0.873 4 25 12.540 5.2

4796 0.45 0.714 2 45 11.956 5.54797 0.45 0. 7 i- 2 32,5 14.069 4.74798 0.45 0.714 2 20 17.934 3.7

"ý.79 0.45 0.7i1. 3 45 9.762 6.7,800 0.45 0.71. 3 32.5 11,487 5 .8

-8CI 0.-5 0.'!- 3 20 14.643 -. 5

4802 0.45 O.'L. 4 45 8.454 -. 84803 0.45 0.714 4 32.5 9.948 6.64804 0.45 0.714 4 20 12,682 5.2

4805 0.35 0.556 2 35 11.956 5.54806 0.35 0.556 2 25 14.146 4.74807 0,35 0.556 2 15 18,264 3.7

4808 0.35 0.556 3 35 9,762 6.74809 0.35 0.556 3 25 11.551 5.84810 0.35 0.556 3 15 14.913 4.5

4811 0.35 0.556 4 35 8.454 7.64812 0.35 0.556 4 25 10.004 6.64813 0.35 0.556 4 15 12.915 5,2

24

Page 30: SERIE 64

TABLE ZZ

Dimen•ions of the Modhls of Series 64

Model SXAX S ter

No. n. In. in,2 rt 2 Temp. lb

4787 10.037 5.018 43.96 11,388 710 120.0--4788 80559 4.280 31.98 9.711 71.50 87.24789 A,767 3.384 19.99 7.678 780 54.4

4790 12,292 4.097 43.98 11.503 78.50 120.04791 10.483 3.494 31.98 9.80a 69.50 87.24792 8.288 2.763 19.99 7.755 78' 54.4

4793 14.194 3.548 43.96 11.903 680 120.0

4794 12.104 3,026 31.98 10.151 760 87.24795 9.,5,9 2.3Z2 19.99 8.025 770 54.4

.. -4796 10.037 5.018 35.97 10.411 8es 98.04797 8.529 4.265 25.98 8.848 77.50 71.0

4798 6.691 3.346 15.99 6.941 750 43.6

4799 12.292 4,097 35.97 10.616 760 98.0

4800 10.446 3.482 25.98 9.022 760 71.04801 8.195 2.732 15.99 7.077 78.50 43.6

4802 14.194 3.548 35.97 11.109 770 98.01803 12,062 3.016 25.98 9.441 78.50 71.04804 9.462 2.368 15.99 7.406 78.50 43.6

4805 10.037 5.018 27.98 9.907 700 76.44806 8.483 4.242 19.99 8.373 76' 54.4

4807 6.570 3.285 11.99 6.486 760 32.P

4808 12.292 4.097 27.98 10.089 78.90 7 .4

4809 10.389 3.463 19.99 8.526 78" 04.4

4810 8.047 2.682 11.99 6.604 750 32.9

-Ill,' 14.194 3.548 27.98 10.644 73.50 76.4

4)19 11."G9 2.999 19.99 8.996 73.250 54.4

4.j3 9.292 2.323 11,99 6.968 72.50 32.9

Page 31: SERIE 64

Table Ser - ires 64 - Values of Model Speed and Model Resistance

Table X a - C = 0.55, "/(0.0lL) 3 = 55

Model 478? Mdl40 Moel 4793BXIHX 2 BX/HX = 3 BX/HX = 4

V a R a v . Rm V m

.00 0.18 1. a 96 .63

1.99 0.62 3.99 3 01 U .00 0.723.00 1.55 6.02 6.9 0 3.01 1.724.00 3.00 8.00 9 .8 4.00 3.IC

5.02 5.20 10.00 13.62 5.00 5.3;

6.01 6.75 1' .52 14.67 b.00 7.297.04 8.23 1 1.03 15.67 7.04 8 .78.05 9.64 11-52 16.83 u .00 0.5e9.02 11.22 12.01 18.60t ).00 12.29

