157
^ + * ,,r- A+ .FR0108547 Commissariat a I Energie Atomique Direction des Sciences de la Matiere Departement de Recherche sur I'Etat Condense, les Atomes et les Molecules CEA-DREC AM-SPAM-RA-1998-2000 Service des Photons, Atomes et Molecules 33/04 Activity report 1998-2000

Service des Photons, Atomes et Molecules

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Service des Photons, Atomes et Molecules

^ • • + * ,,r- • A + .FR0108547

Commissariat a I Energie Atomique

Direction des Sciences de la MatiereDepartement de Recherche sur I'Etat Condense,

les Atomes et les MoleculesCEA-DREC AM-SPAM-RA-1998-2000

Service des Photons, Atomeset Molecules

3 3 / 0 4Activity report 1998-2000

Page 2: Service des Photons, Atomes et Molecules

COMIVIISSARIAT A L'ENERGIE ATOMIQUE

Direction des Sciences de la MatiereDepartement de Recherche sur l'Etat Condense,

les Atomes et les MoleculesService des Photons, Atomes et Molecules

SPAM

ACTIVITY REPORT

1998 - 2000

Centre d'Etudes Nucleaires de Saclay91191 Gif Sur Yvette Cedex

France

Page 3: Service des Photons, Atomes et Molecules

GS3V W X « > S « ^ SACLAYDirection des Sciences de la MatiereDepartement de Recherche sur 1'Etat Condense,les Atornes et les MoleculesService des Photons, Atomes et Molecules

Service des PhotonsAtomaset Molecules

Head of the Laboratory

Didier NORMAND

Tel: (33) 1.69.08.24.73Fax : (33) 1.69.08.87.07

Email : [email protected]

Head Assistant of the Laboratory

Jean-Paul VISTICOTT61: (33) 1.69.08.68.43Fax : (33) 1.69.08.84.46

Email : [email protected]

Secretaries

Jacqueline BANDURA

Sandrine JACQUART

T61: (33) 1.69.08.74.09Fax: (33) 1.69.08.87.07

Email : [email protected]

Tel: (33) 1.69,08.93.91Fax: (33) 1.69.08.87.07

Email : [email protected]

Safety Engineer

Pascal d'OLIVEIRATel: (33) 1.69.08.82.60Fax : (33) 1.69.08.87.07

Email : [email protected]

Service des Photons, Atomes et Moleculeshttp://www-drecain.cea.fr/spam

Page 4: Service des Photons, Atomes et Molecules

HEADS OF GROUPS

FEMTOSECOND LASER FACILITIES

Pascal d'OLIVEIRA

Pascal d'OLIVEIRA T61: (33) 1.69.08.82.60 Fax : (33) 1.69.08.87.07 [email protected]

MATTER UNDER EXTREME CONDITIONS

Bertrand CARRE

Laser matter interaction in strong fieldsBertrand CARRE T61: (33) 1.69.08.58.40 Fax : (33) 1.69.08.87.07

High energy density matter and atomic physicsThomas BLENSKI T61: (33) 1.69.08.96.64 Fax : (33) 1.69.08.87.07

Applications of plasmasMartin SCHMIDT Tel: (33) 1.69.08.26.57 Fax: (33) 1.69.08.87.07

[email protected]

blenski @drecam.cea.fr

[email protected]

PHYSICAL CHEMISTRY OF MOLECULAR SYSTEMSFRANCIS PERRIN LABORATORY

Jean-Paul VISTICOTDimitra MARKOVITSI

Photophysics and photochemistry in the gaseous phaseJean Paul VISTICOT (33). 1.69.08.68.43 (33)1.69.08.84.46

Nanometric covalent systemsCecile REYNAUD (33)1.69.08.69.16 (33)1.69.08.87.07

Theoretical chemistryJean-Pierre DOGNON (33)1.69.08.37.14 (33) 1.69.08.87.07

Synchrotron radiationPaul MORIN (33) 1.64.46.81.24 (33) 1.64.46.81.24

Photo-physical chemistry in the condensed phaseDimitra MARKOVITSI (33)1.69.08.46.44 (33)1.69.08.87.07

[email protected]

revnaud@ SDam.saclav.cea.fr

[email protected]

[email protected]

[email protected]

Service des Photons, Atomes et Moleculeshttp://www-drecam.cea.fr/spam

Page 5: Service des Photons, Atomes et Molecules

PLEASE BE AWARE THATALL OF THE MISSING PAGES IN THIS DOCUMENT

WERE ORIGINALLY BLANK

Page 6: Service des Photons, Atomes et Molecules

TABLE OF CONTENTS

General informations 3Introduction 7

I HIGH INTENSITY AND HIGH FLUX PHOTON SOURCES 15

1-1 General presentation 17

1-2 Femtosecond Laser Facilities and laser driven VUV-XUV 18sources

1-3 Synchrotron sources and Free Electron Lasers 24

II MATTER UNDER EXTREME CONDITIONS 31

II-l General presentation 33II-2 Production of coherent XUV light by harmonics generation 34H-3 Molecules and clusters in strong fields 42II-4 Ultra-short non LTE plasmas produced by Optical Field 50

IonizationII-5 High energy density matter and atomic physics 55

III PHYSICAL CHEMISTRY OF MOLECULAR SYSTEMS 61

HI-1 General presentation 63in-2 Photophysics and Photochemistry in the Gaseous Phase. 64ni-3 Photo-physical chemistry in the condensed phase 71IH-4 Nanometric Covalent Systems 75m-5 Physical Chemistry with Synchrotron Radiation 82HI-6 Theoretical chemistry 88

Service des Photons, Atomes et Moleculeshttp://www-drecam.cea.fr/spain

Page 7: Service des Photons, Atomes et Molecules

IV SCIENTIFIC COMMUNICATION 93(January 1998 - June 2000)

Articles in refereed journals 95Articles in proceedings 109Book chapters 113Invited conferences 115Invited seminars 121Oral communications 127PhD Theses 135Popularization articles 137Patent 138

V SPAM WITHIN THE SCIENTIFIC COMMUNITY 139

Scientific awards 141Networks and contracts 143Relations with Universities 147• Corresponding Research Laboratories 147• Teaching 149• Reception of University students and other scholars 151Collaborations with other laboratories 153Post-docs 155Foreign visitors 156Organisation of conferences and workshops 157Evaluation of research 159• Evaluation of laboratories, program committees and evaluation 159

committees• Thesis committees 161• Young scientist seminars 165

List of the laboratory staff 169

Service des Photons, Atomes et Moleculeshttp://www-drecam.cea.fr/spam

Page 8: Service des Photons, Atomes et Molecules

SPAM Activity Report 1998-2000Introduction

The aim of this introduction is to outline the main developments of the 'Service des Photons, Atomes etMolecules', (SPAM) during the 1998-2000 period: developments in terms of structure, staff, science,collaborations and contracts. SPAM is one of the laboratories in the De"partement de Recherche surl'Etat Condense", les Atomes et les Molecules (DRECAM), itself depending on the Direction des Sci-ences de la Matiere (DSM) of the CEA Institution.

1. StructureSPAM structure has been extensively modified during the period of reference. SPAM was previouslydivided into six scientific groups plus the Department laser facility LUCA (Laser Ultra Court Accord-able) and the tool shops. It is now organized in three large groups, that is two research groups interact-ing with one technical group, as shown in the diagram below. This reorganization meets the spirit of thelast Scientific Council recommendations.

>second Laser Facilities

P. d"Oliveira|. . . . 1 .

Saclay Laser-matterInteraction Center

(SLIO

SPAMD. Normand

|..J,.Matter under Extreme

ConditionsB.Csrri

. _ J ,

Physical Chemistry ofMolecular Systems

J.-P. VisticolI

. .. 1. .Laboratoire

Francis Perrin

D. Markovitsi

The "Femtosecond Laser Facilities" technical group (Gl) is headed by Pascal d'Oliveira. It iscomposed of LUCA, which is a versatile multi-beams tunable laser facility, UHI10, which is a10TW laser facility, and the technical support.The "Matter under Extreme Conditions" group (G2), headed by Bertrand Carre", studies physicalproblems relevant to laser-matter interaction under strong field and plasma physics; topics of inter-est include High order Harmonic Generation (HHG) and applications, Coulomb explosion of mole-cules and clusters, laser-produced plasmas at ultra-high intensity and high-energy plasmas.The "Physical Chemistry of Molecular Systems" group (G3) is headed by Jean-Paul Visticot. Itgroups together the physical-chemists of SPAM. The topics studied deal with photophysics andphotochemistry, nanometric covalent systems, theoretical chemistry, interaction of matter with syn-chrotron radiation, Fret; Electron Laser (FEL) development and applications.

This report is divided in five chapters. Chapter I gathers all the work performed on the light sources,that is to say the evolutions of the femtosecond laser facilities (Gl group) and the achievements on thenew SU5 synchrotron line and on the Free Electron Laser (part of G3 group). Chapters II and HI fo-cus on the scientific results obtained by the G2 and G3 groups respectively. Chapter IV gathers allinformation on SPAM scientific communication while Chapter V lists SPAM interactions with the sci-entific community.

In addition to enhancing collaborations within the groups, the three-group structure was introduced tosupport SPAM's new organization policy. Gathering all SPAM activities in Physical Chemistry in theG3 group has been very useful for including it into a Mixed Research Unit (French UMR) with CNRSand Paris XI University. This unit called the "Laboratoire Francis Perrin" has been accepted by CNRSand will be officially formed by the end of 2000.

Page 9: Service des Photons, Atomes et Molecules

Another important aim was to obtain the status of Large European Infrastructure for an ensemble offour laser facilities (including LUC A and UHI10) grouped inside a common organization named'Saclay Laser matter Interaction Center, (SLIC)'. This attempt followed a recommendation of our lastScientific Council "to coordinate future efforts in laser development and applications with other in-stitutions". A proposal was submitted by SPAM to the European Union in May 1999. It was supportedby 70 letters from international scientists who declared their intention to perform experiments at SLIC.Although rejected by the EU in 1999, the SLIC project continues to be viable and will be resubmitted(cf website http://www-drecam.cea.fr/spam/aspam5.htm). A first step was made in 2000 when SLICwas accepted as part of a large cluster including all the European laser infrastructures.

In spite of the three-group structure, scientific and technical collaborations between the groups are veryactive. Collaboration is very tight on molecule and cluster science for which researchers of G2 and G3groups share two "Laboratoires de Recherche Correspondants" (LRC) contracts with Paris VI andLyon I Universities. The applications of high order harmonics take full advantage of the complementarycultures of Physicists and Physical Chemists. From the technical point of view, the groups share thelaser facilities of Gl, the Super ACO synchrotron source, vacuum and supersonic jet technologies. Thesearch for ultra high-quality mirrors interests the Free Electron Laser as well as the HHG communities.

2. StaffThe chart in Figure 2 gives the comparison of the SPAM staff between June 98 and December 2000.The number of CEA researchers/engineers has increased from 37 to 43, that is a net gain of 6 units; thenumber of technicians/administrators has decreased from 13 to 12; the number of CNRS researchershas increased from 2 to 6. In all, the number of permanent fellows has increased from 52 to 61 betweenJune 1998 and December 2000, which restores the population that SPAM had in 1995. The numbers ofPhD students and post-docs are slightly reduced but remain satisfactory.

CEAResearchers-

Engineers

CEATechnicians-

Administratives

CNRSResearchers

PhD Students Postdocs

Figure 2: Evolution of the SPAM staff between June 1998 and December 2000

The detailed analysis is the following- Five researchers have retired and five young researchers have been hired. Two of them are involved

in SPAM efforts to intensify its research in high-energy laser physics. Plans are for these col-leagues to join the group that DSM intends to create at Bordeaux to support civilian research on the"Ligne d'Inte"gration Laser" (LfL) and the Laser M6gaJoule (LMJ).

- Three CEA researchers have joined SPAM.- Three SPAM technicians have been promoted to engineer positions.- Although one technician and one secretary have been hired during the period of reference, the num-

ber of technical staff has slightly decreased due to the promotion of three technicians.- As a result of the creation of the Francis Perrin Laboratory, four CNRS researchers joined SPAM

by July 1999. Other researchers are expected to join when LFP is officially formed.

Page 10: Service des Photons, Atomes et Molecules

DCNRS Researchers• CEA Technicians-AdministrativesDCEA Researchers-Engineers

< 30 30-34 35-39 40-44 45-49 50-54 55-59 > 60

Figure 3: Age pyramid of SPAM permanent staff (December 2000)

The age pyramid (Figure 3) shows that 87% of the permanent staff is below 50 years old, with an av-erage age of 42 years at the end of 2000. Very few retirements are expected in the next few years. Al-though the researchers/engineers staff peaks at 45-49 years, more than 40% of this category is below40. The technical staff is very well balanced between the different age groups.

3. Science and TechnologyThe evolution of science and technology at SPAM is described in detail in the first three chapters of thisreport. Without giving an exhaustive list here, it is nonetheless possible to emphasize some majorachievements obtained during the 1998-2000 period:

The LUCA facility has been notably upgraded. Its pulse duration has been reduced to 60 fs, itspeak power increased to 2 TW, and it can now accommodate 5 experiments simultaneously. TheUHI10 facility has come into full operation, many diagnostics have been implemented and a probelaser line has been constructed. The FEL has successfully operated at 300 nm. Finally, SPAMhas participated in trie construction and characterization of a new synchrotron line (SU5) thatfeatures very high resolution and adjustable polarization.

The G2 group has developed two new applications in surface physics and in laser-plasma physicsthat take full advantage of the high-order harmonics properties. It has made important progress inthe search for a new X-ray laser scheme using optical field ionization. It has strongly intensifiedits efforts in laser-plasma interaction studies by conducting experiments at Ph6bus and at LULI(Laboratoire pour l'Utilisation des Lasers Intenses), by performing dense-plasma absorptioncalculations and by developing applications for nanolithography.

The G3 group has observed the solvation dynamics of inorganic salts and the pre-reactive behav-ior of photoexcited alkene molecules at the femtosecond scale. The energy transport in organizedmolecular systems has been characterized; this work will be now oriented towards biomimeticsystems. Evidence for the existence in cosmic dust of nanocrystallites (diamond and silicon) hasbeen found. Finally, calculations of charge transfer in ion-molecule systems have emphasized theimportance of this term in the modeling of metal cations solvation.

4. Collaborations and ContractsThe diagram in Figure 4 shows the main collaborations and contracts of SPAM both on basic researchand on more explicitly applied research, although this partition may be somewhat arbitrary,

Page 11: Service des Photons, Atomes et Molecules

National and International LaboratoriesCNRS. Paris VI. Pans XI, Bordeaux, Lyon I. Orleans, Caen Universilies

Most countries of (he European Union. 1:SA. Japan. Russia

High HarmonicsX Laser Opjcilie*;

SopraStso \ InJust

RtoscThomson

Figure 4: Collaborations of SPAM in basic and applied research

Basic research.On the one hand, SPAM has strongly increased its collaboration with academic laboratories, the mainachievement being the creation of the F. Perrin Laboratory with the CNRS and the Paris-Sud Univer-sity. In addition, our four previous 'Laboratoires de Recherche Correspondants' (LRC) contracts withBordeaux, Orl6ans and Paris VI Universities have been renewed for two more years; two new LRCcontracts have been signed with Lyon I and Paris VI Universities. A Research-Teaching convention hasbeen signed between CEA/DRECAM and the Molecular Physical Chemistry program of the Paris-SudUniversity. As a result of this convention, SPAM developed a complete experimental set-up includinglaser vaporization and spectroscopic detection. This set-up devoted to student formation was released tothe University in September 1999. In addition, SPAM is involved in a National Program between CEA,CNRS and CNES on the Physical Chemistry of the Interstellar Medium (PCMI).

On the other hand, SPAM has obtained several contracts from the European Union. It is involved infive TMR (Training and Mobility of Researchers) networks (Generation and Applications of Ultra-Short X-ray pulses, SRFEL source at 200 nm, ATTO, an X-Ray Laser Network), one NANOMATthematic network and one Access to Research Infrastructure network (combined SR and VUV FELFacility).

Different collaborations also exist between SPAM and several laboratories of the Military ApplicationDivision (DAM), formalized through the co-funding of PhD thesis works. They range from the devel-opment of coherent extreme UV sources and characterization of optics to the studies of opacities indense plasmas. Finally, the "Groupe dTnvestigation des Applications Scientifiques des grands lasers"(GIAS), in charge of promoting the civilian research on the LIL and LMJ facilities, includes contribu-tion of SPAM to, for instance, astrophysics, nuclear physics and plasma physics programs.

More applied researchSPAM has made many efforts to find new contracts on more applied research in order to open its ac-tivity to its scientific and technological environment. These research lines are indicated by black arrowsin Figure 4. SPAM honors its affiliation to the CEA by interacting with several other CEA Divisions. In2000, SPAM signed three contracts with the DCC (Fuel Cycle Division) for consulting expertise in theLaser Isotope Separation (SILVA) program. These contracts concern some specific aspects of the laser

10

Page 12: Service des Photons, Atomes et Molecules

propagation in dense media, of ion collisions in the separation process and the search for new dye mole-cules dissolvable in water rather than in methanol.

In the context of the CEA efforts on nuclear waste disposal, SPAM has also begun a three-year re-search program on "extracting molecules" that deals with the modeling of metal ion-molecule interac-tion. The ultimate goal is to define new molecules for extracting heavy metal ions among other constitu-ents in order to facilitate their storage. This program started in 1999 and involves other CEA laborato-ries in the DSM, DCC and DSV (Life Science) Divisions.

Since November 1999, SPAM has been part of a national R&D project called PREUVE that aims atdeveloping the future technology for nanolithography processing. PREUVE is a two-year pre-industrialprogram that involves three CEA laboratories, one CNRS laboratory, Marseille University and threeindustrial companies. SPAM efforts concentrate on developing an intense Extreme UV light source at13nm based on laser-clusters interaction. At the first stage, the source will operate at low repetition rate(<100Hz). It will be inserted in the French EUV lithography test bench that is being developed in par-allel by other PREUVE partners. This bench will allow for experimental studies on EUV lithographyand photo-resist processes.

: II subvention (MF)• contracts (MF) Figure 5: Evolution of the SPAM subven-

tion and contract funding over the 1998-2000 period, excluding salaries of the per-manent staff

1998 1999 2000

Figure 5 displays the SPAM subvention including all budget lines such as investment, running costs,travel costs and salaries of non-permanent staff. The permanent staff salaries amount to about 22 Mil-lions Francs (MF) per year, which represent 80% of the total subvention. The diagram also shows theinternal resources of SPAM from contract funding over the same period. The part of the subventionconsidered in Figure 5 has decreased by 16% between 1998 and 2000. Furthermore, the fraction corre-sponding solely to the investment and running costs has decreased by 25%. In 2000, it amounts toabout 3 MF, which is less than 50kF for each permanent fellow. A very substantial increase of our in-ternal resources - by a factor of 5 - and a drastic reduction of our investments have made it possible tomaintain the level of most research activities in 2000. Yet SPAM budget situation remains hazardousbecause it relies on a few big contracts and because contract funding is by definition targeted on spe-cific goals and cannot be used to support all laboratory's activities

5. FutureMany large projects must be undertaken in the years to come. The PREUVE project will end in No-vember 2001. In order to meet the requirements for future industrial stepper machines, it is necessary toprepare the next stage that requires developing a high repetition rate (>lkHz) extreme UV laser plasmasource. SPAM, CEA/DCC and the CEA/DTA are already negotiating with several partners fromGermany and the Netherlands to submit a common project to the European Community as part of theMEDEA+ program. The intention announced by Thompson TCL of manufacturing such an extremeUV source at high repetition rate is a highly valuable asset for the future of this research.

SPAM must re-apply to the EU for the status of large infrastructure for its laser facilities (SLIC proj-ect). For this purpose, it will be essential to emphasize the complementary characteristics of the threeFrench laser centers in the Ile-de-France region: SLIC offers unique possibilities of combining severallaser lines widely tunable from XUV to infrared, trie Laboratoire d'Optique Appliquee (LOA) features

11

Page 13: Service des Photons, Atomes et Molecules

the shortest pulse duration and highest peak power, and the LULI is specialized in high energy lasers atlow repetition rates.

SPAM is heading a project entitled "Plate-forme Laser Femtoseconde Accordable" (PLFA) which aimsat increasing the tunability of its laser facilities. Two new laser systems will be added to the LUCA fa-cility. The first laser will be a tunable source based on Ti:Sapphire kHz amplifier delivering 0.3 TWultra-short pulses. This system is more specifically designed for two-color (IR/VUV-XUV) pump-probeexperiments. The second system will give access to the mid-infrared spectral range by means of fre-quency difference between two parametric amplifiers. The PLFA project has been presented to the Ile-de-France region in January 2000; the demand for funding will be submitted at the end of the year.

It is necessary to find new directions of research. SPAM is contributing with several European partnersto a theoretical chemistry project to develop accurate quantum chemical methods relevant to large mo-lecular systems containing actinides or lanthanides. Model potentials for molecular dynamics simula-tions should be developed, not only for nuclear waste management (a collaboration with the Fuel CycleDivision is in project for 2001) but also for further work in environmental or life sciences. The recentarrival of chemists specializing in the liquid phase should also make it possible to develop new topics atthe interface of physics and biology. Other possible tracks concern the applications of laser-producedplasmas (EUV light and energetic charged particles sources - see Sections II-3 and II-4) and the newsource of size-selected nanoclusters (see SONATE experiment in Section III-4), which is developed tostudy size-effects on the structural and optical properties of covalent clusters.

Finally, science at SPAM is linked to big and exciting projects like SOLEIL, the LIL and LMJ lasers.France's recent decision to build SOLEIL on the Saclay plateau will give SPAM the opportunity topursue its researches using third generation synchrotron sources in the best conditions. The challenge isto continue experiments in LURE and in other European synchrotrons and to optimize the equipmentsto be transferred to SOLEIL around 2005. As far as science with big lasers is concerned, SPAM hopesprimarily to put its expertise in laser-matter interaction in strong laser field to work in the physics ofmatter with high energy density, either for the study of plasma diagnostics or for the physics of fastignition.

As shown in this introduction, SPAM and science at SPAM have developed appreciably during the lasttwo years. SPAM hopes to remain a laboratory of basic research with well-targeted expertise in physicsand physical chemistry of light-matter interaction. The dynamism and the multiple expertise of its re-searchers, an effective technical support, and cutting-edge equipment have allowed SPAM to contributesubstantially to several major projects of the CEA, as for example the electronics of the future, largelasers and their applications, enrichment processes and treatment of waste products. Serving the CEAlarge objectives will remain a priority for SPAM.

AcknowledgementsOn behalf of all SPAM researchers, I wish to thank our technical staff that provides a constant sup-port to our activity. Its expertise in design and mechanics, laser and optics, computer systems, elec-tronics and electro-mechanics, as well as its skill and efficiency are at the bases of our research. I amvery thankful to the reading committee, and especially to B. Carre, I. Dimicoli, Ph. Millie, P.d'Oliveira and J.-P. Visticot who brought a sustained critical and constructive care to improving thispresentation. Finally, J. Bandura, S. Jacquart and P. Meynadier, who have prepared the final form ofthe report, are especially and warmly acknowledged

D. Normand

12

Page 14: Service des Photons, Atomes et Molecules

SCIENTIFIC RESULTS

13

Page 15: Service des Photons, Atomes et Molecules

HIGH INTENSITY AND HIGH FLUX PHOTON SOURCES

I-l GENERAL PRESENTATION 17

1-2 Femtosecond Laser Facilities and laser driven VUV-XUV sources 18

I-2-a Introduction 18I-2-b The LUC A Facility 18I-2-c The UHI10 Laser Facility 20I-2-d Production of coherent XUV by high order harmonics generation 22I-2-e Selected references 23

1-3 Synchrotron sources and Frtse Electron Lasers. 24

I-3-a Introduction 24I-3-b SU5: a VUV high resolution beamline with variable polarization 24I-3-c The UV Free Electron Lasers and their applications 26I-3-d Selected references 29

15

Page 16: Service des Photons, Atomes et Molecules

HIGH INTENSITY AND HIGH FLUX PHOTON SOURCES

1-1 GENERAL PRESENTATION

Most of the programs carried out at SPAM involve radiation-matter interaction and consequently, rely onphoton sources. Beside commercial laser systems, four main categories of photon sources have been studied,designed, developed or upgraded by SPAM teams from 1998 to 2000. These four types of sources areSynchrotron radiation sources (SR), Free Electron Lasers (FEL), Compact VUV or XUV laser-driven sourcesand Intense femtosecond laser facilities.

The SPAM interest for these four categories of sources results from their complementarity. The synchrotronbeamlines and the Free Electron Lasers deliver high photon flux at MHz repetition rate together with very highshot-to-shot energy stability. These two sources have the additional advantage of being naturally synchronized.Synchrotron beamlines are also the most widely tunable VUV or XUV sources and they offer the possibility ofcontrolling the polarization of the beam, as it has been demonstrated in the VUV with the Super-ACO SU5beam line.

Compared with the synchrotron beam lines, Storage Ring Free Electron Lasers are fully coherent sourceswhich deliver higher brilliance beams in the UV. Their reliability as a source for users in combination withsynchrotron radiation has been proven on the Super-ACO FEL. Included in high brilliance synchrotronfacilities (so-called "3rd generation sources"), Storage Ring FELs should offer outstanding performances,especially in terms of average power (several watts) and brilliance in the UV and VUV range.

On the other hand, compact VUV and XUV laser driven sources require smaller installations. Generally, then-average photon flux is lower (due to their repetition rate typically less than 1kHz) but their peak power andtheir intensity can be much higher. For instance, with high order harmonics pulses, intensities in the 1010-1012 W/cm2 range have been obtained at 20 nm. The high order harmonics pulses are also highly coherent andultrashort: pulses duration of a few teas of femtosecond are now typical.

Besides the above-mentioned sources, the femtosecond laser facilities have dual interest. They generateultrashort intense pulses for the study of subpicosecond kinematics or to investigate phenomena induced byultra-high intensity optical fields. These intense lasers facilities are also the necessary drivers for the VUV andXUV laser-driven sources.

This chapter presents the "source" activities carried out at SPAM from 1998 to 2000. It is divided in twoparts. The first part is dedicated to the femtosecond laser facilities LUCA and UHI10; it also presents brieflythe performances of the XUV high-order harmonics source studied and operated at SPAM. The second partconcerns high performance synchrotron radiation beamlines and Ultraviolet Free Electron Lasers. Theyinvolve mainly the SU5 synchrotron beam-line and the Super-ACO Free Electron Laser (FEL). Some of theexperiments performed with the Super- ACO FEL are also reported.

17

Page 17: Service des Photons, Atomes et Molecules

1-2 Femtosecond Laser Facilities and laser driven VUV-XUV sources

Permanent research and technical staff: P. Agostini, T. Auguste, M. Bougeard, P. Breger, E. Caprin,B. Carre, M. Ch6ret, P. D'Oliveira, S. Dobosz, A. Fillon, O. Gobert, D. Guyader, P, Meynadier,P. Monot, M. Perdrix, P. Salieres.PhD Students: L. Le DeYoff, J.-F. Hergott, S. Hulin, P.-M. Paul.Post-doctoral position: H. Merdji.Collaborations: D. Joyeux, D. Phalippou (Institut d'Optique Th6orique et Appliqufe, Orsay), Ph.Zeitoun (Laboratoire de Spectroscopie Atomique et Ionique, University Paris XI, Orsay), E. Constant,J.P. Chambaret, (Laboratoire d'Optique Appliqu6e, ENSTA, Palaiseau), E. M6vel (Centre d'Etudes desLasers Intenses et Applications, University de Bordeaux), A. L'Huillier, C.-G. Wahlstrom (LundInstitute of Technology, Lund, Sweden),

I-2-a Introduction

The LUC A and UHI10 femtosecond laser facilities have been operated by the SPAM technical group since1993 and 1997 respectively. UHI10 delivers ultra-intense (10 TW) pulses for the study of laser matterinteractions at ultra high intensity. LUCA is a more polyvalent facility delivering ultrashort pulses in thevisible, ultraviolet and XUV spectral ranges, with powers up to 2 TW (at 800 nm). The main characteristics ofits XUV line, based on High order Harmonics Generation, are given in Section I-2-c (see also Section II-2 formore information on high order harmonics).

Two other kinds of laser-driven VUV or XUV sources are studied at SPAM, though not presented in thischapter. The UHI team (T. Auguste and col.) investigates a new scheme of X-ray laser. The proposed lasingmedium is a plasma generated by Optical Field Ionization (OFI) of gaseous nitrogen. Preliminary studies havedemonstrated that this plasma exhibited the required characteristics to produce laser emission at 13.6 and 2.1nm. It is a first step towards compact X-ray lasers featuring higher repetition rate together with shorterwavelengths. This work is reported at paragraph II-3-b. The behavior of clusters irradiated by intense lasershas also been actively studied. The first experiments have been carried out with the femtosecond LUCA laser.A XUV emission in the 1-4 keV spectral range has been observed. These results have opened the way to thestudy of a high flux VUV source for nanolithography applications. The investigations are now carried on inthe framework of the PREUVE project coordinated by the CEA/DTA/LETI Department. The first experimentsstarted at the end of 1999.

I-2-b The LUCA FacilityO. Gobert, P. Meynadier, D. Normand, M. Perdrix.Collaboration: J.P. Chambaret

LUCA is a versatile multi-beams tunable femtosecond laser facility of the DRECAM department, used bynumerous research teams from the CEA, the CNRS, Universities, or foreign scientific organizations (seeFigure 1), Experiments carried out with this system are very wide-ranging (e.g. femto-chemistry, solid statephysics, laser-atoms, molecules or cluster interactions at high intensity).

42%

RECAM/LSj/DRECAM/SpCgj

7%

14%11%

Figure I: Percentage of beam time allocation on the LUCA facility (year 2000)

18

Page 18: Service des Photons, Atomes et Molecules

Brief description of the facility : LUCA is based on a CPA Titanium-Sapphire laser with a 20 Hz repetitionrate. This system is mainly composed of three parts:- Femtol is a two low-energy lines system, wavelength-tunable in the visible and ultraviolet. Its first line

delivers 3mJ, 60fs pulses at 800 nm produced by a Ti:Sapphire chain. Its second line generates visibletunable pulses, with 50-60 fs pulse duration. They are obtained by amplification of a white lightcontinuum in dye amplifier cells. The two lines are synchronized. With the use of frequency doubling andmixing schemes in nonlinear crystals, Femtol can deliver photons from the near IR (800nm) to the UVrange (200nm) (see Figure 2). Thanks to the use of dyes, the pulse energies obtained in the visible (severalhundred of microjoules) and in the near ultraviolet (several tens of microjoules) are among the highestvalues reported for these spectral ranges and pulse duration.

- Femto2 is a high intensity Ti-Sapphire laser amplifier. It generates 100 mJ pulses at 800 nm with 60 fspulse duration (FWHM). The peak power is approximately 2 TW with an intensity contrast of 105 at 2 ps.By frequency doubling in a KDP crystal, we obtain 20 mJ at 400 nm with a pulse duration of the order of180 fs (see Figure 2).

- a XUV source is available at the LUCA facility. It is based on the technique of high order harmonicsgeneration of an intense laser pulse in a rare gas jet. It allows for the generation of highly coherentfemtosecond pulses in the VUV-XUV range. Wavelengths as short as a few tens of nanometers areattainable (see Figure I).

These characteristics show the great polyvalence of the LUCA facility: the experiments which can beperformed range from pump-probe studies with low intensity, widely tunable fields, to high field physics atintensity up to 1017W/cm2. Such a versatility is very rare in Europe and, to our knowledge, is only achieved atLUCA and at the Lund Laser Center in Sweden.

1 0 "

1012

1011

1010

~ 109

I 108

o

107

106

105

104

103

102

10°

High orderharmonicsFemtolFemto2UHI10

UHI1CU

FEMTO2*FEMTO2J

•FEMTO1:

High ortfer ^Harmonies •Generation.^

J //I.in,ml il.II.mil ii.l

10 100 200 300 400 500 600 700 800

Wavelength (nm)

Figure 2; Performances of the LUCA and UHI10 facilities in the different attainable spectral ranges

Recent developments : The LUCA facility, which came into service in 1993, is regularly upgraded. The latestimportant modification of the system was carried out in 1998 by the Thomson-BMI laser company. Theobjectives dealt with the reduction of the pulse duration (130 fs to 60 fs FWHM), together with an increase ofthe peak power (up to 2TW) and the improvement of the temporal contrast (105 at 2 ps). All these goals werereached. Furthermore, the upgrade has also led to an improvement of the reliability. Within the framework ofthese changes, the LUCA team had to adapt different related systems (systems to generate harmonics in

19

Page 19: Service des Photons, Atomes et Molecules

nonlinear crystals, dye amplifiers,...) to optimize their performance by taking advantage of LUCA's newcharacteristics.Another major development, carried out in 1999, was the modification of the laboratory in order to obtain 5experimental sites instead of the 3 before. The reorganization of the laboratory was accompanied by theimprovement of the spatial beam characteristics, thanks to a more systematic use of relay imaging and spatialfiltering on temporally stretched beams. Other developments, such as a second compressor for Femto2 or theavailability of continuously variable beam attenuators, have led to a more flexible use of the system. Forexample, it is now possible to use several beams with different wavelengths and temporal widths and withvariable energy.

Operation : During 1998 and 1999, LUCA has been used with a reliability rate close to 100% (with theexception of the time used for development and the modifications of the laboratory). The usable beam time isover 7 hours per day. As well as maintaining the system, the operating team provides support for experimentalgroups in the following fields: optics, software development for data acquisition (labview) and the developmentof small mechanical systems.

Organization : An internal scientific committee defines the beam time allocation for each user teams. A userworkshop is organized annually in order to give to the research teams the opportunity to debate about theirscientific programs and main recent results. In 1999, we proposed that LUCA have access to the status ofEuropean Large Scale Facility with a beam time allocation for european users of 20% (SLIC project). Wehave applied to the CEE in the framework of the 5th PCRD but our project has been rejected and we plan toapply again this year.

Perspectives in the short and medium term : The technical perspectives for LUCA in the short and mediumterm are focused on:

commissioning of new diagnostics. A SPIDER system is under development in order to measure theamplitude and phase of the laser electric field (in the spectral domain, thus also in the time domain). Thisproject is linked to a collaboration with the LOA (Laboratoire d'Optique Appliqufe, Palaiseau, France).The spatial phase (wavefront) measurement is also a common project for UHI10 and LUCA. Having theability to measure spectral and spatial phase and amplitude will eventually allow us to manipulate them(pulse shaping in temporal, spectral or spatial domain).improvement of the tunability. A new OP A system has to be developed to take full advantage of the newLUCA characteristics. New schemes, such as a NOPA (non collinear optical parametric amplifier)pumped at 400 ran could allow us to reach a continuous tunability in the visible and near UV range withpulse duration shorter than 60 fs. The development of an incoherent "intense" X ray photon source hasalready begun; it will extend to shorter wavelengths the spectral range covered by the high orderharmonics XUV source.

Conclusion : Since the 1998 upgrade, the LUCA facility has been operating at its nominal performances witha very good reliability. Experiments carried out with this system have led to the publication of 21 articles inscientific journals and 5 PhD degrees since the last scientific council. If the planned developments areimplemented, they will enable the team to continue to fully meet users' needs, to improve the polyvalence ofthe system and to provide much improved characterization of the laser beams.

I-2-c The UHI10 Laser FacilityT. Auguste, M. Bougeard, E. Caprin, P. D'Oliveira, S. Dobosz, S. Hulin, P. Monot.

Since the end of 1997, the UHI10 laser (for Ultra High Intensity 10 TW) has delivered the intense ultrashortpulses used by the UHI team and their collaborators to study new X-Ray laser schemes and also to produceand characterize dense plasmas by means of spectral interferometry in the XUV range (see Sections II-4and II-2-e).

Laser description : The UHI 10 facility is a Titanium-Sapphire laser based on the Chirped PulseAmplification (CPA) technique. The intense pulses are generated in four steps. At the front end, a commercial

20

Page 20: Service des Photons, Atomes et Molecules

oscillator produces ultrashort (35 fs) low energy (3 nJ) pulses at a central wavelength of 795 run. These pulsesare stretched up to a 300 ps duration by an aberration-free stretcher; they are then amplified in 4 amplificationstages working at a 10 Hz repetition rate. After compression, performed in a vacuum chamber directlyconnected to the experiment chamber, the pulse duration is 70±10 fs and the peak power exceeds 10 TW. Thisis to our knowledge one of the 3 highest values reported in Europe for Titanium-Sapphire lasers. Due to theabsence of aberration in the stretching process, the contrast ratio is approximately 105 at 2 ps from themaximum. Intensities in the 1019 W/cm2 range have been obtained with a 200 mm focal length off-axisparabola. The focused beam diameter is 3.5 times diffraction limited.

Recent developments : Since 1997, the UHI10 laser has been intensively used for the UHI groupexperiments, demonstrating a high reliability (availability rate above 90 %). During this period, it has beenimproved in several aspects. For instance, it is now possible to fire the laser in a single-shot mode with themonitoring of the pulse energy and duration for each shot. But the main modification is probably the additionof a second line (probe line) which delivers lower energy pulses (3 mJ, 70 fs) synchronized with the 10 TWpulses. The optical line used to bring the probe beam to the experiment chamber includes relay imaging opticsin order to minimize the probe beam shot-to-shot displacements in the interaction area. A spatial filter can beinserted to improve the probe beam wavefront quality. In this configuration, the probe beam can be used as asource for the Mach-Zehnder interferometer which has been implanted inside the experiment chamber. Thefringe quality at 400 nm (2n harmonic of the probe beam) is then better than a quarter of a fringe on a 15 mmdiameter (see Figure 3). This interferometer has been successfully used to measure plasma density with a sub-picosecond temporal resolution. The probe line can also be set in a double-pulse mode (the delay between thepulses can then be varied between 50 and 450 fs) for XUV spectral interferometry experiments.

Figure 3: Interferogram of a Nitrogen plasma produced by the UHI 10 laser. The fringe quality demonstrates thelow distortion of the probe beam wavefront

Prospects : During the next few years, one of our priorities will be to improve the focusing qualities of the10 TW beam. To achieve this, we shall try to correct the beam wavefront distortions by inserting high fluxspatial filters between the different amplifier stages. This requires first to define the filtering holes technology(material and geometry) and to estimate potential drawbacks of this method (decrease of output power, higheralignment sensitivity...). First experiments have been carried out during June 2000. The improvement of thetemporal contrast is also absolutely necessary, especially for experiments on solid targets. Therefore, we shallperform joint experiments with the LOA (Laboratoire d'Optique Appliquee, ENSTA, Palaiseau). The objectiveof these experiments is to test the efficiency of several methods proposed in order to reach higher contrasts.We shall try, for instance, to insert between the oscillator and the stretcher, an amplification stage followed bya saturable absorber. By this means, the temporal contrast is expected to be improved by two or three ordersof magnitude. The first experiments will take place at LOA in September.

21

Page 21: Service des Photons, Atomes et Molecules

Conclusion : Since its commissioning in 1997, the UHI10 laser has demonstrated a good level of performanceand reliability. It allowed the UHI group to carry out its research programs involving laser-matter interactionat high intensity. The proposed developments will maintain the UHI 10 laser at a competitive level ofperformance.

I-2-d Production of coherent XUV by high order harmonics generationP. Agostini, P. Breger, B. Carre, M. Cheret, J.-F. Hergott, L. Le Deroff, H. Merdji, P.-M. Paul,P. Salieres.Collaborations: D. Joyeux, D. Phalippou, Ph. Zeitoun, E. Constant, E. Mevel, A. L'Huillier, C-G. Wahhtrom.

High-order harmonics generation in gases (HHG) has now gained the status of a usable XUV source, tunablefrom 100 to 10 nm, with rather unique properties. HHG is easy to produce using 2 to 50 mJ of the Femto2laser output at 800 nm focused in the generating gas. The work on harmonics aims at i) characterizing the lightemitted, ii) understanding the fundamental processes (e.g. phase matching) for improving the conversionefficiency, iii) developing applications. We briefly review the three points, which are developed in Section II-2.

Characterization of the harmonics emission : Using a calibrated photodiode, we estimate that at 21 nm(H37) 10' photons/pulse are transmitted by an appropriate spectrally selective and focusing optics (multilayermirror or Bragg-Fresnel lens). Spectral selection and off-axis focussing by a Bragg-Fresnel lens leads to afocal-spot size of 4±1 p (FW at 1/e2), i.e. intensity of ~1010 Wcm"2. Tight focussing already reveals the goodbeam quality, M2~2 [Le DeYoff 1998], implying high spatial coherence: at a first approximation, coherenceproperties of harmonics reflect those of the laser-driving field. At 60 nm (H13), we measure a degree of spatialcoherence Yn ̂ 0.5 in the full cross section of the beam, and Yn ̂ 0.8 in a coherence cell representing 10% ofthe beam cross section [Le D6roff 2000]. A specific property of HHG is that one easily produces two mutuallycoherent sources from two distinct but mutually coherent laser beams, as illustrated in Figure 4.

Figure 4: Interferogram from two harmonics sources at 40 nm separated in space by 100 fim; a uniform contrast ofmore than 75% is achieved.

Optimization of conversion efficiency : Optimizing HHG means finding the best compromise between highnon-linear polarization (high density, high intensity), large emitting volume, good phase matching, limitedionization by the laser and negligible reabsorption of the harmonics. We have checked optimal conditions ofatomic density and medium length in various geometries of the medium (gas jet, gas filled hollow-core fiberand cell).

Applications of ultra-short XUV : Applications of HHG have represented about 60% of the run time in1998-2000. Pump+probe time-resolved studies of subpicosecond dynamics, furthermore implying coherentXUV, make full use of HHG properties. The two main applications developed until now, i) the time-resolvedmeasurement of the electron density in a laser-produced plasma [Salieres 1999] and ii) the study of therelaxation of electrons excited in the conduction band of silica [Quere" 2000], are detailed in Section II-2.Further applications to time-resolved interferometry diagnostics of over-critical plasmas and reflectivesurfaces are planned for the near future. Applications to dynamical studies in molecular physics are alsoenvisaged.

22

Page 22: Service des Photons, Atomes et Molecules

I-2-e Selected referencesLeDerofTL., Salieres P., Carr6B., Opt. Lett. 23. 1544 (1998).

Le Deroff L., SaliSres P., Carre" B., Joyeux D.. Phalippou D., Phys. Rev. A 61, 043802 (2000).

Quere" F., Guizard S., Petite G., Martin Ph., Merdji H., Carre" B., Hergott J.-F., Le Deroff L., Phys. Rev.B 61, 9883 (2000).

Salieres P., Le Deroff L., Auj;uste T., Monot P., D'Oliveira P., Campo D., Hergott J.-F., Merdji H., Carr6 B.,Phys. Rev. Lett. 83, 5483 (1999).

23

Page 23: Service des Photons, Atomes et Molecules

1-3 Synchrotron sources and Free Electron Lasers.Permanent research staff: M.E. Couprie, D. Garzella, P. Morin, L. NationPhD students: D. Nutarelli, R. Roux, M. Hirsch.Post-doctoral position: E. Renault, G. De NinnoCollaborations: C. Alcaraz, P. Dumas, O. Dutuit, A. Taleb-Ibrahimi (Laboratoire pour l'Utilisation duRayonnement Electromagne'tique, Orsay), M. Billardon, C. Boccara (Ecole Supe"rieure de Physique etChimie Industrielles, Paris), M. Drescher (University of Bielefeld, Germany), M. Marsi (ELETTRA,Trieste, Italy), K. Ito (KEK, Tsukuba, Japan), R. Thissen (Laboratoire de Chimie Physique, UniversityParis XI, Orsay)

I-3-a Introduction

SPAM teams are involved in source development programs carried out at the LURE (Orsay), generally incollaboration with researchers from the CNRS or the Orsay University. Beside the development of the SU5beam-line and of the Super-ACO Free Electron Laser, which are described below, the SPAM is also veryinterested in the so-called "3rd generation" synchrotron machines, sources delivering high brilliance VUV andXUV photon beams. Note that the SU5 beam line has been designed in order to be transferred onto the 3rd

generation synchrotron source SOLEEL. One of us (P. Morin) has been involved as a co-chair of theexperimental program of the SOLEIL detailed project. This includes for instance, beamlines organization,specifications of the experiments and general requirements of the scientific program. Several working groupsas well as numerous workshops have been organized to achieve these tasks.