10.01 13.06 12.52 19.41 10.O 14.3('

11.02 15.31 12.97 20.7u 11.00 16.60

12,00 17.54 1..51 22*53 1 1.99 19.2o

13.00 20.18 13.97 •4.3i 13.00 22.32

... 14.00 23.10 14.50 ?6.65 14.00 26*22

1.50 0.3• 3, 14.94 28.86 14.99 30.50

2.50 1.08 I L.i44 ý1*2e 8.51 1 .173.50 2.19 1'..i*92 33.71 9.51 13.214.50 4.16 10.03 13.62 11055 15.•0 4

t*50 5:9H- 11.02 15.8d 11.51 17.8')

6.50 7 45 1-.02 18.1- I1.53 10J.70

7.50 8 .eb 13.05 21.OC 13.4e 24.I J

8.5C 10.35 14. 01 14 54 640 10.42

9.50 12.03 14.99 24,54

10.50 14.05 It,95 *.03

11.50 16.30 lj.g)3 34.2e

12.50 18.87 713,50 21.64

14.50 24.55

Page 32: SERIE 64

Table - CB 0.55, /(O.O1L) 3 G O

Model 4788 Model 4791 Model 4794BX/HX= 2 ,BX/HX a 3 I BX/HX 4

vm Rs I VA fRm

1.O O l O0 O.17 1*05 0. 152.00 0.5? 200 0.56 3.00 1.433.02 1.31 3.03 1.21 5*.03 3.9u4.01 2.35 4.02 2.12 7.02 6.625.03 3.86 s.02 3.7.: 9.02 9.656.02 b.07 f.02 5.07 1 11.01 13.2b7.03 6.2C 7.05 6, 1 12.98 1*.2e

7.03 7.4 8.03 7 7.cc 14.88 ,3.94

9.03 8.7' 9.03 9.10 1.98 0 .6110.05 10.33 * 10.06 10.611 4.00 2.3t11.05 12.21 ii.04 12.65 6.03 5.*212.04 14.2) 12.02 14.9U 8.10 7.921.50 0.30 C 1.4 0.28 a 10.04 11 .37•.51 0.8') 2.52 0.84 12.04 15. 64 *52 3.14 J 3.5c 1.6t 13.71 29.3.2b.57 45 4.52 2.9:- -1.86 d9.316.53 5.61 5.59 4.43 6.03 5.437.52 *.7 c 6.5 5 55 o 5.54 4.808.5t 8.02 7.54 6.eL 6.51 6.0-V.5 9 :5! 8.53 fj.2u 7.50 7, 3o

Iu.52 1 .24 ,.55 g .8S 7.00 6.73SI.0 13.15 t 10.54 11 .7o4: 7.48 7.9413.04 17.5C 11.53 13.65.1 ti.03 8.2114.00 20.22i 10.02 10.61) 8.54 8.9SI1.,00 26.40 9.54 10.73

J 05 1 1 7U I U .5a 4 1 .9t

14.00 19.83

27

Page 33: SERIE 64

Table me - CB = 0.55, A/(O.O1L) 3 = So

Model 4789 Model 4792 Model 4795BX/HX = 2 BX/HX 3 BX/HX 4

vm I R vm Rm vm ps%

1 , 0 10 -55 U I 00 8*7- ,0• T 00eso00 0,.4 1j.00 12.01 J.01 0.g1

4. 4.01 1-56 14.00 14.0t 50 2,33. 5.0t It.00 16.03 7.02 4.00

u02 3.30 1b.0t 18.44 9.00 6.30'I.Oou 7.52 1.50 13.1 11.03 9.101J5.97 13.91 14.40 14.7? i ?.00 0 470.99 0.11 1 7.3 0 17.27 4.00 1,5333,01 0.92 J3.00 0.9b b .0w 3.25D C2 2s 3) .01 2.3, 6.01 4.7t7,0L• A 0 7.02 4. 1I 10.00 7.70