I-3-b SU5: a VUV high resolution beamline with variable polarizationL. NahonCollaboration: C. Alcaraz M. Drescher, O. Dutuit, K. Ito, R. Thissen

The SU5 high-resolution beamline of Super- ACO (LURE) is primarily devoted to the study, in the VUVrange, of very high-resolution spectroscopy and of photon-induced dynamics on diluted systems such as coldmolecules, molecular and metallic aggregates, radicals and laser-excited species. A second scientific case dealswith the study of anisotropic systems such as laser-aligned species, molecules adsorbed on surfaces, chiralmolecules or magnetic systems, via linear and circular-dichroism experiments. In order of achieve such a dualscientific program, the technical requirements are the following: (i) the possibility of generating "exoticpolarizations"; (ii) a high spectral purity; (iii) an ultimate resolving power in the 100000 range between 5 and30 eV with rather high flux, allowing, for instance, ro-vibronic resolution on small molecules.

Generation and control of "exotic" polarization : In order to achieve this goal, we have conceived, builtand commissioned the first 10 period electromagnetic Onuki-type [Onuki 1986] crossed undulator, calledOPHELIE [Nahon 1997], in which 3 parameters can be tuned: the vertical and horizontal magnetic fields Bv

and BH, and their relative phase <|>. After an intensive magnetic measurement campaign, the on-beamcommissioning has been successful in the DC mode, allowing the modification of any settings of theundulator with a typical time constant of one minute between two configurations. We have also shown thatthe fundamental radiation can be easily tuned from 5 to 22 eV, and that the whole insertion has a highvertical/horizontal symmetry [Nahon 2000]. Besides, we have been able to produce and measure, for the firsttime in the VUV range, a complete set of polarization ellipses including of course the linear (in anydirection) and circular cases. On a quantitative point of view the linear polarization degree is higher than98 % in the linear polarization configurations, while in the circular polarization configuration, the circularpolarization degree is higher than 98 % (assuming an unpolarized contribution smaller than 1 % as in thelinear case) [Alcaraz 1999].

Spectral purity : The high spectral purity is provided by a high-pressure differentially-pumped gas cell,which absorbs any photon whose energy is located above the ionization potential of the filling rare gas,providing an harmonic-free radiation. Attenuation factors higher than 200000 with 1 torr of argon have been

24

Page 24: Service des Photons, Atomes et Molecules

directly measured by ion yield experiments. They are in good agreement with numerical simulations takinginto account the actual shape of the gas cell with its conductance capillaries [Mercier, 2000].

Resolving power : A specific monochromator has been designed in order to achieve the resolving powerspecification. The optical design [Nahon 1998] is centered around a 6.65 m normal incidence Eagle off-planemonocliromator, illuminated by an astigmatic pre-focusing system, and equipped with two gratings: a 2400I/mm and a 4300 I/mm. The spectral resolution has been measured by collecting the ions produced by spin-orbit autoinization between the two np5(2P3/2) et (2P1/2) thresholds of 3 rare gases: Ne, Ar and Xe. The resultsare very satisfying: at 21.6 eV (Ne) the ultimate resolution is 0.184 meV (R = e/Ae= 117000) (see Figure 5)which is the best result ever obtained at this energy (previous world record: 70000 at the ALS). At 15.8 eV(Ar) the ultimate raw bandwidth is 0.119 meV (R = 133000), which gives an instrumental width of 0.076 meV(R=208000), obtained by deconvolving 0.054 meV due to the natural width of the 13s' level. On the wholeVUV range, a resolving power higher than 105 can thus be obtained with typical flux ranging from 109 to 1010

ph/sec in a 1/50000 bandwidth. These very good results are due to the intensive work regarding the optical andmechanical design and the minimization of vibration, as well as the quality of the gratings.

Aufoionization spectrum of neon (4300 I/mm grating)

20x10

-62

O

o

Slits 20 urn : FWHM (raw) = 0.22 rneVR- 97000

21.56 21,58 21.60 21.62

Photon energy (eV)

21 64 21.66

Figure 5: Autoionization spectrum of neon (43001/mm grating), measured with 20 |j.m slits (10 \im slits ininsert).

Conclusion and prospects : The commissioning of the SU5 beamline has demonstrated that its performancesare in accordance with the initial specifications. SU5 has accommodated its first users in February 2000.Future efforts will be directed towards the on-beam commissioning of the undulator in the AC mode, with apossible helicity switching frequency in the 0.1 - 0.5 Hz range, together with the commissioning of a newhome-made VUV polarimeter, which should provide an in situ, under vacuum, polarization analysis of thesynchrotron light right upstream of the sample location.

25

Page 25: Service des Photons, Atomes et Molecules

I-3-c The UV Free Electron Lasers and their applicationsM. E. Couprie, G. De Ninno, D. Garzella, M. Hirsch, L. Nahon, D. Nutarelli, E. Renault, R. Roux.Collaborations: M. Billardon, C. Boccara, M. Marsi, A. Taleb-Ibrahimi, P. Dumas

The team has been actively involved in the development of Ultraviolet Free Electron Lasers. These activitiesinclude also systematic studies concerning the cavity mirrors together with theoretical developments on thestability and dynamics of the FEL. In parallel, the application program of the Super-ACO FEL has beendeveloped in new directions. The experiment relevant to biology is reported in Section III-5-b. The activitiesat ELETTRA as well as the theoretical developments and the optics studies are developed in the framework oftwo European networks in which the team is actively involved.

Design and improvement of UV FEL sources :

Super-ACO FEL : The team has carried on the development of the Super-ACO FEL which is now routinelyoperated at 800 MeV with two radio-frequency cavities on Super-ACO. With this new configuration, the gainat 350 nm can reach 2.5% (instead of 1.5% with only one cavity) and the FEL output power for the users hasbeen increased up to 300 mW. The tunability has been doubled and is now of 20 nm. Owing to a longitudinalfeedback system and specific machine adjustments, the stability has been improved, leading to the suppressionof low frequency intensity modulation and the reduction of the temporal jitter between the FEL and RS pulses(see Figure 6). Moreover, the natural FEL pulse duration is typically of the order of 30-40 ps, with a laserline bandwidth 0.6 A, but in presence of the longitudinal feedback system, the FEL can even operate muchcloser to the Fourier limit (12 ps, 0.3 A) (see Figure 6). More recently, the FEL operation has been pusheddown to shorter wavelengths and a power of about 10 mW has been obtained at 300 nm [Nutarelli 2000]. Theimprovement of the Super-ACO FEL will be carried on in order to reproduce at 300 nm the level of power andstability demonstrated at 350 nm.

ELETTRA FEL: The team has also been deeply involved in the design and construction of the ELETTRAFEL, built on the Italian national synchrotron radiation facility located at Trieste. The FEL is operated at 1GeV, an energy lower than the nominal energy of ELETTRA, with a 5 m long helical optical klystron. Theoptical cavity allows the mirrors to be changed under vacuum. The theoretical gain value in the UV is greaterthan 20%. The first FEL lasing was achieved in January 2000, at 350 nm, with 20 mW; in May 2000, theFEL was operated at 220 nm with 10 mW. Thanks to the optimization of the interaction between the FEL andthe electron bunches, powers of several watts are expected below 300 nm together with the possibility ofoperating at wavelengths below 200 nm.

SOLEIL FEL : The team continued the optimization of the SOLEIL FEL project. The design of the very longstraight section devoted to the FEL (14 m) and the high quality of the electron beam led to remarkableproperties for the FEL oscillation: few picoseconds pulse duration, several Watts of average power, highbrilliance...Coherent harmonics of the SOLEIL FEL will be generated down to 30 nm with powers in the mWrange. One should underline that the SOLEIL FEL source is still unique in its planned performances, being theonly FEL integrated at the origin in the design of a 3rd generation synchrotron; in our opinion, itscommissioning should open new scientific opportunities. Finally, we also performed calculations for analternative scheme using an external ultrashort laser (Ti:Sa) to generate coherent harmonics; this set-upextends the versatility of the proposed SOLEIL FEL by giving access to peak powers approximately 10 timeshigher (compared to the FEL peak power) with subpicosecond pulse duration and a kHz repetition rate.

26

Page 26: Service des Photons, Atomes et Molecules

3ex£

LUU.

800 PS

FBoff 100 ms

800 ps

FBon 100 rvB

3S3AAtime

Figure 6: improvement of the Super-ACO FEL operation with the longitudinal feedback (FB) system.On the left: stabilization of the FEL micropulse measured with a double sweep streak camera.On the right: reduction of the FEL line

Cavity mirrors development: The design and improvement of the UV FEL sources at super-ACO andELETTRA have required the development of cavity mirrors exhibiting a very high reflectivity in the UVtogether with a good resistance to the synchrotron flux. To achieve this dual task at wavelengths below 350nm, we have performed R&D studies concentrated on the testing of new coatings and materials. Multilayercoatings at 300 nm and 250 nm with combination of binary oxides (i.e. HfO,/SiO2, Ta2C>5/Si0,, Al2O3/SiO2)and fluoride monolayers have been characterized. This has been possible thanks to the upgrade of theoptical characterization system, allowing measurements at various wavelengths down to 229 nm, and to thesetting up of a new optical-absorption bench, based on the "Mirage effect", which has a sensitivity of fewtens of ppm over the whole accessed spectral range.

FEL stability and dynamics simulation : The FEL stability being of primary importance for the applications,our team has carried out simulations in order to increase our understanding of the FEL stability anddynamics. We recently proposed a new model taking into account the local interaction of the FEL pulse inthe electronic distribution, considering only the small fraction of the electrons which effectively interactwith the FEL electric field, which is ten to twenty times narrower than the electrons bunch. Simulationsshow that a hole burning effect may occur, and clearly foresee a modification of the shape of the electronbunch. After several hundreds of (is, the electron diffusion brings back the electronic distribution to itsnatural shape. Experiments with the Super-ACO FEL operated in the Q-switched mode are in goodagreement with simulations.

The scientific program in surface, solid states and molecular physics :

The aipplication program has been intensively developed during the last couple of years, taking advantage ofthe improved performances of the FEL, mainly in terms of extracted power and stability. Thesynchronization between the FEL and the SR is used in order to perform time-resolved two-colorpump/probe experiments, in which the FEL produces excited states whose relaxation dynamics is probed bythe SR.

Applications in surface sciences : During the last years, we have carried on experiments in surface sciencesin collaboration with M. Marsi (ELETTRA, Trieste, Italy) and A. Taleb (LURE, Orsay). The FEL was usedto produce transient photo-carriers at semi-conductor interfaces. The charge dynamics was then probed bycore level photoemission with the SR. After bare Si interfaces, we studied the transient regime of the chargedistribution after UV photoexcitation at the Si/SiO2 interface, a system of great technological relevance formicro-electronics. The data show that electrons generated in the Si substrate can accumulate at the surfaceof the oxide layer, strongly affecting the electric field at the interface [Marsi 2000]. For n-type silicon, thiseffect can lead to an enhancement of the curvature of the bands, rather than to the expected flattening due tothe Surface Photovoltage (SPV), as revealed by the unexpected reverse direction in the core photoemissionpeak shift. The characteristic decay time of this vacuum transient charging at the surface of the oxide layerdepends markedly on its thickness, ranging from sub-ns to us. Our results indicate that for about 12 A oxidethickness, it is comparable to the typical excess carrier bulk recombination time in silicon (about 10 -100ns). In the near future, we plan to investigate the direct two-photon photoemission in order to probe theempty states of the conduction band in semi-conductors. Preliminary data show that such an experiment isfeasible in terms of overall photon flux.

27

Page 27: Service des Photons, Atomes et Molecules

Applications in material sciences and molecular physics : A new kind of experimental set-up has beendeveloped. It couples the Super-ACO FEL with the white light continuum of the SR in the IR range (2 -20u.m) in order to measure the transient absorption of SR on FEL-excited samples. The diagnostics consist of aFourier-transform spectrometer associated with a microscope, the combination of these instruments allowingthe collection of 3D data, in the temporal, spectral and spatial domains. Such an IR/UV combination ispotentially extremely fruitful since it might bring information on the possible coupling at the molecular levelbetween the electronic and nuclear motions. Applications range from the study of photo-conductivity of large-gap semi-conductors, to chemical reactions involving molecules adsorbed on thin films, as well as gas-phasemolecular dynamics. As a first experiment, in collaboration with P. Dumas (LURE), we monitored via IRmicro-spectroscopy, the time evolution, on the minute timescale, of a single mineral particle (kaolinite) underUV-FEL irradiation. The data show a strong and selective modification of the IR bands corresponding to theexternal-OH stretching modes of the sample [Nahon 1999]. With these encouraging results, fast dynamics, onthe ns timescale, should be investigated in the near future.

Production of highly collimated v ray beams :

We have generated an highly collimated y ray beam by Compton backscattering interaction between the UVFEL and an additional bunch of relativistic positrons stored in the Super ACO cavity. This experimental set-up is very favorable as the laser beam and the electron bunch are naturally collinear and synchronized. Thespectrum of the y beam was characterized by means of different detectors (Nal, Germanium,...); the y photonenergy is centered at 35 MeV (see Figure 7). We have observed that the 35 MeV photons are emitted on axis,while photons with lower energy are produced off-axis [Couprie 1999]. The y ray yield was also directlyevaluated through the lifetime measurement of the additional bunch: at the Super ACO nominal energy (800MeV), 10^ photons/s are produced in the 6 mm diameter collimated beam. These promising results suggestthat this set-up may be used as a potential gamma source.

10 20 30 40Energie du photon (MeV)

Figure 7: Energy spectrum of the gamma ray beam measured with a Nal detector at 10 mfrom the collision point

28

Page 28: Service des Photons, Atomes et Molecules

I-3-d Selected references :

Alcaraz C , Thissen R., Compin M., Jolly A., Drecher M., Nahon L.( Proc. SPIE 3773, 250 (1999).

Couprie M.E., Nutarelli D., Roux R., Visentin B., Naxion L., Bakker R., Delboulbe" A., Billardon M., J. Phys.B (At. Mol. Opt. Phys.) 32, 5657 (1999)

Marsi M., Belkou R., Grupp C , Panacione G., Taleb-Ibrahimi A., Nahon L., Garzella D., Nutarelli D.,Renault E., Roux R., Couprie M.E., Billardon ML, Phys. Rev. B 61, 5070 (2000).

Mercier B., Compin M , Prevost C , Bellec G., Thissen R., Dutuit O., Nahon L., , J. Vac. Sci. Technol. A(2000) (in press).

Nahon L., Corlier M., Peaupardin P., Marteau F., Marcouille" O., Brunelle P., Alcaraz C , Thiry P., Nucl.Instr. Meth. A 396, 237 (1997).

Nahon L., Lagarde B., PolackF., Alcaraz C, Dutuit O., Vervloet M., Ito K., Nucl. Instr. Meth. A 404, 418(1998).

Nahon L., Renault E., Couprie M.E., Nutarelli D., Garzella D., Polack F., Carr G. L., Williams G., DumasP., Proc. SPIE 3775, 145 (1999).

Nahon L., Thissen R., Alcaraz C , Corlier M., Peaupardin P., Marteau F., Marcouille" O., Brunelle P., Nucl.Instr. Meth. A 447, 569 (2000).

Nutarelli D., Garzella D., Renault E., Nahon L., Couprie M.E., Nucl. Instr. Meth. A (2000) (in press).

Onuki H., Nucl. Instr. Meth. A 246, 94 (1986).

29

Page 29: Service des Photons, Atomes et Molecules

II MATTER UNDER EXTREME CONDITIONS

I I I GENERAL PRESENTATION 33

II-2 Production of coherent XUV light by harmonics generation 34

II-2-a Introduction 34II-2-b Investigations of phase-matching in harmonics generation 35

Optimal phase-matching in an absorbing mediumHarmonic generation in a self-guided femtosecond pulse

II-2-c Coherence properties of high order harmonics 36Spatial coherence of the harmonics emissionMutual coherence of two harmonics sources

II-2-d Applications of ultra-short coherent XUV light to time-resolved interferometry 37II-2-e Measurements of ultra-fast electron relaxation on a-SiO2 using harmonics 39II-2-f Conclusions - Perspectives 40II-2-g Selected references 41

II-3 Molecules and clusters in strong fields 42

H-3-a Introduction 42II-3-b Molecular multi-ionization and Coulomb explosion 43

Non-sequential double and multiple ionizationCoulomb explosion: theory vs. experimentsExcited transient multi -charged moleculesPerspectives

II-3-c Highly charged ions from rare gas and metal clusters in intense laser fields 45II-3-d XUV and fast ion emission from a laser generated plasma in a liquid jet target 45II-3-e X-ray emission from fast expanding molecular cluster plasma 46II- 3-f Theoretical description of cluster in strong laser field 47

Monte Carlo particle dynamics simulations of the rare gas cluster explosion in astrong laser fieldCluster explosion in an intense laser field: Thomas-Fermi model

II-3-g Conclusions - Perspectives 49II-3-h Selected references 49

II-4 Ultra-short non LTE plasmas produced by Optical Field Ionization 50

II-4-a Introduction 50II-4-b Towards an X-ray laser using short-duration, high-intensity pulses 50

Femtosecond driven X-ray laser principleCharacterization of OFI produced nitrogen plasma as a lasing mediumNeutral and electronic densityTemperature and peak intensityInteraction length

II-4-c Acceleration of charged particles in dense plasmas 52Energetic ionsSupra-thermal electrons

II-4-d Conclusions - Perspectives 53II-4-e Selected references 54

31

Page 30: Service des Photons, Atomes et Molecules

II-5 High energy density matter and atomic physics 55

II-5-a Introduction 55II-5-b Development of the SCO opacity code 55II-5-c Collaboration with the LULI and PHEBUS experimental teams 56II-5-d Linear response theory for atoms in plasma 57II-5-e Hydrodynamics experiment on the Ph6bus laser 57II-5-f Spectroscopy of two-electron atoms and multi-charged ions 58II-5-g Multicharged ion-atom and ion-molecule collisions 59II-5-h Conclusions - Perspectives 59II-5-i Selected references 60

32

Page 31: Service des Photons, Atomes et Molecules

II MATTER UNDER EXTREME CONDITIONS

H I GENERAL PRESENTATION

For more than twenty years, studies of atoms and molecules in strong laser fields have been a major topic ofresearch at SPAM. They have evolved within the past ten years taking advantage of the ultra-short pulse,terawatt laser facilities installed at FJRECAM - see Section 1-2. From the studies of isolated molecules instrong field to those of laser-produced plasma, the work on matter-strong field interaction in the Group retainsits character of fundamental research, but it marks an increasing concern for applications. Furthermore, mostof the studies show close or indirect connections with the physics that will be worked out by the forthcominghigh power laser facilities of ithe CEA, successively the Ligne d'Migration Laser (LIL) and Laser MegaJoule(LMJ). They contribute through theoretical work, model experiments or development of diagnostics, to themajor and long-term programs of the CEA. The Group is composed of 19 permanent physicists andtechnicians, an approximately constant number of 7 doctorate students and 5 post-doctorate collaborators.A large part of the activity concerns studies of the dynamics of atoms, molecules and clusters at laserintensities of 1014 Wcm"2 to 1019 Wcm"2, and time scale of lOOfs. At these intensities, the interaction can bedescribed in the context of the strong field approximation: the dynamics does not depend significantly on theenergy level structure of the system which reduces to the ground and continuum states; the system is veryrapidly ionized through tunneling or Optical Field Ionization (OFI); the electron dynamics is that of a freeelectron in a strong driving field, the conditions for a bound state playing only the role of boundary conditionsof the motion. In the final stage of the interaction with intense ultra-short laser pulse, the system is ionized tohighly charged states; the strong field studies make therefore explicit or implicit reference to the physics ofplasmas which are out of Local Thermodynamical Equilibrium (non-LTE plasmas). Strong field studies in theGroup include the following themes:1. Production of coherent XUV light by harmonic generation and Applications. The team maintains

expertise in both theoretical and experimental investigation of far UV to soft X-ray (XUV) productionthrough harmonics generation. Applications of the ultra-short coherent XUV light are developed in plasmaphysics and surface physics.

2. Polyatomic molecules and clusters in strong field. Studies of ionization and Coulomb explosion ofmulti-charged small motecules are pursued towards an almost complete description of the interaction. Inthe case of large size clusters, production of XUV light, ejection of highly charged energetic ions arestudied with both fundamental and applied purposes.

3. Ultra-short non-LTE plasmas produced by Optical Field Ionization. Application to an X ray-laserscheme is developed, which requires a detailed characterization of the OFI plasma. Actually, plasmaphysics is now a topic of major importance at SPAM. Besides non LTE plasmas, high-energy dense LTEplasmas, produced by high power nanosecond lasers, are also considered, first from a theoretical point ofview. Also theoretical, studies on multi-charged ions naturally find place in this context. A fourth theme istherefore:

4. High-energy LTE plasma and atomic physics in plasmas. This activity is explicitly connected to thepresent and future programs on high power laser facilities (LULI, LIL and LMJ).

The report follows the above division. At present, many links and exchanges exist between the different teams,experimentalists and theoreticians, who combine their expertise without renouncing their specificity. The teamsare also involved in several collaborations with laboratories inside or outside the CEA. Among registeredcollaborations in the 1998-2000 period, the teams are participating in 3 Training and Mobility ResearchNetworks, 2 Groupes de Recherche, 4 Laboratoires de Recherche Correspondants partnerships, 1 researchcontract on SBLVA isotope-separation process.