"9o02 6s07 1 661C 100 so101 1,02 8072 4,.00 1:5 I,- II,98 1068")

11:02 0.24 .02 3.-23 19 1 2,.f

4, q 0.64 3.05 5-1C 13.95 14.363450 1 *It- IU.UI 7,a ! . 487 16. 4 t

4.52 1.92 10..0 10,4e 15.86 18.802 2.49 0.70

b.51 4.60 3.50 1.187,52 4.57 4.50 1.91

13.00 1. .8 9 2.75

0.02 3.7db.50 3,623

8.00 5,124 *f)1 1,93

5,00 2.34

7.00 4.107.51 4 5'

bloo 4.9';8.49 5.589.50 6,0a8•

10.00 7.51

10.50 8e37

11.50 go8L

-8

Page 34: SERIE 64

Table =M 4 - C = 0.45, L/(0.0lL) 3 c 45

Model 4798 Model 4799 9 Model 48 *0

BX/HX 2 BX/HX = 3 SX/HX 4

Vm R Vg ~ Vm RElm

S .- o0.54 I.9-a -- 0-.6 -99 "662.37 3.98 k.6C 3*9C 2.37

5.96 5. 3• b.a7 5.62- 5? 9 5.627.98 7.8& 7,96 8.09 8.OC 8.A0).98 10.80 9.97 11.30 1o.(, 11.99

11196 14.7C 11.95 15.02 12.0i 16.2014.00 l194 14.04 19.53 ,14 .0( 21.q4Osqg 1 0.21 1t. O 08 25:2t Ito. 1 1 d9 .7t)

1..4 I 1a4 0.99 0.14 0.99 0. 1

!. O0 A.1J 1.00 1.47 2.. , 142

6 09Pe 606( 4 .98~ 4.a39o A.9 v 4.1 19.00 9.2'. 6.98 6.94 7.Otý 6.9t

11.00 12.60 8.99 9.53 8.9( 10.1012.97 16.95 11.00 12-92 10.9 I l.III. I C 2 2.7U 12.80 16.9b 13.01 18.9Q9.46 9.93 1!.0b 22.75 I 11.51 14.9,

10.57 11.7t 14.55 21.31 11.5 15.11I1.491Y .1 16 ~2k2 13.51 i04 U

I2.5C 15.77 1.99 0.5,1 1t,.60 2e71

13.4f 17.9! 209) 1&47 15.0') 25.52

14.55 21.15 i .00 4.2t 2.5- 0.94

4.98 4.01 .00 5.0sc 3.51 1*81k.95 9.1• b.98 9.53 11. 0!) 13.84

I 1.40 12..72 16.00 13.04 15.614 27. 91050 0.28 1i295 17.1b 1 0.50 12(9)2.50 0.9? 1".5? 17.57

4.52 3.22 10.50 13e01

5.55 4 7t 1109 13.97

29

Page 35: SERIE 64

Table Is - CB = 0.45, A/(0.01L) 3 = 32.5

Model 4797 Model 4800 Modol 4803BXAix 2 I BX/HX3 BX/HX 4

Vm Rm V*V RM

1.99 0.4' 1.99 0.44 i.53s99 1.87 .3.97 1.83 4.00 1.79

5.98 3.99 5.97 3.9e b.00 4.,07.,9t 5.93 7.9t 6-18 7.97 6.34

II.00 8.4,-. 9.98 8a6g 10.00 9,1411 97 1 1,5( 12:00 12:3C 12.02 12.68S 14*07 15s82 14904 16 39 14.07 17.1916. 11 20I 69 1. I11 21.6-j 16.09 22.10o.98 0.Ou 0.99 0.09 0.98 0.143.00 1 .0 219b 1 .04 2.99 1.08). 0o 3.01 4.98 2.91 4.98 2.94

.. 98 4 s93 b.98 4.95 609e 5.05d.99 7.2,2 8.97 7.27 9.00 7957

11.02 10.12 11.00 10.4?7 110.0 14.8413.00 13.61 13.02 14.24 12.97 1A.6e

7.51 5.40 15.10 19.17 15-08 19.680.48 7,70 1/ '62 17g9C 2.50 0.81

11.51 10.9d L.60 20.36 4.41 2,3213.53 14.63 5.44 3.44 6,5c 496615,61 10.4:2 6.50 4 41 3.51 7.1G1.07 0.06 7.48 5.52 10.51 9.9c

12.50 13.21 12.50 13.694.50 2.34 14.60 1*.40

3051 1 135 3.50 1.,3713.50 15 .3 j ,.48 3o4814.32 17*1( 7.4i 5.63Ito32 19.42 q.4 4 8.20

11 .50 1 o6613.52 15.8.315.63 20.94

16.07 el.941b.05 21.8u

it,. 10 22.06

30

Page 36: SERIE 64

Table = f - CB = 0.45, ,/(O.01L) 3 = 20

Model 4798 Model 4801 Model 4804BXHX2X/ HX = 3 BX/X = 4

-2-06 o-6.41 1 . S9 -- 73 1 . 91 0 t)a.99 1.2; 3.99 .114 4.00 1.21

.. 98 2.662 5.99 29.56 f>.00 2.637*98 4 .If 7.97 4.10 t0.00 4,.22

9.99 6.12 10.00 6.00 10.01 6. 3 #,

119e 8.4S 12.01 8.5t 11.97 80eu

14.0? I1 .3 1A.04 11 .5t 14.02 12.13

0.99 0.04 Ib.10 15.2'1 0.99 O.OLj.00 0.74 u. 9 0.0( 2.98 0.77"Q.L 1.87 2.99 0.6') .J.00 1.91

c.1 3.27 4.99 1.82 7.00 3.3JL

b.97 4.90 7.00 3.2: 80.99 5.Iv

1 .0. 9 l L. 7.14 j.99 4.9t I .I ,U 7.52- .... .... .

13.00 9.7t Ilu.97 7.2? 13.04 10.40

1'..07 1 1.37 13.00 9.9t f 1. IC 14.04

1b. 09 13.1 t 1P.62 14.34 .4P 4.6 69.42 5.42 7 . 4 4.54 9.46 5.60

Iu.50 6.54 9.49 5.5C 1..5O 5 I.83

11.50 7.72J I.5? 6.5t 11.50 u II

12.50 9.014 11.49 7.83 12.47 9.5t

13.50 10.52 12.50 9.09 13.49 1 .3t

1ob.9 12.3j 13.50 10.51 14.59 12 9!

1L-57 13.9', 1465 12.48 15.b0 14.9t

2.50 0.54 1.50 0. I 3t 9 9 1.22

J.bo 0.91, 3.99 1 .17 ,.)9 5.1.

4.46 1,52 10.00 6.04 v.99 6.3(L.4(P 2.11 13.53 #1136

7.50 3.6u

L. 4 0 4o4?

Page 37: SERIE 64

Table ,=g- CB 0.35, 4(0.1L) 3 = 35

Model 4805 Model 4808 ]odel 4811Bx/HX 2 BX/HX = 3 BX/X 4

vm R Vm u 'I vo I1.00 0,I0 1.00 0.17 1.00 0,alI2.00 0.55 2.99 1 .24 1.99 j.5(,3.01 1.20 5.00 3.37 3.00 1.31

-4.01 2.1 7.01 5.7d 4.00 2.1tt),02 3.52 9.00 8.64 5.00 3.80

t.03 4.7; 10-99 12.20 b.02 4.877.04 5.91 1.98 0.47 7.00 6.20d+Ol '? 1' 1 3.98 2905 8.00 7,549.04 8.62 0.01 4.5e 8.90 9.19