33

Page 32: Service des Photons, Atomes et Molecules

П-2 Production of coherent XUV light by harmonics generationPermanent research and technical staff: P. Agostini, M. Bougeard. P. Breger, E. Caprin, B. Carré, M.Chéret, Y. Gontier, P. SalièresPhD students: L. Le Déroff, J.-F. Hergott, P.-M. Paul, P. VillainPost-doctoral positions: D. Garzella, H. MerdjiUndergraduate students: O. Chiappa. С. HubertCollaborations: D. Joyeux. D. Phalippou (Institut d'Optique Théorique et Appliquée, Orsay), Ph.Zeitoun (Laboratoire de Spectroscopie Atomique et Ionique, Université Paris XI, Orsay), E. Constant,E. Mével, F. Salin (Centre d'Etudes des Lasers Intenses et Applications, Université de Bordeaux), D.Descamps. A. L'Huillier, C.-G. Wahlström (Lund Institute of Technology, Sweden), M. Lewenstein(Hannover Universität, Germany), L. Di Mauro (Brookhaven National Laboratory, USA), H. G. Müller(FOM, Amsterdam, The Netherlands), F. Quéré, S. Guizard, P. Martin, G. Petite(CEA/DSM/DRECAM/Service de Recherche sur les Surfaces et l'Irradiation de la Matière), C. Dorrer,С Leblanc, H. R. Lange, A. Chiron, J.-F. Ripoche. A. Mysyrowicz (Laboratoire d'Optique Appliquée,ENSTA, Palaiseau)

П-2-а Introduction

High-order harmonies generation in gases (HHG) is now recognized as a very interesting source in the XUVrange, typically from 100 to 10 run but even down to the water window at 3 ran [Spielmann 1997]. HHG isrelatively easy to produce under conditions of ultra-short pulses (x < 100 fs) of "intermediate" intensity (I <10 b Wem"2), with either the LUC A and UHI lasers in Saclay, or equivalent laser facilities available to theSPAM physicists via collaborations (LOA-ENSTA Palaiseau, Lund Laser Center, CELIA Bordeaux).Harmonic light gets most of its unique characteristics from the fact that HHG is a coherent process tightlydriven by the laser field. In addition to the ultra-short pulse duration and high repetition rate, the temporal andspatial coherence, regular wave front, or mutual coherence of two harmonic sources originate in thecorresponding properties of the driving laser. The harmonic emission also reflects the particular dynamics ofthe atomic electron in the strong laser field and the macroscopic conditions of generation/propagation - i.e.phase matching - in the medium. Consequently, HHG critically depends on the generation parameters.As those of most of the groups involved in HHG, our studies serve the purpose of i) investigating fundamentalaspects of the process and optimizing generation efficiency by a finer control of phase-matching in differentconditions, ii) characterizing the remarkable properties - e.g. ultrashort pulse duration through cross-correlation measurements [Bouhal 1998] or the coherence - of harmonic emission, and iii) developingapplications of ultra-short, coherent XUV light.As a significant fundamental contribution (collab. Brookhaven National Laboratory), the team has investigatedfor the first time high harmonic generation from a mid-infrared laser (À=3-4 um) in alkali atoms [Sheehy1999]. This makes it possible to study non-perturbative interactions in a broad class of atomic systems withsmall binding energies. Experimentally, harmonic generation at long wavelength spans the visible to near UVrange, so that well established techniques for complete characterization of amplitude and phase of theharmonic field are applicable.Two main applications to time-resolved studies of the pump+probe type have been developed so far. First for

plasma diagnostic, we use two mutually coherent harmonic sources, either separated in space or in time, toprobe the electron density in a laser-produced plasma on a solid target (collab. Lund) and a gaseous target. Insolid state physics, we have probed, using photoelectron spectroscopy (collab. SRSIM), the relaxation ofelectrons excited in the conduction band of a dielectric material. Each type of study needs efficient XUV opticscapable of reflecting, selecting and focusing the light without degrading its properties. Therefore, we have alsoused harmonics to qualify XUV optics such as multilayer mirror or Bragg-Fresnel lens [Le Déroff 1998].Although mainly experimental, the work on field-driven processes at SPAM includes theoretical simulations ofHHG, as well as atom-field correlation studies [Gontier 1999]. Besides the atom-field topic, a PhD thesistheoretical work continues the collaboration with the group of M. Lewenstein, now at Hannover Universität[Villain 2000].The technical staff (2 persons) is common to the four teams of the Group.

34

Page 33: Service des Photons, Atomes et Molecules

II-2-b Investigations of phase-matching in harmonics generationP. Agostini, M. Bougeard, P. Breger, E. Caprin, D. Garzella, J.-F. Hergott, H. Merdji, B. Carre, P.Salieres.Collaboration: E. Constant, E. Mevel, C. Dorrer, C. Leblanc, F. Salin, H. R. Lange, A. Chiron, J.-FRipoche, A. Mysyrowicz

The efficiency of harmonic generation results from the interplay of several parameters. Schematically, oneshould combine the highest non linear polarization in a large volume with the phase-matching conditionsbetween non linear polarization and the harmonic field, together with limited ionization and low absorption ofthe harmonic field in the medium. It is now well established that in the strong-field regime, non linearpolarization at frequency qco shows an intrinsic, intensity-dependent phase <E>q, which reflects the dynamics ofthe electron in the driving field. The harmonic field builds up significantly only in the case of phase-matching

whose condition may be expressed kq = qkx + V<t>?, where kY and kq are the wave vectors associated to the

fundamental and qco harmonic fields, respectively . The condition obviously depends on the focusing geometry,laser intensity distribution, atomic and electronic dispersions. To investigate the relative roles of phasematching and absorption, we have experimentally and theoretically studied HHG in different systems,successively a pulsed gas jet, a hollow-core fiber [Constant 1999] and a gas-filled cell [Lange 1998] (collab.ENSTA-LOA, Palaiseau, CELIA Bordeaux University).

Optimal phase-matching in sin absorbing mediumBoth a simple analytical model and numerical simulations show that optimal HHG in an absorbing mediumcharacterized by an absorption length Labs can be obtained close to the conditions Lmed > 3Labs and Lcoh >

5Labs, where Lmeci is the medium length, Lcoh -K

Akthe coherence length. As a rule, this results, for a given

medium length, in an optimal atomic density. We have checked experimentally the existence of this optimalpressure for low to higher harmonics generated in rare gases. In Figure 1, the optimal pressure for the 15th

harmonic in Xe is, as expected, lower in the long hollow-core fiber medium than in the jet. Furthermore, amore uniform distribution of laser phase and intensity in the fiber acting as a wave guide leads to better phasematching and higher HHG efficiency. The same feature of an optimal pressure is measured in argon in Figure1, whereas Figure 2 illustrates the change in the phase matching when increasing the pressure from P<Popt toP«POpt: the radial distribution of the intensity in the far harmonic field evolves from an annular to a centeredprofile. We conclude that the understanding of phase matching in an absorbing medium allows to improveHHG efficiency through the fine control of all the generating conditions, among which medium length and gaspressure are critical.

1.6x10"

O.0[

i— Xe(jet)•—Xe (fiber)— Arx10 (fiber)

100 200 300 400

Backing pressure (mbar)

Figure 1: Number of photons per pulse for H15generated in Xe (square) and Ar (circle) in a 4 cm-long fiber, in Xe in a 800 fimjet.

xi 0.4-

ICOI 0.2-oc

0.0

A r H 1 9

-3 0 3

divergence (mradj

Figure 2: Divergence of the 19th harmonic far-fieldillustrating the change in phase matching fromP<Popt (annular profile) to P=Popi (centered profile).

35

Page 34: Service des Photons, Atomes et Molecules

Harmonic generation in a self-guided femtosecond pulseThe interplay between coherence and medium lengths, in the case of weak absorption, can be illustrated invarious systems. In the following example, we have generated high harmonics in a rare gas cell of variablelength, using ultra-short self-guided laser pulses propagating in air [Lange 1998] (collab. SPAM/LOA).Intensity of approximately 10lj Wcm2 is reached in the filament, sufficient to produce the lowest order 3rd to9th harmonics. Characteristic Maker fringes are observed in Figure 3 when the gas pressure is varied : thecoherence length Lcoh decreases with pressure leading to successive maxima for the values Lmed /(2n+l), wheren is an integer. It indicates that non linear polarization at frequency 3co and the harmonic field remain locked inphase (constructively or destructively) over the medium length (35 mm).By inserting into the cell a silica thin plate, which changes the fundamental phase by n (without affectingsignificantly the 3rd harmonic field), we can rephase the two waves as shown by the change in the pressuredependence in Figure 3.

Figure 3: Third harmonic signal produced in Xe byself-guided laser pulse as a function of gas pressurein a 35 mm cell (open circle); rephasing of laser andharmonic fields by mean of thin silica placed in themiddle of the cell (solid square).

16-

1.4-

I 1°"" 08-

IUII

= 06-

0 2-

0 0-

ff/

/

0 !

I

m

L

\

Vp

l 6

'•• 1

W

A ;;°' /b /

i '

i /

\ I\ j

\-J\I

\

\

A/ V

° \•

1 \ "5C 100 150 200 250 300 350

pressure (mbar)

II-2-c Coherence properties of high order harmonicsL. Le Derojf, J.-F. Hergott, H. Merdji, B. Carre, P. SalieresCollaboration: D. Joyeux, D. Phalippou

As already mentioned, HHG gets its coherence properties from the laser driving field. Under conditions closeto phase matching, the harmonic phase is, at a first approximation, determined everywhere in space and timeby the phase and intensity of the laser. This is the basis for the properties of intrinsic, spatial and temporalcoherence of the harmonic field. However, for a greater understanding, one should consider that the coherenceof the laser field itself (the non linear polarization) is affected by the onset of any time- and space-dependentprocess in the generating medium, such as ionization and subsequent electronic dispersion. Moreover, oneshould account for the intensity-dependent dipole phase <£>q in the harmonic field, which can also degrade boththe spatial and temporal coherence of the harmonic emission. As a result, the coherence properties arecritically dependent on the generation parameters [Salieres 1998,1999a, Le Deroff 2000a].Even in the case of a reduced intrinsic coherence of a single harmonic source, the key feature of a laser-drivenprocess enables two mutually coherent harmonic sources to be produced. This remarkable property is highlyspecific to the HHG. We have successfully used it to perform interferometric applications of the harmoniclight, developed in Section II-2-d.

Spatial coherence of the harmonic emissionWe have measured the complex degree of spatial coherence for harmonics 13th and 15th generated in a Xe gasjet, using a Fresnel's mirrors interferometer [Le DeYoff 2000b]. With this arrangement, we can build a 2D-map of the coherence throughout the transverse cross-section of the harmonic beam, for a given separation dbetween the interfering rays, at distance L~l m from the source. For the optimal set of phase-matchingparameters, a high degree yn (modulus), yn ^0.5, is found for separation d up to the full diameter of theharmonic beam (-3 mm): it means that the coherent flux is almost equal to the total flux. Because it reflectsthe intrinsic coherence of the harmonic source, the yn degree is much larger than that obtained in similarconditions from a purely incoherent source (yn ~ 0.02 for d=3 mm), the latter being that of most XUVsources. Figure 4 shows the variation of the yn degree as a function of the jet-to-focus relative position, for

36

Page 35: Service des Photons, Atomes et Molecules

distance d=2 mm between the interfering rays. The decrease of yn when moving the focus from outside (lzl>2cm) to inside the jet is due to the high laser intensity and subsequent ionization in the generating medium,resulting in large space- and time-dependent factors in the harmonic field phase and reduced coherence.

Figure 4: The y12 degree of spatial coherence as afunction of the jet-to-focus relative position, fordistance d-2 mm.

- 4 - 2 0 2 4 6 8 10

jet/focus position (cm)

Mutual coherence of two harmonic sourcesTwo mutually coherent harmonic sources can be produced from two mutually coherent laser pulses, eitherseparated in space or in time. The former scheme corresponds to Young's two-slit and has been demonstratedfor high harmonics in the Lund group [Zerne 1997]. The latter scheme is known as frequency-domaininterferometry and currently used in the visible [Colombeau 1990].We have demonstrated that the technique can be extended to the XUV using harmonics [Salieres 1999c]. Two

harmonic pulses separated by a delay x are produced at the same place in the medium by two delayed butspatially superimposed and otherwise identical laser pulses. After diffraction on a spectrally dispersive optics(grating), the two pulses overlap in time and interfere in the frequency domain. Figure 5 shows theinterference pattern measured in the spectral plane for 11th , 15th and 19th harmonic pulses delayed by £=120fs. The large contrast indicates that, when ionization by the first laser pulse is not too high, the two harmonicsources are mutually coherent. Conversely, the study of the contrast as a function of the generation parametersgives information on the dynamics of ionization in the medium.

1.0

-1AX

1(A)

3 -3 -1AX.

1(A)

3 -3 -1AX

1(A)

Figure 5: Experimental spectra of harmonics 11 (a), 15 (b) and 19 (c) generated by two laser pulses delayed byv=120 fs and focused at 2x1014 Wcm'2 in argon. The spectral profile of one single pulse is modulated with the

period A! = —CT

II-2-d Applications of ultra-short coherent XUV light to time-resolved interferometryP. Salieres, P. Monot, P. D'Oliveira, T. Auguste, H. Merdji, J.-F. Hergott, L. Le Deroff, B. CarreCollaboration: D. Descamps, A. L'Huillier, C.-G. Wahlstrom

The unprecedented coherence properties of harmonic radiation open the way to ultra-short (subpicosecond)time-resolved XUV interferornetry. Furthermore, HHG brings to the technique the major improvements oftunability, compactness and simplicity. Particularly interesting is the diagnostic of dense plasmas, since theyrefract (by the steep density gradients), absorb and reflect (above the critical density) the long wavelengths. So

37

Page 36: Service des Photons, Atomes et Molecules

far, only X-ray lasers have been used to probe plasmas by XUV interferometry. We have performed twointerferometry experiments using two mutually coherent harmonic sources, separated either in space or in time.In the first experiment in collaboration with the Lund group, we generated two spatially-separated phase-

locked harmonic sources by focusing the two-fold split laser beam at different locations in a gas jet. Theplasma was created on the path of one harmonic beam by irradiating an aluminum target with a 50 mJ-300 pslaser pulse, the second beam being the reference. The interference fringes observed in the far-field when thebeams overlap are locally shifted allowing the determination of electronic densities as high as 2.10electrons/cm' [Descamps 2000] - see also Section I-2-d.

,20

(a)

Figure 6: Variation of (a) the spatiallyintegrated fringe pattern and (b) the averagefringe shift, with the delay At between theplasma generating laser beam and the 11th

harmonic pulses. The delay betweenharmonic pulses 1 and 2 is x=300fs.

(b)

-600 -400 -200 200 400 600

Delay At (fs)

In the second experiment, we performed frequency-domain interferometry, using two phase-locked harmonicpulses delayed in time, to measure with a 200 fs time resolution the dynamics of ionization in a high densityhelium jet under intense laser pulse irradiation (UHI10 laser, 100 mJ, 50 fs) - see Section II-2-c. Calling Atthe delay between the mid-point of harmonic probe pulses 1 and 2 and the ionizing pulse (so that harmonicpulse 1 (2) propagates through the medium at delay At-x/2 (At+x/2) from the ionizing pulse; At+x/2<0 whenprobe pulses are before pump), we measured the evolution of the spectral interference pattern as a function ofthe delay, i.e. of the time-dependent relative phase-shift between the two probe pulses. This evolution isillustrated in Figure 6: a phase-shift (a and b) develops from the zero reference when both probes propagatebefore pump, to a maximum when the pump ionizes the medium in between the probe pulses (At=0), thendecreases when both probe pulses propagate after the pump. The time-dependent electron density is easilyderived from the phase-shift.

The two feasibility experiments show that it should be possible in the near future to probe densities as high as10"J electrons/cm with a temporal resolution of a few 10 fs.

38

Page 37: Service des Photons, Atomes et Molecules

II-2-e Measurements of ultra-fast electron relaxation on a-SiO2 using harmonicsH. Merdji, B. Carre, J.F. Hergott, L. Le Dtroff, P. SalieresCollaboration: F. Quere, S. Guizard, P. Martin, G. Petite

Ultra-short XUV light pulses synchronized with a laser have the potential for many applications of thepump-i-probe type in solid state and surface physics, since ultra-short characteristic times are in generalinvolved in these dense ordered phases. Time-resolved studies of the relaxation of excited electrons in theconduction band (CB) in a dielectric material provide good examples of possible applications. In thepump+probe experiment that we have performed in a-SiOi, we use the 25th harmonic (39 eV, 50 fs) of LUCAlaser to excite electrons of the valence band (VB) into the CB, with kinetic energy up to 30 eV above the Fermilevel [Que're' 2000, Martin 2000] - the excitation scheme is illustrated in Figure 7. From the t~0 time ofexcitation, the electrons can release their energy either by collisional ionization or phonon exchange with thelattice. We measure the energy distribution of electrons in the CB by ultra-violet photoelectron spectroscopy(UPS).

( 1!

1-125

Ik

u'-c

k

Figure 7: H25 pump+ IR probe scheme for studyingthe relaxation of excited electrons in the CB of adielectric material.

. I)

0 t

Calling f(s, t) the energy distribution of electrons in the CB at time t (e is the kinetic energy), we assumethat, as a first approximation, the UPS spectrum with the pump alone can be interpreted as fhe/(£, t*=0)distribution immediately after excitation, i.e. the valence band excitation profile. Note that this appliesfirst to the high energy edge of the distribution: the UPS spectrum at lower energy already includes theelectrons which have released their energy. The f(e, t=0) distribution is sketched as a solid blue line inFigure 7. Then, we probe the f(e,t) distribution at later time t (sketched as a dashed green line in Figure7), using 800nm (1.55 eV) or 400 nm, 50 fs laser pulses to further excite the electrons in the CB. Afterefficient excitation by the probe pulse, the energy distribution is shifted by one IR photon energy and theform of the UPS spectrum is therefore f(e+hViR,i) (dotted red line in Figure 7). As the delay t increases,the spectrum shifts back to the spectrum corresponding to H25 alone. Two-color UPS spectra have beenmeasured at different delays, which display (he above features.

In Figure 8, we monitor directly the relaxation process by measuring the photoelectron signal f{e-fh Vm, t)-/(£,t^O) as a function of time but for three energies e fixed in the high edge spectrum.At negative delays (t<0), the fast rising front between 150 and 200 fs corresponds to the inter-correlation ofthe pump and probe pulses. The two-color signal reaches a maximum at zero delay and then decreases. Usinga kinetic model, we estimate i) an energy-loss rate through e-phonon collision of 70 meV/ps at e ~30eV, muchlower than would be expected theoretically, and ii) a rate for collisional ionization of 1/40 ps'1, an equally lowvalue with respect to usual optical breakdown models. Our results should be confirmed in further experimentsalready planned. They show that more elaborate models are needed to describe the electron dynamics athigh kinetic energy in the conduction band.

39

Page 38: Service des Photons, Atomes et Molecules

6 -

4 -

30 -

1 5 -

0 4 -

0 2 -

J X

E=30.8

- • •Vy

E = 32

E=36

eV

eV

eV

Figure 8: Measured electron signal as a function ofpump-probe delay for three energies in the highenergy part of the spectrum: solid line. Simulations:dotted line

0 20 40 60 80

Delay (ps)

II-2-f Conclusions - Perspectives

The work achieved in the period 1998-2000 has proven that the topic of high harmonic generation retains itspotential for new fundamental developments and original applications.Characterization, phase matching studies and optimization: From a basic understanding of the process, wehave shown that the parameters relevant to HHG can be actually controlled and adjusted to obtain an optimumof the conversion efficiency, the spatial coherence or the beam quality. Forthcoming optimization studies willagain consider various geometries of the generating medium, e.g. large cross-section medium to make full useof the available laser energy. Characterization and control of the harmonic far field wave front using theShack-Hartmann technique is already planned.Generation of subfemtosecond pulses: Several techniques for obtaining femto or subfemtosecond XUVpulses have been proposed. The first is a direct result of using the ultra-short (<5 fs) laser pulses that are nowproduced. A second technique relies on the fact that the harmonic pulse is frequency-chirped (through the time-dependent factors such as Oq in the harmonic phase) and can therefore be recompressed to a ~lfs duration. Tointroduce the third technique, it should be recalled that N harmonics which are resolved in the spectral domainare coherently emitted in the medium as bursts of light at each half-period T/2 of the laser field, these bursts ofT/2N duration (-1016 s for N=10) forming a periodical train. Now, various means based on the control of thelaser polarization can serve to extract one of the ultra-short, broad-band pulse from the train. The futureprogram on HHG includes generation, transport and characterization of attosecond pulses in the context of theTMR ATTO network.Applications of ultra-short coherent XUV: Applications are a major part of HHG work, which obviouslydepend on optimization. On the one hand, the relatively high intensities obtained support the search for nonlinear processes in the XUV. On the other hand, time-resolved studies of the pump+probe type implyingcoherent XUV certainly make the best possible use of harmonics. Time-resolved measurement of the electrondensity in an over-critical plasma on solid target has already been attempted. Studies on reflective surfacessubmitted to ultra-short perturbations are also planned.

40

Page 39: Service des Photons, Atomes et Molecules

П-2-g Selected references

Bouhal A., Salières P., Breger P., Agostini P., Hamoniaux G., Mysyrowicz A., Antonetti A., Muller H. G.,Phys. Rev. A. 58, 389 (1998).

Colombeau В., Dohnalik T., Froehly C , Acta Phys. Pol. A 78, 85 (1990).

Constant E., Garzella D., Mével E., Dorrer C , Leblanc С , Salin F., Agostini P., Phys. Rev. Lett. 82,1668(1999).

Descamps D., Lyngâ C , Norm J., L'Huillier A., Wahlström C.-G., Hergott J.-F., Merdji H., Salières P.,Bellini M., and Hänsch T. W., Optics Lett. 25, 135 (2000).

Gontier Y., Phys. Rev. A 59 4747 (1999).

Lange H. R., Chiron A., Ripoche J.-F., Mysyrowicz A., Brega P., Agostini P., Phys. Rev. Lett. 81, 1611(1998).

Le DéroffL., Salières P., Carré В., Optics Lett. 23, 1544 (1998).

Le DéroffL., Salières P., Carré В., Joyeux D., Phalippou D., Monot P., D'Oliveira P., Auguste T., MerdjiH., Hergott J.-F., Laser Physics 10, 294 (2000a).

Le DéroffL., P. Salières, B. Carré, D. Joyeux, D. Phalippou, Phys. Rev. A 61 043802 (2000b).

Martin P., Merdji H., Guizard S., Petite G., Quéré F., Carré В., Hergott J.-F., Le Déroff L., Saueres P.,Gobert O., Meynadier P., Perdrix M., Laser Physics 10 (1), 270 (2000).

Quéré F., Guizard S., Petite G., Martin Ph., Merdji H., Carré В., Hergott J-F, Le Déroff L., Phys. Rev. B 61,9883 (2000).

Salières P., L'Huillier A., Antoine Ph., Lewenstein M., Phys. Rev. Lett., 81, 5544 (1998).

Salières P., L'Huillier A., Antoine Ph., Lewenstein M., Adv. Atom. Molec. Opt. Phys. 41, 83 (1999a).

Salières P., Le DéroffL., Auguste T., Monot P., D'Oliveira P., Campo D., Hergott J.-F., Merdji H., Carré В.,Phys. Rev. Lett. 83, 5483 (1999b).

Sheehy В., Martin J. D. D., DiMauro L. F., Agostini P., Shafer K. K., Gaarde M. В., Kulander К. С , Phys.Rev. Lett. 83, 5270 (1999).

Spielmann Ch. et al., Science 79, 2967 (1997).

Villain P., Lewenstein M., Phys. Rev. A 62, in press (2000).

Zerne R. et al, Phys. Rev. Lett., 79, 1006 (1997).