10.04 10.30 7.98 7.2Ž 10.00 11.0411.05 12.05 10.00 10.36 .I100 13.0112.04 14,02 12.00 '4,28 12.00 15.2113.07 16.19 4,50 2.7-' 12996 17.5e

- 14.02 18.5) 5.55 4o0e 13.9b 20012--1.49 0.27 6.50 5,-u 14.92 22.8;

"2.50 0.84 13.02 16m54 1o.91 25.57J*50 1.62 14 .00 19.0. .3.98 2.144,52 2,8C 14.98 21.7A 10.52 12.1s5.59 4,2J 15.95 e4.566.53 5.2,) 14.00 1l. 1c7.52 b63", 14.50 0.30 52 7.7, 4.00 2,0e9.55 9.3! j.00 3.J,

10.56 1105 0 .01 C45511.54 12.87I2.57 14.9413.55 17.1714.51 19,7-S1J.Ob 2 0.6b

32

Page 38: SERIE 64

Table h - CB = 0.35, t,/(0.01L) 3 = 35

M~odl 4806 i M~odl 48%• M~odl 4812

B/HX = 2 Bx Aix = 3 BX/HX= 4

v= , vm Rm v=

S.0oO 0 . I• e i IOu 0.13 0.99 0.1I3.00 0*9? 3.01 0.97 1.98 0.4 ?5.02 2.43 5.02 2.49 ,303 1.037.01 -43' 7.02 4.14 J.98 1.67

9000 6.5• 9.05 6.87 b500 2.06!8*96 6,6J 11.05 9.81 0,00 3.6f.

11.00 9,47 13.00 13.3t. 7.00 4.68.

13.01 13.24 I1.00 17.54 7.99 5.81

14,92 18.54 1.9q 0.47 8099 7.212.01 0,4u 4*00 1.55 9099 89873.98 1.5t 6.01 3.40 11.00 10.4,16.02 3a4 J 8.02 5.4L, 11.97 12.298.02 5.47 10.10 t3923 13.01 14.2tIuo B Ou 8004 11.99 11,48 -13.97 16.31

-12,02 11.33 13.95 15.41 14.94 18,5Lý

4.52 2.0t) 15.91 19.81 15,91 20.644. C 2,09v) 4 00 1,55 11.49g 11.,2

,9.ge 3.4t, 4.50 1.9 12.48 13 .17

cb51 308/ 4 .9b 2.48

7.52 4.8') b-50 2.975.00 2,51 b.00 3,385* 49 2.9s b.50 3.88

6.01 343J 6.99 4,370.50 3.8 7e49 4.9G7.02 A ,3? 7.9y 5.42

12.9b 13931 10.00 8.2014.00 15.07 10.50 8.971J11. I1t).1 10.97 9.7 c14.94 17m4(: 11.50 10.6314.49 16.,j I 1,9e I 1.38

13.05 13,3014.96 17.558.49 6.08

-).00 6.72).50 7.48d

33

Page 39: SERIE 64

Table i - CB 0.35, ,i,/(0.01L)3 = 15

Model 4807 Model 4810 Model 4813BX/Hx=2 BX /Hx=3 i B/Xx4

RIV~ R Rmm 01 1 = a vs %

1.00 0.10 1.00 0.1c 1.00 0.10: 2.g9v .71 2.00 0.343 3.00 0.6e

S. 0 1179 3.00 0.68 F.t 00 1 .s7.01 3.17 4.00 1.02 7.01 3.279.02 4.94 b. 00 1.74 9.00 5.2?

11.03 7.4t, 0,00 2.5o 11.02 7.6012099 9081 7602 3419 13*00 1 0 atý

15.02 12.91 8000 4s02 14e92 13.87

1,96 3-70 8,99 5*6'j 1098 0*31

4.97 tal. 10*02 7.13 3.98 1.13

,.02 2.40 11.00 8.32 0.00 2.4t

'3,01 3.96 11.99 8960 7,99 .4v12

y09,8 5.99 13.00 10.21 9.95 6e421 197 8.38 13.99 11.63 12.00 9.0014.02 11.35 14.95 13.31 13.95 12.0C15.94 14.55 1.50 0.19 15.90 15.81k1.08 0-20 2.50 0.49 11.99 9.Ou3.50 0.90 3.50 0.88 4.50 1 .4Jb.55 2.09 4.52 1.3b b.50 2.147.50 3.50 5.55 2.14 13.00 10.519.51 5.41 6.51 3.82 5.00 1.7311.48 7.75 7.50 3.7C 7.00 3.27