41

Page 40: Service des Photons, Atomes et Molecules

П-3 Molecules and clusters in strong fieldsPermanent research and technical staff: С Cornaggia, M. Schmidt, D. Normand, S. Dobosz, О.Sublemontier, H. Lagadec, T. Blenski, M. Bougeard, E. CaprinPhD students: Ph. Hering, L. Quaglia, M. SegersPost-doctoral positions: M. Lezius, C. Ellert, K. Ishikawa, M. Rusek, L. Le Déroff, T. CeccottiUndergraduate students: M. Forest (NFIO, Orsay University), M. Bouchon (ESPEO, Orléans)Collaborations: M. Brewczyk (University Bialystok and Center for Theoretical Physics, Warsaw,Poland), E. Charron, A. Suzor-Weiner, (LRC du CEA, Laboratoire de Photophysique Moléculaire,Paris XI, Orsay), J. Viallon, C. Bordas, J. Chevaleyre, M.-A. Lebault (LASIM, Université Lyon I,Villeurbanne), C. Guet, B. A. Huber, (DRFMC/SI2A, CEA Grenoble), M. Faubel (MPI fürStrömungsforschung, Göttingen, Germany), M. Wieland, T. Wilhein (Institut für Röntgenphysik,Universität Göttingen, Germany), A.Ya. Faenov, A.I. Magunov, T.A. Pikuz, I.Yu. Skobelev (MISDCof VNIIFTRI, Mendeleevo, Russia).

П-3-а Introduction

The response of isolated small molecules and clusters to intense laser fields - from 1014 up to 1019 Wem'2 inthe femtosecond range - is of fundamental importance in strong field physics. It naturally extends the nowwidely explored physics of single atoms in strong field, including a number of new many-body or collectiveprocesses such as Coulomb explosion, electron impact excitation/ionization. The studies are strongly coupledto other fields in physics and chemistry, from the physics of multi-charged atomic and molecular ions to theplasma physics and XUV source design.In small polyatomic molecules, the studies concentrate on characterizing as completely as possible the

dynamics of the multi-ionization - either sequential or direct - and subsequent Coulomb explosion of themulti-charged system. For this purpose, fragmentation channels are thoroughly identified from charge states,kinetics as well as the internal energy of fragment ions. Correlation techniques and photon detection providesubstantial results for molecules like N2, CO2, N2O, which have encouraged new theoretical developments.Clusters have been extensively studied for several years since they bridge the gap between atomic and solidstate physics. Surprisingly, strong field studies of clusters started only a few years ago. They gave evidence ofspectacular phenomena such as X-ray generation, production of highly-charged ions with high kinetic energies,e.g. Xe30+ ions of 1 MeV [Ditmire 1996], or, recently, fusion events in D2 clusters [Zweiback 1999, Schmidt1999]. In fact, the small size of the clusters (<10 ran) compared to both the laser wavelength and the typicalskin depth of solid targets leads to an efficient coupling between light and matter. Several models of the laser-cluster interaction have been proposed [Thomson 1994, Ditmire 1996, Rose-Petruck 1997]. Most of thememphasize a sequence of phases which can be schematized as i) the OFI (optical field ionization) of the clusterin the rising edge of the laser pulse, ii) the laser-acceleration and re-scattering of the primary electrons,including collisional absorption (inverse bremstrahlung), resonant absorption (for an electron Ne density closeto its critical value Nc) and electron-impact ionization, and iii) either Coulomb explosion or hydrodynamicexpansion of the cluster plasma. According to recent experiments and calculations in our team, this scenarioshould be discussed as a function of the pulse duration and cluster size. At present, clusters in strong fieldyield a new source of intense ultra-short X-ray bursts, which is renewable and debris-free (e.g. rare gasclusters). This is of potential interest for various applications in material processing, medicine and biology. In1998-2000, we have first extended our strong field studies to metal clusters strongly coupled to the laser fieldthrough a giant dipole resonance, as well as to laser-produced plasma in liquid jet target. Secondly, we havemade the first observation of opacity effects in a molecular cluster jet plasma.

The experimental work on both the molecules and clusters in strong laser field has supported the developmentof new theoretical models in the context of either quantum chemistry, Thomas-Fermi models or classicalMonte-Carlo methods.

42

Page 41: Service des Photons, Atomes et Molecules

H-3-b Molecular multi-ionization and Coulomb explosionPh. Hering, L. Quaglia, M. Forest, C. CornaggiaCollaboration: M. Brewczyk, E. Charron, A. Suzor-Weiner

Molecular multi-ionization is investigated following three research lines. The first one is aimed at studyingnon-sequential electron emission processes. Secondly, the overall fragmentation dynamics of Coulombexplosion is probed with a high resolution. The two sets of results are the basis for new theoreticaldevelopments by our collaborators in Orsay and Warsaw. Finally, experiments have been performed to detectthe fluorescence of excited multi-charged atomic fragments and to correlate the spectra obtained to theelectronic excited states of the multi-charged molecular precursors.

Non-sequential double and multiple ionizationNon-sequential double ionization (NSDI) of a wide variety of molecules (N2, CO2, C2H2...) has beenextensively studied in a linearly polarized laser field by ion yield measurements. All the double ionizationchannels, i.e. the metastable molecular dication and the two-missing electron fragmentation channels, aredetected in the experiment. In order to discuss the either sequential or direct type of double ionization, theresults are compared in Figure 9 with the predictions of a sequential model in the 1O13-1O15 W/cm2 laserintensity range. For single ionization, a good agreement is obtained with a tunneling model extended tomolecules [Cornaggia 2000].According to the e-2e re-scattering model [Corkum 1993], NSDI is caused by the first ejected electronreturning to the core, provided its kinetic energy exceeds the ionization potential of the singly-chargedmolecule. At laser intensities where NSDI appears experimentally, the energy gained in the laser field by thereturning electron is much too low and cannot explain a classical re-scattering process. However, theexperimental results do not rule out the possibility of exciting singly-charged molecules by the returningelectron. Actually, the Orsay itheoretical group has worked out a deeper insight from the exact resolution of theSchrodinger equation with 2 active electrons in a one-dimensional N2 model molecule. The main features of theexperimental curves are now reproduced [Pegarkov 1999].

101 -

I 1 0 1

io

1 0 " 7

: | : .: i

Seq""mode

, /

/ J

jp /-r—i

•••

^55 •r :

" NC •

Figure 9: Ion yields vs. peak laser intensity recordedfor N2 at a reference pressure of Iff9 Torr.

10 l 10 10 10"

Peak laser intensity (W/cm2)

Coulomb explosion: theory versus experimentsThe experimental studies of Coulomb explosion of small molecules in strong field raise challenging problemsfor non-perturbative theories of molecules in strong fields. In the experiments, the multi-fragmentationchannels are identified from accurate measurements of kinetic energy releases, taking advantage of the highrepetition rate (kHz) of the 800 nm, 40 fs SOFOCKLE laser of DRECAM, and making extensive use ofpowerful ion-ion and ion-ion-ion correlation techniques [Hering 1999]. Different detection procedures showthat toe kinetic energy releases are independent of the respective directions of the laser electric field andinternuclear axis for linear systems such as N2, CO2, or N2O, although the systems are aligned along the laserfield direction. Until now, most of the models have been developed for a one-dimensional model diatomicmolecule, while 2D- or 3D-models are required for polyatomic systems. M. Brewczyk has proposed a

43

Page 42: Service des Photons, Atomes et Molecules

hydrodynamic model that we have successfully tested in a 2D description of diatomic molecules like N2 andtriatomic molecules like CO2 (Figure 10) or N2O [Hering 2000].

10J

I 102

f

: D Experimental energy :; • Coulomb energy ;

• Hydrodynamic model

1

_li—i

•¥

j PH

• Figure 10: Experimental and theoretical kineticenergy releases vs. total number of electronsremoved in CO2. The non integer value of theionization state results from the semi-classicalThomas-Fermi model. In some cases, a givenionization state corresponds to several fragmentationchannels, e.g. CO2**^ O++Cf++O+ , O2++C++O+ ,and thus different kinetic energies.

2 3 4 5 6 7 8 9 10

Molecular ionization state

Excited transient multi-charged moleculesUntil now, transient multi-charged molecules have been identified from the fragmentation pattern. However,the internal energy of the molecular ions remains unknown. To go further, fluorescence photon spectroscopy isused to probe excited states of the fragments [Quaglia 2000]. Indeed, the transient excited molecular ionscannot be probed directly because the Coulomb explosion is much faster than the radiative decay.Fluorescence detection is achieved for a wide variety of atomic and molecular species from He to C3H4 in the1O15-1O17 Wcm"2 laser intensity range. The photon count rates are higher for molecules such as N2, CO2 orCF4 than for rare gas atoms such as He, Ne or Xe. The occurrence of excited multi-charged species istherefore more probable in molecules than in atoms. The fluorescence spectra are recorded in the 50-150 runwavelength range for different molecules built with identical H, C, N, or O atoms such as NH3, N2, and N2Oinvolving the N atom. The dramatic increase from NH3 to N2O, as shown in Figure 11, indicates that theinitial electronic structure plays a determining role in the production of excited multi-charged molecules.Similar results are observed with other molecular species built with the C and O atoms.

4

2

0

£? 20

I "« 158

100

50

Nl

l l iN.

N

Figure 11: Photon emission spectra recorded withNH3, N2 and N2O. The atomic N2* (Z = 1, 2, 3)lines are labeled by n° 1-5. The atomic OZ+ {1=1, 2,3) are also indicated by the (*) symbol.

50 60 7 0 80 9 0 100 1 1 0 120

Wavelength (ntn)

PerspectivesThe interpretation of some of the experimental results depends on a better understanding of the fundamentalprocesses and therefore on a close collaboration with theoreticians. Specifically, the hydrodynamic model will

44

Page 43: Service des Photons, Atomes et Molecules

be converted to the non-linear Schrodinger equation. Another attempt based on quantum chemistry, aims atcomputing the zero-field electronic energies of the multi-charged molecules. Experiments will be performed ona larger range of molecular sizes using both ion and photon detection. In the near future, position-sensitivedetection in multi-coincidence techniques will be developed for a simultaneous determination of all themomenta of the ejected fragments. The advent of multi-kHz 20 fs lasers will allow to reduce the probability ofionization, while keeping the required high laser electric fields. In addition, pulse durations of less than 5 fs arenow shorter than the vibrational periods, and will enable the investigation of Coulomb explosion of frozenmolecules during the laser interaction. Finally, well-established techniques such as cold target recoil-ionmomentum spectroscopy will be considered in order to reach very high resolutions in the measurement ofmolecular relaxation.

II-3-c Highly charged ions from rare gas and metal clusters in intense laser fieldsCh. Ellert, S. Dobosz, M. Lezius, D. Normand, O. Sublemontier, M. SchmidtCollaborations: J. Viallon, C. Bordas, J. Chevaleyre, C. Guet, B. A. Huber, M.-A. Lebault

Metal clusters generally exhibit a more or less pronounced giant dipole resonance in the optical or ultravioletenergy range, which distinguishes them from the van der Waals-bound rare gas clusters. This so-called Mieresonance is associated to the oscillation of the free electron gas in the bulk (plasmon). It should stronglyenhance the energy absorption from the laser field, and thus cluster heating and subsequent ionization. Inprinciple, metal clusters enable to study the relative importance of OFI to plasma-induced ionization (plasma-field and electron-impact ionization), and thus to test the various models including these effects. For our firstexperiments on metal clusters we chose lead because of the high mass, thus increasing the inertial confinement,and high Z, to increase the collisional heating [Ellert 2000a, Viallon 2000].

Figure 12: Pb cluster fragment spectrum measured fora pulse duration of 76 fs (FWHM) and a peak laserintensity of 2.5 1015 Wcm2.

4 6Time of flight (us)

10

Metal clusters of several hundreds of atoms were irradiated with peak intensities of up to 1017 Wcm"2. Highly-charged fragment ions were detected using standard TOF as well as magnetic deflection TOF spectrometer.The Figure 12 shows a typical ion fragment spectrum characterizing the interaction of the lead clusters withthe intense laser. A careful analysis shows that charge states up to Pb28+ are produced. A strong dependence ofthe ionization and heating processes on the laser pulse duration was found. While the resulting ionic fragmentspectra are qualitatively similar for rare gas and lead clusters, the kinetic energies for the metal clusters seemhowever to be significantly lower.

n-3-d EUV and fast ion emission from a laser-generated plasma in a liquid jet targetCh. Ellert, D. Normand, M. Schmidt, O. SublemontierCollaboration: M. Faubel, M. Wieland, T. Wilhein

Of particular interest to X-ray microscopy are the X-ray and extreme UV (EUV) emission from laser-produced plasmas in the "water window" 2.4 - 4.4 nm [Thieme 1998], as well as in the 10 - 20 nm range. Thelatter is especially relevant for the next generation of lithography, enabling structure sizes far below 70 nm[Benschop 1999]. As a renewable dense target of potential interest, we have experimentally considered a liquidjet of either N2 or argon (20(im diameter) exposed to intense laser pulses [Ellert 2000b].

45

Page 44: Service des Photons, Atomes et Molecules

Different issues have been addressed: the dependence of the EUV emission on (1) the laser pulse durationvarying from 70 fs to 250 ps and intensities varying respectively from 1016 to 1012 Wcm'2, (2) the targetmaterial, (3) the orientation of laser polarization relative to the liquid jet axis. We have analyzed the kineticenergies of the ionic debris. Figure 13 shows a typical EUV spectrum obtained in N2 where the characteristiclines of hydrogen-like N are visible. For nitrogen the EUV intensity at 250 ps was about two orders ofmagnitude higher than at 70 fs pulse duration. We found a weak dependence of the EUV yield on the laserpolarization relative to the liquid jet axis. The kinetic energy of the emitted ions easily exceeded 100 keV forN2 and 200 keV in the case of Ar for a pulse duration of ~2 ps. Moreover, the ionic debris are less energeticwith long pulses (>10 ps) than with short pulse durations (<1 ps).

70 fs 1 Figure 13: EUV emission from the liquid nitrogen jetJ for different pulse lengths

wa-velength [ntn]

The above result that EUV emission is optimal with 100 ps or longer pulses when irradiating a liquid jet oflow Z atoms (Z=7 for nitrogen), is consistent with previous observations on plasmas from solid targets.Several reasons can be invoked for the less efficient conversion in ultra-short pulses, which involve thecontribution of collisional and resonant absorption (i.e. Ne~Nc): i) for very short pulses the small number ofoptical cycles allows only a few electron-ion collisions, ii) at very high intensity and therefore high electronvelocity ( » 1014 Wcm"2), the rate of collisional absorption is reduced, iii) the laser pulse duration must be atleast as long as the expansion time of the pre-formed plasma, so that electron density decreases to the criticalvalue favoring resonant absorption. To complete the present results, comparative studies of EUV emissionfrom a liquid jet target with and without prepulse could be envisaged.

II-3-e X-ray emission from fast expanding molecular cluster plasmaS. Dobosz, M. Schmidt, M. Perdrix, P. Meynadier, O. Gobert, C. Ellert, O. Sublemontier, T. Blenski, D.NormandCollaboration: A.Ya. Faenov, A.I. Magunov, T.A. Pikuz, IYu. Skobelev

We have studied the X-ray emission from dense argon and CO2 cluster jets irradiated by intense laser pulses ofduration 70 fs [Dobosz 1998, Schmidt 1999], Compact, state-of-the-art X-ray spectrographs are usedallowing for both spectral and spatial high resolution. Well-resolved He- and H-like oxygen O6+'7+ emissionlines in the spectral range 16-18 A are observed in the case of CO2. As shown in Figure 14 we observesubstantial line broadening which demonstrates a fast expansion of the cluster plasma, in agreement withprevious results on xenon clusters. A detailed analysis of our spectra suggests that fast fragment ions withextremely high start-up energies of up to 1 MeV are produced in large proportion approaching ~10"3.Moreover, the oxygen emission lines present strongly asymmetric profiles, i.e. sharp cut of the red-wing.

46

Page 45: Service des Photons, Atomes et Molecules

Figure 14: He-like O6+ lines measured in hot CO2

plasma showing sharp cut of the red-wing,interpreted as a strong opacity effect.

We tentatively propose a model that considers strong re-absorption of the line red-wing throughphotoionization of H- and He-like carbon ions in the hot CO2 plasma as well as of neutral carbon atoms (thered-wing light emitted by ions moving away from the detector propagates across a optically thick medium). Toour knowledge, this is the first observation of strong opacity effects in a gas jet target. This interpretation isconfirmed by an opacity code modeling radiative transfer in plasmas.

II-3-f Theoretical description of small clusters in strong laser fields

Two theoretical descriptions of the explosion of rare-gas atomic clusters in strong laser field have beendeveloped in parallel, in particular i) a classical Monte-Carlo model for the molecular dynamics, and ii) asemi-classical, time-dependent Thomas-Fermi model. The two approaches are complementary and differ bytheir accounts for ionization / recombination processes and electron correlations.

Monte Carlo particle dynamics simulations of rare gas cluster explosion in a strong laser fieldK. Ishikawa, T. Blenski

In the Monte Carlo simulation of particle dynamics, the equations of motion of the ions and the free electronsare numerically integrated with the force calculated as the sum of the contributions from the laser field andreal Coulomb potentials of the other particles. Free electrons may appear through tunneling and electronimpact ionization, and may recombine with ions.This method allows us to follow the motion of both ions and free electrons during the cluster explosion.Concerning the ionization mechanism, our results support the ionization ignition model [Rose-Petruck 1997],in which the combination of the laser, ionic, and electronic fields leads to the production of highly chargedions. The effect of electron impact ionization is negligible. In our results, the dependence of ion kinetic energyon its charge state is approximately quadratic up to a certain value, and linear for higher charge states asshown in Figure 15. This behavior was observed experimentally by Lezius et al. [Lezius 1998] for bigclusta-s, who attributed the former to Coulomb explosion and the latter to hydrodynamic expansion. Oursimulations show, however, that electrons quit the cluster before they exchange a significant amount of energywith ions, which excludes a hydrodynamic scenario for small clusters. Instead, according to our analysis, thischarge-energy relation can be: entirely explained by Coulomb explosion. We find that, while ions are emittednearly isotropically, the mean ion energy is 10-20 % higher along the laser polarization than perpendicular toit, in agreement with a recent experiment [Springate 2000]. Moreover, electrons are emitted preferably alongthe laser polarization and their energy extends up to ~ 1.5 keV, in agreement with the experimental features of"warm electrons" [Ditmire 1998]. Although our simulations consider relatively small clusters, the (at leastqualitative) agreement with the experiments on large clusters suggests that our conclusions - that the clusterexplosion is governed by Coulomb explosion and that electronic contribution to the acceleration of the ions isnegligible - might be extrapolated to large clusters as well.

47

Page 46: Service des Photons, Atomes et Molecules

t7

I 5

c.a 4•SC q

1 21

0

Xe 1477=1.3xlO16W/cm2

r=100fe(FWHM)X= 780 nm

Figure 15: Charge dependence of ion energy ofXe14yirradiated by the laser pulse with the givenparameters.

4 6 8 10 12 14Charge state Q

Explosion of small clusters in an intense laser field: Thomas-Fermi modelM. Rusek, H. Lagadec, T. Blenski

The time-dependent Thomas-Fermi (TDTF) model may be considered as a semi-classical approximation to thequantum dynamics of an electron gas, complementary to the classical Monte-Carlo (MC) model. The MCsimulation treats exactly the classical N-body problem of interacting electrons and ions including electroncollisions (i.e. classical correlations). However, it uses external formulas to describe electron ionization andrecombination. Conversely, in the TDTF model, some quantum effects (a pressure term due to the Pauliprinciple) are accounted for; both bound and free electrons are described using the same TF electron density sothat there is no need for external formulas. However, electron correlations (i. e. electron collisions) are notincluded explicitly in this mean field formalism. In our TDTF study, the ID-model in [Brewczyk 1998] hasbeen extended to encompass the 3D case explicitly. In addition, we use the correct non-linear kinetic energyfunctional, valid for a 3D ideal electron gas, and which can take into account some non-zero initialtemperature effects. The ground-state structure of a N=55 atomic cluster at T=0 K was obtained by solvingsimultaneously the Smooth Particle Hydrodynamics equations for the electron fluid and the Newton equationsfor the nuclei with small viscosity and friction terms. The stationary positions of the pseudo-particlesdescribing the equilibrium electronic density and nuclei positions are illustrated in Figure 16. Then the clusteris exposed to a linearly polarized laser pulse (?L=800 nm, Ax=107 fs ~ 40 optical cycles) with a peak intensityof 1.4xlO15 Wcm"2. It turns out that the explosion is neither instantaneous nor uniform but exhibits a layer-wise dynamics in which the cluster shells are expelled sequentially. Moreover, the explosion is non-isotropic.Nevertheless, there exists a forward-backward symmetry and the laser polarization appears to be a symmetryaxis. We find that i) the inner shell starts to expand first, thereby pushing the outer shells, and ii) the ionsleaving first are far more energetic than those leaving later. Finally, we have investigated some effects due to anon-zero temperature of the cluster prior to the pulse. Further comparative studies between the MC and TDTFmodels are in progress.

15 r-

1 0 (• 1 • " * • » *

-10 -msam

Figure 16: Ground-state structure of a 55-atomcluster.

-15-15 -10 -5 0

x [a.u.]10 15

48

Page 47: Service des Photons, Atomes et Molecules

n-3-g Conclusions - Perspectives

Molecules in strong field: the program of a complete and accurate description of the laser-moleculeinteraction will be continued, including coincidence techniques and use of ultra-short laser pulses on theexperimental side, and a close collaboration with theoreticians.Clusters in strong field: trie program at SPAM has investigated various schemes of the laser clusterinteraction from rare gas, metal and to molecular clusters as well as liquid jet targets. Emission of X-rays andEUV light but also of highly charged ions was studied. Fusion events from a laser-produced plasma on CD4

molecular clusters have been recently observed and will be further investigated. The theoretical work will becontinued since fundamental points of the interaction, e.g. the cluster explosion, are still under discussion. Theexperimental team has momentarily turned to a more applied but closely-related project (PREUVE) ofdeveloping an intense source in the EUV range using cluster jets as the generating medium.

II-3-h Selected references

Benschop J. P. H., van Dijsseldonk A. J. J., Kaiser W. M, Ockwell D. C , Solid State Techn. 42, 43 (1999).

Brewczyk M., Clark C.W., Lewenstein M., Rzazewski K., Phys. Rev. Lett. 80, 1857 (1998).

Cornaggia C , Hering Ph., Phys. Rev. A 62, 023403 (2000).

CorkumP.B., Phys. Rev. Lett. 71, 1994 (1993).

Ditmire T., Donelly T., Rubenchik A.M., Falcone R.W., Perry M.D., Phys. Rev. A 53, 3379 (1996).