13.44 10.41 6.50 4.43 15.92 15.8115.41 13.6t 9.50 5.57

L.40 0.64 10.50 6.874.51 1.45 11.49 8.04

6.50 2.77 12.48 9.80bo.50 4.37 13.48 10.8e

10.53 6.5o 14.40 12o4I12,48 9.10 15.41 14.1C

I 11.43 1 1.97 11 .00 7.328.99 5.02).99 66.1,

11.50 7.9!

13.95 15.1I

34

Page 40: SERIE 64

"n- !as s 'f edSecurity Classification

DOCUMENT CONTROL DATA - R&D(Soew,11Y e888aitcatior of title. body of abaftiict *en i~~ndoii annotteionfl mwa be entered *,F4.i the Overallrpt o * vg

IO0111CrNATIN G ACTIVITY (Ceorpl4f *u'Phor) 128 01PORT ICLIP1T C LASS r'CATION

78LX Taylr ý'nrla Bazin Ucassified.:ashngntor., D. r. OQ7 bmoý

3 nIePORT TITLE

C-N'_RT C'" FI70ON3 OF TE HHIE I~ GH -SB IL~~TrHL C

4 DESCRtIPTiIV NOTIES 'Typ* of report amd 00Ciuave datee)

F _'na I5 AtjTMOR(Sj (Lost narri.i first mate minita)

b SUPL R MW rNoA E'TS- -Z- 2 1 42-CpN IITR CTVT

!I ABSTRACT

V;alues =of residuarT-; re74s~ta:ce fro- :rýodel tests -,,ere Dreios 1 -sente- -P-r a methodical ser-'ez of s~lender s oenthlfo: .hha

~e.teStef. L to hih s ,ee d S. The -.resentý rerof_)t gives .val'_es oftota'reýsistnce for the hull' fonns of th. e ser: .es so t.hat the-r relative :ncr-ts2ar: read~~ he seen. The values of total re f'tance were cal !-_ate."bo.:atsý o)f 110 Cton di4s-laoement to facili4tate ccworon ýth reistarico "a-.afor .§.Uv:hydrofoil btoats. Thýe forr-. of th-e dýata p)resenftat':on

as to rrvi d anc e for the ½ý_e F f h2hs~e sace-ert ar. -a~-a

DD i FA0 ' 1473__.SecuitV Cm~nifiait

Page 41: SERIE 64

S'Žcunttv Classificanion _______ _______

ILINK A LINK 2 L.INK CKEY WORDS -OL "T- L 1T R0LI

INSTRUCTIONS

I rQRl~,ISAT1NG ACTIVITY. Enter the name and address imnposzed by security classification, using standardý statementshT -h nl-acior. xubcontractor, grantee, Department of De- such as:

fi- .se A-ti vt -* or other organization (corporate author) issuing (1) -Qualified requesters may obtain copiea of thisthe re;vrm. report from DDC.''11i RPopO r S.CVR1TY CLASSIFICATION: Enter the ov.er- (2) "Foreign announcement and d~issemination of thisr&! '-er . rtv classificat ion of the report. Indicate whetherreotb D &ntahrid."5L~t~tirteni Data" is included. Markcing is to be in accord-reotbDC antutoid.