Ditmire T., Springate E., Tisch J. W. G., Shao Y. L., Mason M. B., Hay N., Marangos J. P., Hutchinson M.H. R., Phys. Rev. A 57, 369 (1998).

Dobosz S., Schmidt M., Perdrix M., Meynadier P., Gobert O., Normand D., Faenov A. Ya., Magunov A.I.,Pikuz T.A., Skobelev I.Yu., Andreev N.E., J.E.T.P Lett. 68,485 (1998).

Ellert Ch., Dobosz S., Lezius M., Normand D., Sublemontier O., Schmidt M., Viallon J., Bordas C ,Chevaleyre J., Guet C , Huber A., Lebault M.-A., submitted to Phys Rev. A (2000a).

Ellert C , Normand D., Schmidt M., Sublemontier O., Faubel M., Wieland M., Wilhein T., submitted to Phys.Rev. E (2000b).

Hering Ph., Cornaggia C , Phys. Rev. A 59, 2836 (1999).

Hering Ph., Brewczyk, M., Cornaggia C , sumitted to Phys. Rev. Lett. (2000).

Lezius, M., Dobosz S., Normand D., Schmidt M., Phys. Rev. Lett. 80, 261 (1998).

Pegarkov A., Charron E., Suzor-Weiner A., J. Phys . B: At. Mol. Opt. Phys. 32, L363 (1999).

Quaglia L., Cornaggia C , Phys. Rev. Lett. 84, 4565 (2000).

Rose-PetruckC, Shafer K. J., Wilson K. R., Barty C. P. J., Phys. Rev. A55,1182 (1997).

Schmidt M., Perdrix M., Meynadier P., Gobert O., Normand D., Ellert Ch., Blenski T., Faenov A. Ya.,Magunov A.I., Pikuz T.A., Skobelev I.Yu., Andreev N.E., J.E.T.P 88, 1122 (1999).

Springate E., Hay N., Tisch J. W. G., Mason M. B., Ditmire T., Hutchinson M. H. R., Marangos J. P., Phys.Rev. A 61, 063201 (2000).

Thieme J., Schmahl G., Rudolph D., Umbach E., X-Ray Microscopy and Spectromicroscopy, SpringerVerlag, Berlin (1998).

Thomson B.D., McPherson A., Boyer K., Rhodes C.K., J. Phys . B: At. Mol. Opt. Phys. 27, 4391 (1994).

Viallon J. , PhD thesis, Universit6 Claude Bernard Lyonl (June 22, 2000).

Zweiback J., Smith R.A., Cowan T.E., Hays G., Wharton K.B., Yanovsky V.P., Ditmire T., Phys. Rev. Lett.84, 2634 (2000)

49

Page 48: Service des Photons, Atomes et Molecules

II-4 Ultra-short non LTE plasmas produced by Optical Field IonizationPermanent research and technical staff: T. Auguste, P. Monot, P.D'Oliveira, S. Dobosz, M.Bougeard, E. CaprinPhD student: S. HulinCollaborations: A. Faenov, T. Pikuz, I.Yu. Skobelev (Multicharged Ions Spectra Data Center ofVNIIFTRI, Mendeleevo, Moscow, Russia), S. Jacquemot, L. Bonnet, E. Lefebvre (DPTA, CEA/DAMen He de France), A.G. Zhidkov, A. Sasaki, T. Tajima (Advance Photon Research Center, JAERIOsaka, Japan), F.B. Rosmej (TU-Darmstadt. Institut fur Kernphysik, Germany).

II-4-a Introduction

Plasma physics was first developed at SPAM some ten years ago, as the necessary extension of atom-laserinteraction studies to the macroscopic scale. Today, high power ultra-short lasers such as UHI10 make itpossible to study highly charged and dense non-LTE plasmas produced either in a gaseous or on a solid target,where a number of processes take place. Particularly interesting is the initially cold dense plasma produced ina gas target from optical field ionization (OFI). On the one hand, the electron dynamics in the OFI plasma isfirst tightly driven by the laser field, leading to specific processes of channeling or charged particleacceleration. In turn, these dynamics are involved in determining the propagation of the laser field, as in thespectacular regime of relativistic self-focusing. On the other hand, the possibility of an X-ray laser has beendemonstrated in the OFI plasma [Nagata 1993], In collaboration with the Departement de Physique Thebriqueet Applique^ (DPTA) of the CEA/DAM, the UHI10 team has been investigating for two years the conditionssuitable for coherent X-ray emission in a H-like nitrogen plasma produced by OFI. Although not yetconfirmed, the scheme still under development promises to produce ultra-short coherent X-ray from a limitedenergy input (<1 J), through a very efficient coupling of this energy to the medium.

The mechanisms for acceleration of electrons and ions over MeV energies are of special interest in non-LTEplasmas. They can find future applications as laser-driven compact sources of energetic particles. Incollaboration with the teams of the Multicharged Ions Spectra Data Center (MISDC) in Moscow and theAdvance Photon Research Center in Osaka, we have demonstrated ion acceleration over MeV energies by anintense obliquely incident /^-polarized laser pulse focused onto a planar massive target.The physics of transient non-LTE plasmas on UHI10 has multiple links with other topics at SPAM. Forexample, the transient plasmas produced on dense targets and evolving to over-critical density provide anexemplary system where ultra-short coherent XUV, such as harmonic light, finds full application as adiagnostic tool.

II-4-b Towards an X-ray laser using short-duration, high-intensity pulsesT. Auguste, P. Monot, P. D'Oliveira, S. Hulin, S. DoboszCollaboration: A. Faenov, T. Pikuz, S. Jacquemot, L. Bonnet, F. Rosmej

We briefly expose the X-ray laser scheme in the case of a nitrogen plasma. We then report measurements ofthe interaction parameters (density, temperature, laser intensity, interaction length) as well as numericalresults, both of which characterize the plasma as a potentially lasing medium.

Principle of the femtosecond driven X-ray laserThe X-ray laser scheme is based on the fact that OFI, the dominant ionization process in the short pulse/strongfield regime, leads to highly charged or fully stripped ions in a dense cold plasma (=10 eV) for a linearlypolarized laser pulse. This contrasts with the current schemes, where ionization is ensured by collisionalheating in a hot medium. In our study, we have chosen molecular nitrogen as the lasing medium because it isfully stripped at a laser intensity of 1019 Wcm"2, delivering a high electron density (14 eVmolecule). Collisionalrecombination that preferentially populates high-energy states and radiative recombination that mainlypopulates low energy ones have rates in the ratio ~ NexTe"

1/2. Thus for high density and low temperature, apopulation inversion is induced between the upper and lower states of XUV transitions, giving rise to laseremissioa In particular, two lasing transitions on resonance lines 2p-Ms (25 A) and 3d->2p (134 A) of H-likeions N6* are expected to occur after rapid recombination to N6* excited states, as illustrated in Figure 17.

50

Page 49: Service des Photons, Atomes et Molecules

OFI

n=2Lasing transitions

Figure 17:.0FJ-pumped X-ray laser schemein nitrogen. After fast recombination to H-like nitrogen, lasing transitions areexpected between excited states and thefundamental (Lyman a 2p-ls; X~25 A) andbetween two excited states (Balmer cc 3d-2p, X~134A).

Numerical simulations using CHIVAS, LASIX and SUPERSTRUCTURE codes [Eissner 1974, Berthier1991] were carried out to determine the range of parameters suitable for X-ray lasing. The results show thatdensity as high as 1020 cm"3 is needed together with a temperature in the 10-50 eV range [Hulin 2000]. Theinteraction length, currently limited to a few tens of um, can be enhanced using relativistic self-focusing, firstobserved by our team in 1995 [Monot 1995].

Characterization of OFT produced nitrogen plasma as a lasing mediumThe UHI10 laser used to produce OFI plasma is a 800 run, 60 fs, 10 TW peak-power laser based on CPAtechnique; it is described in the Section I-2-c. Several diagnostic tools can be installed in the interactionchamber, such as shadowgraphy, Thomson and X-ray imaging, visible to XUV interferometry, visible to X-ray spectroscopy, electron spectrometry. We illustrate how the important parameters in the plasma areconsistently determined.

Neutral and electronic densityA special gas puffing device has been developed which delivers high neutral densities [Auguste 1999]. Using a2D Mach-Zehnder interferometer, we measured a maximum neutral density of 1.5xlO19 cm"3, over a 2 cm-longmedium, and a 2xlO20 cm""1 electron density over a few hundred micron length.

ES

Figure 18: 2D-map of the electron density in anitrogen plasma, in units oflO20 cm'3. The maximumdensity is 2.102 cm'3. The laser propagates from theright to the left of the figure.

;.f :.-» :.2 :.o c.s o.s ».4 0.2

X [mm] .„Figure 18 shows a 2D-map of the electron density, plotted in units of 10 cm'3, and measured with a 50 fstime resolution. The maximum electron density is 2xlO20 cm"3, and fully stripped ions are produced. The ratioof the laser power to the critical power for relativistic self-focusing is up to 50. Hence, conditions for bothself-focusing and coherent X-ray emission are fulfilled. Note that measuring higher electron densities becomesdifficult with conventional interferometry in the visible range. Interferometry using ultra-short XUV harmoniclight has been developed for extending time-resolved diagnostics to near-critical until over-critical densities -see Section II-2-d.

51

Page 50: Service des Photons, Atomes et Molecules

Temperature and peak intensityPlasma temperature is probed by X-ray spectrometry using the FSSR-2D Bragg diffraction-basedspectrometer [Pikuz 1995]. Figure 19 shows nitrogen emission in the spectral window from 18.9 to 19.6 A.

25C

2 0 0 -

— theory: nirii'-ls n"{"

Figure 19: Emission spectrum of nitrogen in the18.9-19.6 A range. The lines show that N7+ isgenerated. The MARIA code calculations reproducethe experimental data for a 30 eV electronictemperature.

1.90 1.92 1.94 1.96

X (nm)

The spectrum reveals an accumulation of dielectronic He-like satellite lines from doubly excited N5+, the latterproduced by double charge exchange N7++N2--» Ns+ +2N+. According to tunnel ionization rate, ionization toN/+ shows that the laser intensity exceeds 1019 Wcm"2 in the plasma. The simulations of the spectra with theMARIA-code [Rosmej 1997, 1999] give an electron temperature of 30 eV for which recombination emissionoccurs.

Interaction lengthAn image of the Thomson emission at 90° from the propagation direction is shown in Figure 20, whichemphasizes the periodic structure in the emission, characteristic of self-focusing.

0.2

0-1a o

-0.1-0.2

Figure 20: Image of the scattered light at the laserwavelength (Thomson emission). The self-focusedbeam propagates over 18 times the naturalpropagation length ZR.

2.0 1.0X(mm)

0.5 0.0

The self-focused beam propagates over 1.2 mm which corresponds to 18 times the Rayleigh length. Using apinhole camera (100 um spatial resolution) with appropriate filters, we detect H-like resonance lines from thesame region, confirming the diagnostics from Figure 18 that the laser intensity exceeds 1019 Wcm"2 in theplasma. Complementary time-resolved ombroscopic snapshots indicate that the non-linear propagation islimited by absorption (mainly due to parametric heating) and plasma-induced refraction of the laser beam.

n-4-c Acceleration of charged particles in dense plasmasT. Auguste, P. Monot, P. D'Oliveira, S. Hulin, S. DoboszCollaboration: A. Faenov, T. Pikuz, l.Yu. Skobelev, A.G. Zhidkov, A. Sasaki, T. Tajima

At high laser intensities I>1018 Wcm"2, a large part of the energy absorbed by the dense plasmas produced onsolid targets is coupled to the emission of energetic ions. First, energetic supra-thermal electrons are producedby OFI on the rising edge of the pulse. Then these electrons induce a strong electrostatic field at the plasmasurface that drives the fast plasma expansion. It has been predicted that OFI and plasma-induced fieldionization can be more efficient than collisional ionization in the low-density plasma corona, leading to highly-charged states and subsequent energetic ion emission. In order to understand the mechanism for producingenergetic ions and its role in plasma energy balance, we have measured the X-ray emission from multichargedions produced by focusing the UHI10 laser at intensities (2-4)xlO18 Wcm"2 onto a teflon target [Zhidkov1999]. To correlate the emission of fast ions to hot electrons, the energy distribution of suprathermal electronswas also measured, using electron spectrometry.

52

Page 51: Service des Photons, Atomes et Molecules

Energetic ionsTime-integrated spectra of the Is2p-ls2 line of He-like fluorine ions measured in a direction (a) perpendicularand (b) parallel to the target surface are shown in Figure 21. The obliquely incident laser wave was p-polarized. The spectrum (a) recorded along the plasma expansion clearly exhibits a blue wing corresponding toMeV ions in the plasma corona. The ion velocity distribution is close to a self-similar one, N(v) « Noxexp(-v/Cs), where Cs is the ion sound speed determined by supra-thermal electrons of -100 keV. In spectrum (b)recorded along the target surface, the analysis of the line red-wing emitted in the target plan leads to atemperature of 1.5 to 2 keV of the plasma bulk. The same asymmetry was observed on the profile of the Is3p-ls2 line of He-like, and 2p-ls line of H-like ions.

1

1IIIA

Ex.

O

i-5e

i

20

15

10

5

0

- (a) /

1 /u

J

-

-

16.4 16.8

Wavelength (A)

17.2

60 -

20

16.4 16.8

Wavelength (A)

17.2

Figure 21: Spectra of the Is2p-ls2 line of He-like fluorine recorded in a direction (a) perpendicular, and (b)parallel to the teflon target. The obliquely incident laser beam was ^-polarized and the focused intensity was4XI018 W/cm2.

Supra-thermal electionsHot electron distributions in the 0.6-2.2 MeV, obtained with a magnetic spectrometer, are shown in Figure 22for two laser intensities. One can see that the energy cut-off around 2 MeV weakly depends on the laserintensity in the (l-4)xlO18 Wcm"2 range. The electron energy distribution calculated with a collisionalelectromagnetic Particle-in-Cell (PIC) code for 4xlO18 Wcm"2 (dotted line in Figure 22) shows a goodagreement with the measured ones in the 0.8-1.5 MeV energy range. The model emphasizes that thedistribution includes transient populations of hot electrons with different temperatures. The mechanismgenerating supra-thermal electrons was found to be vacuum heating [Gibbon 1992], constrained by theponderomotive force.

Figure 22: Hot electron distribution. Comparison ofthe PIC calculation with the measured distribution inthe MeV region. Experimental: (1) /= l.3xltf\ (2)4x10"* Wcm2; calculated for 1= 4xl&8 Wcm2: dottedline.

0.4 0.8 1.2 1.6

Energy (MeV)

II-4-d Conclusions - Perspectives

In the X-ray laser studies, the different diagnostics show that, in the OFI nitrogen plasma we produce with 60fs, 10l9 Wcm'2 laser pulses, fully stripped ions and a low temperature (30 eV) can be obtained over lengthsmuch larger than the Rayleigh range. We show that relativistic self-channeling can enhance the laser intensity,i.e. OFI efficiency and interaction length. Under these conditions, the amplification of 2p-ls and 3d-2p

53

Page 52: Service des Photons, Atomes et Molecules

transitions is expected during the collisional recombination phase of the plasma. Measurement of an X-ray lineis presently under progress giving promising preliminary results. On account of the limited energy required inthe scheme, X-ray emission with repetition rate in the kHz range now seems achievable.In the experiments on the interaction of an ultra-intense short-pulse laser with solid targets, we have shownthat an obliquely incident p-polarized pulse focused at intensity 4xlO18 Wcm"2 can accelerate OFI-producedions from the plasma corona over MeV energies in the direction of plasma expansion. It was demonstrated thations are accelerated by the strong electrostatic field generated by supra-thermal electrons. The nextexperimental step will check the model prediction that the ion energy should increase with the laser intensityand the atomic number of the target material. The studies of MeV ion acceleration in laser-produced plasmaare very important for the future development of compact and high repetition rate ion sources.

II-4-e Selected references

Auguste T., Bougeard M., Caprin E., D'Oliveira P., Monot P., Rev. Sci. Instrum. 70, 2349 (1999).

Berthier E., Rapport des activites laser CEEA/CEL-V3.7, 304 (1998); Jacquemot S., Decoster A., Laser Part.Beams 9, 517(1991).

Eissner W., Jones M., Nussbaumer N., Comp. Phys. Commun. 8, 270 (1974).

Gibbon P., Phys. Rev. Lett. 68, 1535 (1992).

Hulin S., Auguste T., D'Oliveira P., Monot P., Jacquemot S., Bonnet L., Lefevre E., Phys. Rev. E 61, 5693(2000).

Nagata Y., Midorikawa K., Kubodera S., Obara M., Tashiro H., Toyoda K., Phys. Rev. Lett. 71, 3774(1993).

Monot P., Auguste T., P. Gibbon P., Jakober F., Mainfray G., Dulieu A., Louis-Jacquet M., Malka G.,Miquel J.L., Phys. Rev. Lett. 74, 2953 (1995).

Pikuz T.A., Faenov A.Ya, Pikuz S.A., Romanova V.M., Shelkovenko T.A., J. X-Ray Sci. and Tech. 5,323(1995).

Rosmej F.B. et al., J. Phys. B.: At. Mol. Opt. Phys. 30, L819 (1997).

Rosmej F.B., Faenov A.Ya., Pikuz T.A., Magunov A.I., Skobelev I.Yu., Auguste T., D'OUveira P., Hulin S.,Monot P., Andreev N.E., Chegotov M.V., Veisman M.E., J. Phys. B: At. Mol. and Opt. Phys. 32, L107(1999).

Zhidkov A.G., Sasaki A., Tajima T., Auguste T., D'Oliveira P., Hulin S., Monot P., Faenov A.Ya., PikuzT.A., Skobelev I.Yu., Phys. Rev. E 60, 3273 (1999).

54

Page 53: Service des Photons, Atomes et Molecules

П-5 High energy density matter and atomic physicsPermanent research staff: T. Blenski, F. Thais, M. Poirier, J. PascalePhD students: L. Féret, J.-C. Pain,Collaborations: F. Perrot. P. Arnault, O. Peyrusse, Ch. Reverdin, J.-P. Thébault, Ph. Troussel,F.Mucchielli, С Cherfils, S. Bouquet (CEA/DEF), С Chenais-Popovics, J.-C. Gauthier, M. Fajardo,F. Gilleron (LULI, Ecole Polytechnique), S. Turck-Chièze, J.-P. Chièze, R. Teyssier, A. Benuzzi,(CEA/DAPNIA), L. Poles, Ph. Baclet (CEA/Valduc), K. Eidmann (MPQ-Garching, Germany), С.Bauche-Arnoult, J. Bauche (Lab. Aimé Cotton, Orsay), К. Ishikawa, B.U. Felderhof (RWTH-Aachen,Germany), В. Cichocki (Warsaw University, Poland), Ph. Boduch, M. Chantepie, E. Jacquet, С.Laulhé (CIRIL, LSA, Université de Caen), R.E. Olson (Univ. Missouri-Rolla, USA).

П-5-а Introduction

The plasma physics and atomic physics theoretical team at SPAM is involved in different research areas, fromthe interaction of molecules and clusters in strong field to that of high energy density plasmas. The latter isnow becoming a dominant topic, while a constant connection with the experimental work at SPAM andcollaborating laboratories is maintained.The theoretical activities in the field of the atomic physics of dense plasmas (APDP) started at SPAM at theend of 1997. The long-term motivation is SPAM involvement in the fundamental research on big lasers offuture generation (the LDL, the Laser MJ) in the framework of the Groupe d'Investigation sur les ApplicationsScientifiques des Grands Lasers (GIAS). A shorter-term motivation has been a two-year contract with theCEA Division of the Military Applications (DAM) on the development of the Super-Configuration plasmaOpacity code (SCO). APDP is important in plasma spectroscopy, diagnostics and calculation of energytransfer in practically all experiments using dense plasmas (DP). Studies on APDP, and more generally, onelectronic properties of DP have a fundamental character, especially in the regimes at high densities whereadequate theories do not exist. In some aspects APDP studies can be viewed as an application and extension ofthe previous atomic spectroscopy studies developed at SPAM. This is especially true for non-equilibriumplasmas where the rates for auto-ionization, dielectronic recombination or electron capture are of firstimportance. After the end of the experimental studies on atoms with two excited electrons the theoreticalexpertise in this topic is partly reoriented to find its place in the APDP context. The studies of collisions ofmulticharged ions (MCI) with atoms or molecules have nevertheless kept their fundamental character and stillfollow the work of the experimental teams in this field.With the arrival of F. Thais, the activities of our team extended to experiments on DP. They now include,firstly, the participation in the GIAS experiment on Rayleigh-Taylor instabilities, aimed at testing someaspects of modeling supernovae explosions, and secondly, the participation in the opacity measurementsperformed by the LULI team whose theoretical suppoit is assured by our team.

П-5-b Development of the SCO opacity codeT. Blenski

Collaboration: F. Perrot, Ph. Arnoult, O. Peyrusse

The SCO code [Blenski 1997] calculates opacities of DP at local thermodynamic equilibrium (LTE). The codeis based on the super-configuration (SC) approximation [Bar-Shalom 1989] that enables absorption spectra tobe calculated using only several hundreds of SCs. For each SC one calculates optical transition energies,oscillator strengths and broadening due to terms and configurations, using statistical sums over allconfigurations in the SC. The use of statistical sums avoids detailed calculations in which the number ofconfigurations would be enormous (millions and more). The contributions of all SCs are added together takinginto account their probabilities!.In the reported period we have compared the Average Atom (AAM) and the Super-Configuration (SCM)models. Both the AAM and SCM approaches allow one to calculate thermodynamic averages of relevantobservables, as for example the absorption spectra. The AAM method is especially simple since it uses asingle one-electron basis for all ions. However, it leads in principle to non-integer shell occupation numbers.The free energy for each ion is quadratic in shell populations. The SCM method enables the one-electron basisfor each super-configuration to be optimized and to calculate more accurately the ion free energies. In the

55

Page 54: Service des Photons, Atomes et Molecules

SCM, all ions have integer shell occupation numbers, which allows us to deal correctly with exchange effects.In SCM one assumes a linear dependence of the free energy on the shell populations for all configurationsfrom a given SC. This assumption leads to closed formulas for the statistical sums that are calculated byrecurrence relations [Bar-Shalom 1989, Blenski 1997]. The AAM and SCM models have been compared inthe example of a nickel plasma of 0.1 g/cm3 density at 25 to 150 eV temperatures. They appearcomplementary although the SCM leads to a much better agreement with experiments allowing us to calculatedetailed absorption structures and to take into account important orbital relaxation effects.A new method was proposed and applied to the calculation of the statistical sums [Blenski 2000a]. A newversion of the SCO code has been worked out for the CEA Bruyeres-le-CMtel. It allows the term broadeningand shift of each transition to be treated either using the SC or the Average Atom wave functions calculatedonce for all SCs. It can serve to check the errors introduced when using the AA wave-functions, much betteradapted for rapid calculations, in the term contributions.

We have also studied the role of the one-electron basis (Hartree-Fock versus Density Functional Theory),static screening due to free electrons, and configuration interaction For each super-configuration the code cannow use a one-electron basis that is obtained either in the especially developed thermal Hartree-Fock (HFT)approximation [Blenski 1997] or in the Density Functional Theory (DFT) approach. In addition, we haveimplemented two options for describing the effect of the continuum electron on the atomic structure. In thefirst, the Average Atom chemical potential is used in the expression of the SC free energy. In the second, thefree electron density is calculated in the Thomas-Fermi approximation and the total self-consistent potential ofeach SC is calculated including the free electron density.In the future, two possible extensions of super-configuration opacity modeb'ng will be considered: a) detailedterm account in chosen configurations, b) non-equilibrium regimes.

H-5-c Collaboration with the LULI and PHEBUS experimental teamsTh. Blenski, F. ThaisCollaboration: F. Perrot, P. Renaudin, C. Chenais-Popovics, J.-C. Gauthier, M. Fajardo, F. Gilleron, J.-P. Chieze, S. Turck-Chieze, K. Eidmann, C. Bauche-Arnoult, J. Bauche

We have performed preliminary calculations and interpretation of the opacity measurements in iron [Chenais2000] and nickel, as shown in Figure 23. We have also proposed an experiment on the mixture ZnS, forwhich some preliminary runs have already been performed. In addition, our code has served in theinterpretation of the opacity measurements in germanium and gadolinium plasmas on the Ph6bus laser[Blancard 1999]. A very good agreement between theory and experiment is found in the different cases.The results from the alternative methods, HFT and DFT, in the SCO code, have been compared [Blenski2000b] and further, compared to the measured absorption spectra due to the 3d-4f transitions in a samariumplasma at temperatures between 8-20 eV and densities ~ 0.005 g/cm3 [Merdji 1998]. We conclude that the twoapproaches give theoretical spectra in very good agreement with the experimental ones (within 1 eV) so thatthey cannot be discriminated in the comparison. Similar conclusions were obtained in other cases. Thecorrectness of the DFT one-electron states was important for the extension of the self-consistent super-configuration calculation to the continuum electrons.

Similarly, we have compared the above two options relative to the continuum electrons (implemented in theHFT as well as in the DFT frame), also using samarium [Blenski 2000b]. The theoretical spectra from the twooptions were again very close (within 1 eV in the position of the structures). Transitions involving a looselybound electron would be more interesting for theory-experiment comparisons but they are weak and moredifficult to measure. These studies will be continued in view of possible experiments.Another extension of the SCO code motivated by experiments is the possibility of treating chosen transitions ineither the jj-coupling (SOSA, Spin-Orbit-Split-Arrays) or the intermediate coupling (UTA, UnresolvedTransition Arrays). It appears that in thejj-coupling, supplemented by the configuration interaction correction,the calculated spectra display too large spin-orbit structures which are not confirmed by experiments,especially in plasmas at low temperatures. This option will be used to improve our treatment of theConfiguration Interaction.

56

Page 55: Service des Photons, Atomes et Molecules

2 0 . 4 -

0.2 —

0 . 0 -

Theo_24eV_UTATheo_24eV_SOSA

i • i ^ i ' r12.8 13.2 13.6 14.0

Photon wavelength [A]

Figure 23: Measured (—) and calculatedtransmissions of a nickel plasma (LULI1999). Thelarge structure centered at 13.8 eVcorresponds to the2p-3d transitions (2p-4d transitions at 12.6 eV). Boththeoretical curves are obtained for 24 eV plasmatemperature and 0.004 g/cm3 plasma density. SOS Acurve (••••) is calculated in the j-j coupling ; in VTA(—) spin-orbit splitting energy was added to the termand configuration broadenings.

II-5-d Linear response theory for atoms in plasmaTh. Blenski, J.-C. PainCollaboration: F. Petrol

The linear response theoretical approach became our major objective at the beginning of 1999. We haveworked on it in collaboration with F. Perrot (CEA, Bruyeres-le-Chatel). Our approach intends to model thechannel mixing involving all, i.e. bound-bound, bound-free and free-free transitions. A new theoreticaldevelopment has allowed us to separate the first-order free electron wave functions into two parts with onlyone depending on the perturbing frequency-dependent potential. In principle, it opens the way to correctcalculations of the linear response of atoms in plasmas taking into account the dynamics of free electrons onan equal footing with the dynamics of bound electrons [Blenski 2000c]. The corresponding numerical programhas been written but does not converge yet, probably due to problems with the dipole terms introduced by freeelectrons. In future work, first applications will probably be related to calculation of the refractive index ofpartially ionized plasmas.

II-5-e Hydrodynamics experiment on the Phebus laserF. ThaisCollaboration: J.-P. Chieze, R. Teyssier, A. Benuzzi, Ch.F. Mucchielli, C. Cherfils, S. Bouquet, L. Polks, Ph. Baclet

Reverdin, J.-P. Thebault, Ph. Troussel,

The interest for astrophysics of test experiments on large scale lasers has been outlined by the GIAS. Inparticular, the GIAS supports studies of hydrodynamic instabilities in astrophysical phenomena where theyplay a key role: supernova explosion, interaction between galaxies. During the explosion of a supernova theradial shock wave propagates into different layers and generates Rayleigh-Taylor (RT) instabilities. We haveperformed a laser experiment related to the production and the evolution of RT instabilities due to the passageof a shock wave. Such instabilities are suspected to develop at He/H interfaces in the type II supernovae.Astrophysical observations of this type of supernova (e.g. the early appearance in the light curve of y-rays andCompton degraded X-rays from 56Co decay) can be interpreted as the growth of Richtmyer-Meshkov and RTinstabilities in the exploding envelope. In our experiment the growth rate of the instabilities is studied fordifferent initial conditions using a bilayer Cu/CH target (CH is for polypropylen) with a sinusoidal (2D) rippleat the interface. Scaling laws seem to indicate that measurements using the Cu/CH target can be used tovalidate the complex multidimensional simulation [Remington 1999]. The experiment was performed on thePHEBUS laser facility (CEA), in an indirect drive configuration. The first main beam is focused into a goldcavity and converted into thermalized X-ray radiation, which heats the target and creates an ablation shock.The second beam is used to produce a 5 keV backlighter (probe) source. The main measurement is done aftera relatively long time (30 ns) and consists of a transverse radiography of the interface with a 10-15 |imresolution. An example of the interface shape at the time of measurement is displayed in Figure 24. A goodcontrast is obtained using hard X-rays in the radiography. The shock surface is deformed during thehydrodynamic evolution and is no longer planar. The evolution of the shape of the interface could be wellreproduced using the hydro-codes developed at DAPNIA [Baclet 2000].

57

Page 56: Service des Photons, Atomes et Molecules

Figure 24: Radiography of the interface Cu-CHat t = 30ns.

II-5-f Spectroscopy of two-electron atoms and multi-charged ionsM. Poirier, L. Feret, J. Pascale

Whereas the above global approach of atomic physics is necessary in dense plasma to deal with the highly-mixed/unresolved level structure of strongly coupled systems, atomic physics of isolated atom, ion, or particlepair in collision, still provides the basis for a detailed computing of observables. Examples are given belowand in Section II-5-g.Firstly, as a conclusion to our studies of the large-/ doubly excited states, we have analyzed the influence ofpolarization effects on the positions [Poirier 1998] and the autoionization widths [Poirier 1999] of alkaline-earth-atom levels using a Coulomb Green's function formalism. The same long-range formalism is alsoefficient to deal with strong local interactions between series, provided one diagonalizes the Hamiltonian in asubspace spanned by the closely coupled levels. An example in barium is given in Figure 25 where the 6p3/26g(resp. bpwDg) interacts with the 6pm9g (resp. 6pia\4g). We also have calculated [Poirier 2000] level mixingcoefficients, positions and widths in helium and multi-charged ions where the Coulomb degeneracy induces asignificant configuration mixing.

Figure 25: Quantum defects and scaledautoionization widths n3r (atomic units) of the^Psnng [k=9/2] states of barium, k is the angularmomentum in jk coupling. — (resp. — ) :perturbative second-order computation without (resp.with) quadrupolar interaction at second order; (•):experimental data [Jaffe 1985]; (A) diagonalizationprocedure including the 6p3n6%-6pm9g or the

strong interaction.

Secondly, we have studied the spectroscopic properties of the Ar6+ ion from configuration interaction Hartree-Fock calculations using a pseudo-potential [F6ret 1999a]. As previously shown for the Ba atom [F6ret 1998],our theoretical approach is reliable and quite useful for studying doubly-excited states of MCI which arecurrently formed in double electron capture from atomic or molecular targets. Since accurate data on energylevels of the Ar7+ parent ion are lacking, the determination of the Ar8+ core-valence electron pseudo-potentialhas made it necessary to study the Ar7+ ion (new estimate of the ground state energy). Our results for Ar7+ andAr6+ ions have been used to reliably identify photoemission and Auger spectra [F6ret 1999b] observed in singleor double electron capture collisions between Ar8+ and atomic or molecular targets.

58

Page 57: Service des Photons, Atomes et Molecules

II-5-g Multicharged ion-atom and ion-molecule collisionsL. Feret, J. PascaleCollaboration: Ph. Boduch, M. Chantepie, E. Jacquet, C. Laulhe, R.E. Olson.

The electron-capture in the collision of multi-charged ions (MCI) with matter is an important process in eithernon-LTE or LTE laser-produced plasmas, as well as in fusion plasmas in tokamaks. In a fundamental frame,we have studied electron capture between MCI and atoms or molecules in specific connection with theexperiments by the group of Caen at GANIL.As a first example of single electron capture, we have studied X8+ + Li(2s)-» X1+(nlm) + Li+ collisions usingthe Classical Trajectory Monte Carlo (CTMC) method in the 0.1-5 keV/amu projectile energy range. CTMCcalculations predict an effect of the projectile core electron, comparing the cases X= O (X8+ bare nucleus) andX= Ar. In the case of Ar, nl states of the captured electron with low /-values are populated at low energies,while the large /-values are preferentially populated at high energies; this has been experimentally observed[Jacquet 1999]. Furthermore, CTMC calculations show that the projectile core electrons also influence then/m-distributions in the captured electron states, i.e. the degree of polarization of the emission lines. Inagreement with the experiment, we find that the degree of polarization takes large positive values at highenergies and decreases at low energies. From calculations of electronic energies in the (X7+ + Li)+ molecularsystem, we have explained the variation with energy of n/m-distributions in terms of dynamical couplings(radial and rotational). On the same lines, we have investigated Kr8+ + Li(2s) collision. Because the energydiagram of Kr7+ ion is very different from that of Ar7+, new features of the electron capture process - such asnegative polarization degree at low energies - have been predicted and experimentally observed [Jacquet 1999,2000].

Finally, we have studied the Ar8+ + Cs(6s and 6p) electron capture collisions. For the first time, we haveinvestigated the influence of alignment in the target excited state, combined with the projectile core electroneffect, while only bare or nearly stripped MCI were considered in the previous investigations. The CTMCresults and the experimental data obtained at GANEL agree to find a very strong core-electron effect at lowenergies [Bazin 2000]. However, CTMC calculations show that the 6p alignment influences only weakly then/-distributions at low energies, as it is also observed experimentally.The work on MCI-atom collisions has proven that the CTMC method is well adapted to predict reliable state-selective electron capture cross-section for various degrees of excitation of the atomic target. This is not onlytrue at high energy but also in the low energy range where the projectile core electron strongly influences thefinal n/m-distribution of the electron captured. Now, in relation with the experimental program at GANIL, wehave started studying the collisions between MCI and molecular targets using the CTMC method, a first stepbeing the modeling of H2

+ et H2 targets in their ground vibrational states. This work is presently in progress.

n-5-h Conclusion - Perspectives

The theoretical work at SPAM and the opacity measurements in collaboration at LULI will be furtherdeveloped in parallel, in order to work out an efficient simulation tool and test bench for future programs onlarge-scale laser facilities. Experiments in the context of the GIAS will continue on the same lines. Thespectroscopy of multi-electron systems has now merged with the physics of dense plasmas, responding to thedemand of an extended theoretical support in this field. At present, the physics of MCI in collision alsosustains the interest of the experimentalists, from both a fundamental and an applied point of view, and will bemaintained.

59

Page 58: Service des Photons, Atomes et Molecules

П-5-i Selected references

Baclet Ph. et al, in "Inertial Fusion Sciences and Applications 99", Labaune C , Hogan W. J., Tanaka K. A.Eds., Elsevier, Paris, p. 1083 (2000).

Bazin V., Boduch P., Chantepie M., Cremer G., Jacquet E., Kucal H., Lecler D., Pascale J. 2000, submittedto Phys. Rev. A (2000).

Bar-Shalom A. et al, Phys. Rev. A 40, 3183 (1989).

Blancard C , Braneau J. , Chocs 22, 75 (1999).

Blenski Th., Grimaldi A., Perrot F., Phys. Rev. E 55, R4889 (1997).

Blenski Th. et al., in "Inertial Fusion Sciences and Applications 99", Labaune C , Hogan W. J., Tanaka K. A.Eds., Elsevier, Paris, p. 1111 (2000a).

Blenski Th., Grimaldi A., Perrot F., J. Quant. Spectrosc. Radiât. Transfer 65, 91 (2000b).

Blenski Th., "Photoabsorption in dense plasmas", Astrophys. J. Suppl. Ser., 127, 275 (2000c).

Chenais-Popovics C , Merdji H., MissaUa T., Gilleron F., Gauthier J. С , Blenski Th., Perrot F., Klapisch M.,Bauche-Arnoult С , Bauche J., Eidmann K., "Opacity Studies on Iron in the 15-30 eV Temperature Range",Astrophys. J. Suppl. Ser., 127, 239 (2000).

Chenais-Popovics C , Gilleron F., Fajardo M., Merdji H., Missalla T., Gauthier J. С , Renaudin P., Gary S.,Perrot F., Blenski Th., Fölsner W., Eidmann К., J. Quant. Spectrosc. Radiât. Transfer, 65, 117 (2000).

Féret L., Pascale J., Phys. Rev. A 55 3585 (1998).

Féret L., thesis, Université Paul-Sabatier, Toulouse November 5, (1999a).

Féret L., Pascale J., J. Phys. В 32 4175 (1999b).

Ishikawa K., Felderhof B. U., Blenski Th., Cichocki В., J. Plasma Phys. 60, 787 (1998).

Jacquet E., Chantepie M., Boduch Ph., Lauhlé C , Lecler D., Pascale J., J. Phys. В 32 1151 (1999).

Jacquet E., Kucal H., Bazin V., Boduch P., Chantepie M., Cremer G., Lauhlé C , Lecler D., Pascale J.,submitted to Phys. Rev. A (2000).

Jaffe S. M., Kachru R., van Linden van den Heuvell H. В., Gallagher T. F., Phys. Rev. A 32,1480 (1985).

Merdji H., Missalla T., Blenski T., Perrot F., Gauthier J.C., Eidmann К., Chenais-Popovics С ,

Phys. Rev. E 57, 1042 (1998).

Poirier M., Semaoune R., J. Phys. В 31,1443 (1998).

Poirier M., Semaoune R., Phys. Rev. A 59, 3471 (1999).

Poirier M., submitted to Phys. Rev. A (2000).

Remington В. A. et al, Science, 284,1488 (1999).

60

Page 59: Service des Photons, Atomes et Molecules

Ill PHYSICAL CHEMISTRY OF MOLECULAR SYSTEMS

III-l General presentation 63

III-2 Photophysics and Photochemistry in the Gaseous Phase.

III-2-aIII-2-b

III-2-cIII-2-dIII-2-eIII-2-fIII-2-gIH-2-hIII-2-i

IntroductionStructure and energetics of hydrogen bonded complexes: application to moleculesof biological interestSolvation of metal ionsPhotoinduced charge transfer in molecular clusters: case of anthraceneReal time dynamics in molecular clusters: the solvation of inorganic saltsOrganic gas phase femtochemistryCluster isolated chemical reactionsConclusions and perspectivesSelected references

III-3 Photo-physical chemistry in the condensed phase

III-3-a IntroductionIII-3-b Solvation dynamics versus geometrical relaxation of molecules in solutionIII-3-c Columnar liquid crystals: model systems for a quantitative description of energy

transport processesIII-3-d Benzene and toluene chemical sensorsIII-3-e Conclusions and perspectivesIII-3-f Selected references

III-4 Nanometric Covalent Systems

III-4-a IntroductionIII-4-b Ceramic nanopowdersIII-4-c Nanocarbons by Laser Pyrolysis

FullerenesSynthetic Aromatic Carbon as cosmic dust model

III-4-d Nano-crystalline component of cosmic dustInfrared emission of diamond grains in circumstellar envelopes.Size effects in the photoluminescence of silicon nano-crystallites andExtended Red Emission

III-4-e Conclusions and perspectivesIII-4-f Selected references

64

6464

65666667676869

71

717172

737374

75

757677

78

8081

61

Page 60: Service des Photons, Atomes et Molecules

III-5 Physical Chemistry with Synchrotron Radiation

III-5-aIII-5-b

IIl-5-cIII-5-dIII-5-eIII-5-fIII-5-g

IntroductionTowards transient absorption spectroscopy of biomimetic systems: a two colorFEL + synchrotron radiation experimentRotational cooling after photoionization probed by Laser Induced HuorescenceDissociation of core excited molecules after resonant excitationBreak down of the Two-step Model in Molecular Normal Auger DecayFuture trendsSelected references

•6 Theoretical chemistry

III-6-aIII-6-b

III-6-c

III-6-dIII-6-e

IntroductionIntermolecular potentialCharge distributionRepulsion-dispersion potential (vapor-liquid equilibria calculation)Calculation and modeling charge transferIon-moleculeClustersMolecular dynamicsResults of standard potentialMatrix isolation of naphthalene moleculeProspectsSelected references

8282

8384858687

88

8888

91

9292

62

Page 61: Service des Photons, Atomes et Molecules

III. PHYSICAL CHEMISTRY OF MOLECULAR SYSTEMS

in. 1. General presentation

The reorganization of SPAM in 1999 was a good opportunity to bring together, in a commonadministrative structure, those researchers, both experimentalists and theoreticians, involved in physicalchemistry, by creating the group "Physical Chemistry of Molecular Systems". At the same time, the team"Photophysical chemistry in condeased phases", consisting of CNRS researchers initially located at theService de Chimie Moleeulaire, joined the group. Within this context, we made a proposal for the creation ofthe "Laboratoire Francis Perrin" (LFP) which will allow us to transform the CEA group into a CEA, CNRSand University Paris XI joint laboratory. The objective of this laboratory will be the study of interaction ofmolecular systems with light (IR, visible, VUV or XUV) at moderate intensities. A whole range of systemswill be; examined: isolated molecules, clusters, solutions, liquid crystals, and nanomaterials.

Although many collaborations already exist among various laboratory teams (especially with thetheoretical chemistry team), the preparation of the LFP proposal gave the occasion of numerous discussionsand pxarnitted the emergence of new synergies. Thus, each project featuring in the LFP proposal involvesmembers of different teams in the group.

The scientific projects of the LFP have been classified into five main topics:• Reaction dynamics. Elementary processes are investigated at various degrees of complexity and time

scales down to picosecond or femtosecond resolution.• Nanometric clusters: size effects and reactivity. Large clusters are studied either as models for

interstellar dusts or as chemical nanoreactors for heterogeneous chemistry.• Photo-physical chemistry of biomimetic systems. Photoinduced processes (energy and charge transfer,

ionization...) occurring in DNA and proteins are investigated on the molecular level, using model systems.Tliis is a new project created within the LFP framework.

• Nanomaterials: synthesis, reactivity and applications. This part groups subjects that are related topotential applications in materials (ceramics, carbon nanomaterials) or pollution control (chemicalsensors).

• Development of theoretical tools. Besides their close connections with the experimentalists, thetheoreticians develop malels aiming at the description of the examined properties on the molecular level.For this presentation of the group activity during the last two years before the creation of LFP, we have

kept to the structure corresponding to the five teams making up the group "Photophysics and Photochemistryin Gas Phase", "Photo-Physical chemistry in condensed phases", "Nanometric Covalent Systems","Synchrotron Radiation Team", and "Theoretical Chemistry". The projects in each part are only summarized,a complete description is available in the LFP proposal.

63

Page 62: Service des Photons, Atomes et Molecules

Ш-2 Photophysics and Photochemistry in the Gaseous Phase.Permanent research and technical staff: I. Dimicoli, P.R. Fournier, M.A. Gaveau, F. Lepetit (from1999), J.M. Mestdagh, M. Mons, P. Pradel (up to 1999), F. Piuzzi, B. Tardivel, J.P. Visücot,PhD students: M. Briant, G. Grégoire, L. PoissonPost-doctoral position: Q. ZhaoCollaborations: С Dedonder-Lardeux, M. Elhanine, С Jouvet, S. Martrenchard, B. Soep, D. Solgadi(Laboratoire de PhotoPhysique Moléculaire, Université Paris XI, Orsay) ; P. Maître (Laboratoire deChimie Physique, Université Paris Paris XI, Orsay)

Ш-2-а Introduction

The research conducted by the team Photophysics and Photochemistry in the Gaseous Phase is twofold. Thefirst efforts are oriented towards the characterization of molecular solvation of molecules of biological interestat the microscopic level. Using the approach of small gas-phase complexes, the aim is to get accurateinformation about the interaction of molecules with their environment, in particular water, the ubiquitoussolvent of the living world. Emphasis has been given to the energetics of these systems, owing to theimportance of these data for biochemistry modeling. The second exploratory step is to elucidate chemicalreaction mechanisms at the molecular level. Hence, the idea is to explore, experimentally, the potential energysurface of the system in order to work out how a reactive system reaches the transition state of the reaction. Itis also aimed at determining which force field is responsible for the atomic movements near the transition state,at the moment when chemical bonds are broken and others are formed. The attention is focused, for thispurpose, on complex chemical reactions and photochemical processes involving many degrees of freedom,both internal (a large reactive system) and external (a reactive system coupled to a finite size solvent: atomicand molecular clusters).