,:!I. aj.propr~iatte security regulations. 113) "U. S, Government agencies may obtiin copies ofGROU. Atomaic owngadig i speifid inDoDDi-this report di~rectly frvin DDC. Other qualified DDC

re I. -,. ' and Armed Forces Industrial Manu al, E user shl eqetthog62r,- n'.;' tcmel Also. vhen applicable, show that optional- .. ' e-i used for Groip 3 ind Group 4 as author- (4) "U. S. miylitary agencies may obtain copies of this

re-port directly from DDC'. Other qual fled users1zFF E)if'1 Tfl LE: Enter the complete report title in all shall request through

i.Titles in all cases should be u~nclassiit~d.* ~title cannot be selected without classifica-

"tle~ classification in all capitals in parenthesis i (5) "All distribution of this report is controlled. QualI !.]wing the title. ified DDC useirs shall request through

E NOTES: If appropriate. enter the type of ______

.r .t. 'r.,progress, summary, annual, or final. If the report has been furnished to the Office of Technical%e dii~es when a specific repcrtinr period is Services, Department of Commerce, for sale to the public, indi-

r- cate this fact and enter the price, if known.

\11TIIOP,, Enter the name(s) of author(s) a3 shown on 11, SUPPLEMENTARY NOTES: Upe for additional explana-11,r~o rt Entem tast name, fi~rst name, middle initial. tory notes.'a..-' w rank and branch of service. The name of

to, i.; ir -.1 thort is tin absolute minimum requirement. I12. SPONSORING MILITARY ACTIVITY: Enter the name ofthe departmental project office or laboratory sponsoring (pay.'-

REkP~Or flkTP Enter the date of the report as day, l for) the research and development. Include address.nith. %P;- r mounth, year. If more than one date appears 3ASRC:Etra btatgvn re n ats

rth- e -- use date of publication. 3ASRC:Etra btatgvn re n atasummary of the document indicative of the report, even though

7.. Tcm , NUMBER OF PAGES: The total page count Iit ma also appear elsewhere in the body of the technical re-sthouild f. >. normal pagination procedures. i, e., enter the

nur7ý-P Azs cntaiinginfrmaiomport If additional space ta required. a continuation sheet shalln~in'Pi . ~zs cntauinginfomaton-be attached.

b NL.X! i-.R OF REFERENCE&. Enter the total number of It is h.ýghlv desirable that the abstract of ýIassified rei-risett.. e. ( ited in the report. be unclassified. Each paragraph of the abstract shall end with

oaCwTP..A(T OR GRANT NUMBER: If appropriate, enter an indication of the military securit) classification -)f the in-po) . abl e number of the contract or grant under which fornmation in the paragraph, represented as r'TS) (s) (C). or 'C',

,h NUMER wawitn There is no limitation on the length of the abstract H-ow -

; PROJECT NME:Enter the appropriate ever, the suggested length is from 150 to ý25 words..nr rpartmernt identification, such as proiect number,. 4KYWRS e od r tcnclymaigu em

14por~ KEimYr system nueers words areher etc.cymainfl emwimbr, sste numers t-V--mer, tc.or short phrases that characterize a report and may be used as

,a. 0HGICNATOR'S REPORT NUMBER(S), Enter the offi. index entries for cataloging the report. Key words must becial rep :. number by which the documrent will be identified selected so that no security classification is required. Identi-s!.d -onlorlled by the originating activity. This number must fiers, such as equipment model designation, trade name, militaryt- to: this report. project code name, geographic location, may be used as keyYýo 01 HER REPORT NUMBER(S): If the report has been wods but will be followed by an indication of technical con-

I t~ott. The assignment of linkcs, rales, and we.-ghts is opt-iona',ý-oIwred! Anv o'her report numbers (eith- by the originstor

.rý,th,- ponsor). also enter this number ;

1) A%',I', Ali]I.ITY;LIMITATION NOTICES Enter ainy lim i,

fu lc iqsemnination of the report, other than tho se

0Dr .%A1473 (BACK) ,~~~