An important aspect of our work is the comparison made between experimental information and theoreticalresults based on potential-energy surface calculations or dynamics calculations. A great deal of theunderstanding of the processes listed below originates from fruitful connections between experiment andtheory.Work performed during the last two years is centered on the following areas:

• Conformational studies of biomimetic molecules and their hydrates by IR spectroscopy• Energetics of hydration of biomimetic molecules• Spectroscopic and collisional properties of metal ions solvated by a finite number of water

molecules• Photoinduced charge transfer reactions in molecular clusters• Femtochemistry of solvated inorganic salts• Gas phase organic femtochemistry• Cluster isolated chemical reactions

Ш-2-b Structure and energetics of hydrogen bonded complexes: application to molecules ofbiological interestV. Brenner, I. Dimicoli, P. Millie, M. Mons, F. Piuzzi, B. Tardivel, Q. Zhao

Hydrogen bonds play a crucial role in molecular recognition in biological systems. They are responsible forsecondary and tertiary protein structures, as well as for their hydration. The possibility of isolatingaminoacides or polypeptides in the gas phase forming complexes with water of controlled size, in a supersonicexpansion, has permitted UV and IR spectroscopic studies [Mons 1999 a] to be performed, thus giving accessto the solvation sites of water as well as to the energetics of the bonding of a water molecule to molecules ofbiological interest. The latter energetic data are essential for comparison with the modeling of such systems.Following an original experimental idea, the two binding sites of water in the side chain of tryptophan,modeled by an indole molecule have been studied (Figure 1): the major site corresponds to the conventionalNH~OH2 hydrogen bond and the secondary site to the so-called я-type hydrogen bond, in which the hydrogenatoms interact with the n aromatic ring of indole [Mons 1999 b].

64

Page 63: Service des Photons, Atomes et Molecules

Figure 1

The structure of these two complexation sites as well as the potential energy surface have been obtained usinga semiempirical model coupled with efficient procedures for the exploration of the surface. The H-bondedcomplex was synthesized in a supersonic expansion and its binding energy (4.84 ± 0.23 kcal/mol) wasmeasured using a two-color laser photofragmentation technique, already successfully applied to the hydrationof benzene and phenol [County 1998 a, b]. The non-standard H-bonded complex, not observed with indole,was observed with 1-methyl indole, a substituted indole, in which the formation of the conventional hydrogenbond is hindered. Its binding energy, measured with a similar accuracy (4.10 ± 0.14 kcal/mol), was used as afair estimate of the binding energy of the 7c-type complex of indole-water, as suggested by our calculations.The small difference in binding energy between the two gas-phase complexes suggests that, althoughtraditionally considered as a highly hydrophobic residue, the side chain of tryptophan is not only able toestablish a H-bond with a proton acceptor but can also exhibit significant non-standard interactions with anaqueous environment.

Meanwhile, a novel desorption device coupled with a supersonic expansion which allows us to vaporizethermally fragile molecules hats been developed in the laboratory, therefore enabling us to study biomolecules[Piuzzi 2000]. The first results on a DNA base are very promising. A vay well resolved vibronic spectrum ofguanine and its complexes with water has been obtained by laser induced fluorescence and mass resolved one-color resonant two-photon ionization indicating the presence of different electronic states and severalconformers.

III-2-c Solvation of metal ionsF. Lepetit, J.M. Mestdagh, L. Poisson, J.P. VisticotCollaboration: P. Maitre

Gas phase chemistry of ligated metal ions attracts a lot of interest since it has been realized that ligandsattached to the ion, by changing the electronic properties of the ion, also change its chemical properties. Thiscreates the possibility of making ligated ion chemistry more selective than that of bare ions [Dukan-Capron1998]. Ligated ions, especially those of general formula M(H20)n

+, are also attractive because of their role inpollutant chemistry (cleaning of nuclear waste in particular). We shall develop this point in the prospectivesection ni-2-h.First of all, our work has been to adapt an existing apparatus to experiments in which we can measure reactioncross sections in low energy collisions. We developed a new experimental technique for this purpose, whichallows us to have a time-of-flight mass spectrometer in tandem with a reflectron, and the low-energy collisioncell in between, without dramatic losses in the energy and mass resolution of the system [Sublemontier 2000].We have focused our attention on the Fe(H2O)n

+ and Co(H2O)n+ ions, with the originality that n is large enough

to go beyond the first solvation shell. Cross sections of collisional fragmentation of these ions by different raregases have been measured. They indicate that chains of water molecules are attached to the metal ion, evenwhen n is as small as n=3. This was unexpected since theoretical calculations by Bauschlicher et al[Bauschlicher 1991] suggested that up to four water molecules could be directly attached to the metal ion.Theoretical calculations, partly done by P. Maitre from the Laboratoire de Chimie Physique d'Orsay, are inprogress to account for these results.

65

Page 64: Service des Photons, Atomes et Molecules

m-2-d Photoinduced charge transfer in molecular clusters: case of anthraceneV. Brenner, I. Dimicoli, P. Millie, M. Mons, F. Piuzzi, B. Tardivel, Q. Zhao

Charge transfer plays an important role in many chemical and biological systems. The molecular systemsideally suited for a detailed study of electron or proton process are van der Waals dimers and higher clusters ofaromatic hydrocarbons generated by free jet expansion [Martrenchard-Barra 1998, Martrenchard-Barra1999]. The observation of excimer emission or/and enhanced ionization efficiency is the signature of electrontransfer between the locally excited state and the excimer state of these species. Important additionalinformation can be obtained when configurational isomers are present since structural differences can inducestrong changes in dynamics. Excimer emission has been previously reported in the case of benzene,naphthalene, and anthracene and tentatively assigned to the dimer species in absence of selective diagnostics.We have interrogated the anthracene clusters up to n = 6 by a complete set of experimental diagnoses basedupon mass-selective resonance enhanced two-photon ionization and laser induced fluorescence as well astheoretical modeling. We were able to provide a complete assignment of the spectral features which rests onseveral independent sources of information: the electronic spectral shifts and linewidths obtained by ionizationand fluorescence, hole-burning spectra, time-decay measurements, time-resolved ionization [Piuzzi 1998,Uridat 1998]. All anthracene clusters are characterized by a fast electron transfer (kET > 1012 s"1). The effect ofclustering (homosolvation effect) has been demonstrated by measuring, for each cluster size, the spectral shiftsbetween the origin transition of the species and that of the bare anthracene molecule. The shifts were found tobe additive until n = 3 and to saturate for n = 5 and 6. Surprisingly, the trimer species is very different fromthe other species since two isomeric forms have been brought to light. One exhibits a structured absorptionspectrum with extinction of the excimer emission above a vibrational energy of 400 cm'1 while the otherisomeric species exhibits a broad unstructured absorption spectrum and is characterized by the absence ofelectron transfer or radiative relaxation. The absence of excimer emission for higher vibrational levels for thetrimer is very intriguing since it is the first species that presents this kind of behavior, amongst all thoseinvestigated in our electron transfer studies in both hetero and homo anthracene clusters [Tramer 1998 a, b].The nature of the fast non radiative relaxation process which quenches so efficiently the electron transfer forboth isomers can be tentatively assigned to an inter system crossing process. The absence of such a process forthe other anthracene clusters should be ascribed to differences in the relative positions of the singlet and tripletmanifolds. Modeling studies enabled us to derive the configurations of the minima of the potential energysurface for dimer to tetramer species. In particular, in the trimer case one of the minima exhibits a triangularstructure in which the three molecules are equivalent.

In conclusion, it has been established that electron transfer is a very efficient relaxation process inphotoexcited molecular clusters composed of large-size molecules such as anthracene and that this process isstrongly structure dependent.

DI-2-e Real-time dynamics in molecular clusters: the solvation of inorganic saltsV. Brenner, G. Gregoire, I. Dimicoli, P. Millie, M. Mons, F. Piuzzi,Collaborations: C. Dedonder-Lardeux, C. Jouvet, S. Martrenchard, D. Solgadi

The dissociation of a salt AB in an ion pair A+ + B' is probably the most simple but also the most spectaculareffect been brought to light when studying molecular solvation. We have undertaken the study of chargeseparation in clusters of Nal with polar molecules, namely water, ammonia and acetonitrile, by severalmethods, either experimentally (electronic and time-resolved spectroscopy), or theoretically [Gr6goire 1998a,b]. The electronic structure of the solvated Nal was first investigated on a femtosecond time scale by use of apump-probe ionization technique [Gr6goire 1998 c]. The charge separation was found to be strongly solvent-selective, reflecting different properties of the Na+1" ion pair according to the nature of the solvent. Chargeseparation seems to be achieved within a cluster of ten ammonia or seven acetonitrile molecules, whereas noevidence of ion-pair separation was found with water, even for clusters containing more than 50 watermolecules. This result has been interpreted in terms of different cluster structures: Nal is embedded in thevolume of an ammonia or acetonitrile cluster but sits on the surface of the water cluster, the iodine anion,being poorly solvated, drags the sodium cation outside the cluster.

A theoretical study on the binding energies and structures of the ground state Nal (CH3CN)n=i.9 clusters hasshown that the potential energy surfaces exhibit two types of structures depending on the size of the cluster[Gregoire 2000a]. For clusters containing up to eight acetonitrile molecules, Nal is sitting on the surface of the

66

Page 65: Service des Photons, Atomes et Molecules

cluster with the Na+ and I" ions in contact. For nine acetonitrile molecules, a solvent-separated ion-pairstructure becomes energetically more favorable, emphasizing the beginning of the charge-separation reaction,in good agreement with the experimental results.Femtosecond pump-probe ionization experiments on Nal-Sn (S=NH3, H2O) clusters have underlined thedifferent structure of the clusters according to the different solvent molecules [Gr6goire 1998b, 2000b]. Twodifferent physical processes at different time scales have been measured: several hundreds of femtosecond forbreaking the Nal bond and several tens of picoseconds for thermalization and evaporation of solventmolecules.In conclusion, the present femtosecond ionization results on solvation dynamics at short times have opened alarge original research field [Gr6goire 1998 d]. In particular, temperature effect on solvation can beinvestigated by controlled heating of the clusters using an IR laser light in a series of salts (Csl for example) ororganic molecules with different polar solvents.

lH-2-f Organic gas phase femtochemistryJ.M. Mestdagh,, J.P. VisticotCollaboration: M. Elhanine, B. Soep

We have sought the possibility of an additional activity in real time dynamics. It concerns the prereactivebehavior of electronically excited organic molecules [Mestdagh 2000]. As in the previous section, theexperiments are conducted using the femtosecond LUCA facility of the DRECAM, and make use of the pump-probe technique. This secondary line of research finds its motivation in the growing interest that organicfemtochemistry has attracted over the last ten years. The aim is to unravel the most important steps of areaction, not only by recording transient populations during a reaction, but also by analyzing the atommovements in the course of a reaction. Our recent studies in this direction concern the photochemistry ofalkene molecules. After excitation of the TITZ transition, which is localized on the C=C double bond, themolecules undergo important deformations before decaying to the electronic ground state and dissociating. Ourwork has shown the complexity of this decay. It involves at least two conical intersections and the passagethrough an intermediate electronic state. This result seems important since the idea which prevailed ondynamics in an excited state was essentially mono-dimensional and suggested that only the torsion about theC=C bond was important. From our work, it turns out that the real behavior of these molecules is definitelymulti-dimensional, a fact that must be taken into account in any further realistic description of these processes.

m-2-g Cluster isolated chemical reactionsM. Briant, P.R. Foamier, M.A. Gaveau, J.M. Mestdagh, J.P. Visticot

The point of this research is the isolation of a single pair of reagents (or a known number of reagents) on alarge finite size cluster formed of hundreds or thousands of rare gas atoms. The aim is then to observe thecollisional and reactive behavior of the reagents at the surface of the cluster. This field was created in ourlaboratory and is named CICR, for Cluster /solated Chemical .Reactions. It is now used by M.C. Castex of theParis-Nord University in collaboration with Prof. Moller (Germany) to study charge transfer reactions[Museur 1999]. Several groups are also active in CICR-like fields, notably those of Scoles in the USA andToennies in Germany, but their interest is directed towards spectroscopy rather than reaction dynamics[Higgins 1998, Grebenev 2000].CICR experiments consist in generating a beam of large van der Waals clusters by a supersonic expansion.Collisional pick-up is used to deposit reagents on the clusters, afterwards the reagent carrying clusters arefreed from further collisions, either with a foreign gas or other clusters. The only interactions are thosebetween the reagents and the cluster itself. In this sense, a CICR experiment is much simpler than experimentsperformed in micellar solutions since no migration from one cluster to the other is possible. There is noequivalent to the micelle-micelle migration complications in CICR experiments.We refer to our recent work showing that 2-D chemical thermodynamics and reaction kinetics can beformulated to account for association reactions on clusters [Briant 2000]. Even more interesting is theBa+N2() reaction, revisited on neon clusters [Gaveau 2000]. As shown in our previous works on argon cluster,the reaction product is either ejected out of the cluster as a hot molecule, or stays solvated within the cluster

67

Page 66: Service des Photons, Atomes et Molecules

environment and is rapidly cooled. The interesting new point in neon clusters is that, within the 5JLLS followingthe reaction, the product BaO still conserves some vibrational excitation and is only weakly bound to thecluster surface. In contrast, within 80 us, it is cooled to ground vibrational level, although still in theelectronically metastable a3l level. Very interestingly, however, two different locations are then observed: onewith BaO deeply embedded into the cluster surface and one with BaO in the interior of the cluster. This isillustrated in Figure 2,

In the 1st jis after reaction

600 700Wrvelength (nm]

Figure 2: scheme of the reaction at the surface of a neon cluster. Just after the reaction, the solvated BaO productis at the surface partly relaxed (chemiluminescent spectrum in the upper part). After 80 /is, the product isvibrationally cold (lower spectrum), partly (narrow hands) or totally (broad bands) embedded in the cluster.

ni-2-h Conclusions and perspectives

The next prospects of molecular studies are definitely oriented towards biosystems. The development of ouroriginal vaporization technique is a primary breakthrough which opens up the possibility towards structuraland dynamical studies on true biological molecules and not only biomimetic systems. Secondly, the energeticsof the interactions of biomolecules with their environment is one of the most difficult data to obtain, although itis essential for assessment of intermoleeular potentials and biomodeling.• Structural studies of hydrates of biomolecules by IR spectroscopy. This technique combined with ab

initio calculations turns out to be a very effective way of characterizing the hydration sites of thesemolecules. Complexes of guanine with water will be studied by IR-UV hole-burning spectroscopy and theIR spectra will be interpreted with the help of ab initio calculations, performed in collaboration with theteam of Theoretical Chemistry.

• Energetics of hydrogen bonding in complexes of biomolecules. This technique will be used in the nearfuture to measure the hydration energetics of other molecules of biological interest, in particular that ofN-phenyl formamide, which mimics the peptidic bond. This work will be done in Saclay, in collaborationwith Prof. Simons' group (Oxford, UK). Using the same methodology, the issue of chiral recognition willalso be addressed. It has been recently established that the enantiomeric heterocomplexes of chiralmolecules can be distinguished by UV spectroscopy [Le Barbu 1998]. A further step would be to quantifythe difference in binding energy for the diastereoisomeric solute-solvent complexes (R-R, S-S vs. R-R, S-R). This will be attempted using our technique on two enantiomeric heterodimers previously studied byUV spectroscopy, in collaboration with the group of F. Lahmani (Laboratoire de PhotophysiqueMoleculaire, Orsay).

• Femtosecond dynamics of DNA bases relaxation. The DNA bases are characterized by the quasiabsence of radiative relaxation. This could be ascribed to the occurrence of an efficient intersystemcrossing process. This also explains the difficulties encountered in ionizing these bases by two-photonresonant enhanced ionization using nanosecond laser pulses. Picosecond or femtosecond pump probeexperiments are necessary to get insight into the time domain of the energy transfer.

68

Page 67: Service des Photons, Atomes et Molecules

Short-term projects in Cluster Isolated Chemical Reaction concerns reaction processes, which arephotoinduced on the cluster. Until now, only spontaneous chemical reactions were observed on the cluster.This does not allow for the degree of control necessary to indicate which aspect of the reaction dynamics ismost dramatically affected by the presence of the cluster. We aim to focus our attention on the photoinducedreaction of Ca with HBr in a Ca...HBr complex deposited on large argon clusters. This reaction has beenstudied largely in free Ca.. .HBr complexes and, by comparison, the effects of the cluster supporting the CICRreaction can be studied. In particular, we expect movements of the H-atom, which are favorable for thereaction in the free Ca...HBr complex, to be blocked by the argon cluster, thus changing the dynamics of thereaction dramatically.Another close idea that we wish to develop is the one relative to collisional properties of solvated metal ions.Approaches in theoretical chemistry are obviously more complicated when the metal ion is heavier. However,there is a lot of interest in this subject. Defining strategies for the treatment of nuclear waste often requiresmodels to describe the solvation of transuranian ions. An important property of these ions, possibly the mostimportant one with regard to their chemistry, is their ability to establish substantial charge transfers withsolvent molecules. As a result, the ion-solvent bond is not purely electrostatic. Without working with suchheavy ions, it is still possible to contribute to modeling such charge transfer situations. Singly charged cationsof metal having a large ionization potential like gold are good candidates. An experimental program has begunin this direction, in close relationship with a theoretical chemistry project of Ph. Millie" and J.P. Dognon.Longer-term projects consist of attempts to develop a universal detection source, adapted to real-time studiesof chemical reactions. The example above, relative to organic femtochemistry, has shown the advantages of areal-time experiment to bring in light the evolution of a system from reagents to products on amultidimensional potential energy surface. No existing experiment can yet claim the benefit of an universaldetector, which allows to determine which forces are active during a reaction. We aim to explore twodirections to develop such a tool:

• Photoelectron spectroscopy. Forces are not directly accessible to experiment, however they find theirorigin into substantial changes in the electron cloud of the reacting system. Therefore, changes inphotoelectron spectra app>ear as sensitive probes of the apparition of intramolecular forces. With the hopethat such changes are sudden in some cases, it should be possible to monitor the apparition and the timeevolution of the forces by just monitoring photoelectron spectra in a femtochemistry experiment. Inpractice, this should be achieved in an imaging experiment of photoelectron spectra. To further thesestudies a collaboration has started with D. Parker (U. Nijmegen in Netherland).

• Harmonic generation in femtochemistry. The idea is to do pump-probe experiments as in standardfemtochemistry experiments, but using the femtosecond VUV harmonic source developed at SPAM tomake a one photon ionization of the reaction products. As in the previous project, photoelectronspectroscopy will be the detection tool. A substantial simplification in the interpretation of thephotoelectron spectra is expected here as compared to multiphoton ionization.

IEE-2-i Selected references

Bauschlicher, Jr. C.W., Langhoff S.R., Partridge H., /. Chem. Phys. 94, 2068 (1991).

Briant M., Gaveau M.-A, Mestdagh J.-M, Visticot J.-P., J. Chem. Phys. 112,1744 (2000).

Courty A, Mons M, Dimicoli I., Piuzzi R, Brenner V., Millie'Ph., J. Phys. Chem. A 102, 4890 (1998a).

Courty A., Mons M., Dimicoli I., Piuzzi F., Gaigeot M.P., Brenner V., de Pujo P., Milli6 Ph., J. Phys. Chem.A, 102, 6590 (1998b).

Dukan-CapronL., Mestdagh H.( Rolando C , Coord. Chem. Rev. 178-180, 269 (1998).

Gaveau M.-A., Briant M., Fournier P.-R., Mestdagh J.-M., Visticot J.-P., Phys. Chem. Chem. Phys. 2, 831(2000).

Grebenev S., Hartmann M., Havenith M., Sartakov B., Toennies J.P., Vilesov A , J. Chem. Phys. 112, 4485(2000).

Gregoire G., Mons M., Dedonder-Lardeux C , Jouvet C , Euro. Phys. J. D. 1, 5 (1998a).

69

Page 68: Service des Photons, Atomes et Molecules

Grégoire G., Mons M., Dimicoli L, Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D., J.Chern. Phys. 110, 1521 (1998b).

Grégoire G., Mons M., Dimicoli L, F. Piuzzi F.,Charron E., Dedonder-Lardeux C , Jouvet C , Martrenchard -Barra S., Solgadi D., Suzor-Weiner A., Euro.Phys. J. D 1, 187 (1998c).

Grégoire G., Dimicoli L, Mons M., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D., J.Phys, Chem. A 102, 7896 (1998d).

Grégoire G., Brenner V., Millie Ph., J. Phys. Chem A. 104, 5204 (2000a).

Grégoire G., Mons M.. Dimicoli I., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D., /.Chem. Phys. 112, 8794 (2000b).

Higgins J., Callegari C , Reho J., Stienkemeier F., Ernst W.E., Gutowski M., Scoles G., J. Phys. Chem. A,102, 4952 (1998).

Le Barbu K., Brenner V., Millié Ph., Lahmani F., Zehnacker-Rentien A., J. Phys. Chem. A 102, 128 (1998).

Martrenchard-Barra S., Dedonder-Lardeux C , Dimicoli L, Grégoire G., Jouvet С , Solgadi D., Chem. Phys. A239, 331 (1998).

Martrenchard-Barra S., Dedonder-Lardeux C , Jouvet C , Solgadi D., Vervloet M., Grégoire G., Dimicoli I.,Chem. Phys.Lett. 310,173 (1999).

Mestdagh J.M., Visticot J.P., Elhanine M., Soep В., /. Chem. Phys. 113, 237 (2000).

Museur L., Kanaev A.V., Castex M.C., Moussavizadeh L., von Pietrowski R., Möller T., Eur. Phys. J. D 7,73 (1999).

Mons M., Robertson E;G., SnoekL.C, Simons J.P., Chem. Phys. Lett. 310, 423 (1999a).

Mons M., Dimicoli I., Piuzzi F., Tardivel В., Brenner,V., Millie P., J. Phys. Chem. A, 103, 9958 (1999b).

Piuzzi F., Uridat D., Dimicoli L, Mons M., Tramer A., Le Barbu К., Lahmani F., Zehnacker-Rentien A., ActaPhys. Pol. A95, 121 (1998).

Piuzzi F., Dimicoli I., Mons M., Tardivel В., Zhao Q. , Chem. Phys. Lett., 320, 282 (2000).

Sublemontier O., Poisson L., Pradel P., Mestdagh J.-M., Visticot J.-P., J. Am. Soc. Mass Spectrom. 11, 160(2000).

Tramer A., Brenner V., Milbe Ph., Piuzzi F., J. Phys. Chem. A, 102, 2798 (1998).

Tramer A., Brenner V., Millie Ph., Piuzzi F., J. Phys. Chem. A, 102, 2808 (1998).

Uridat D., Brenner V., Dimicoli I., Le Calvé J., Millié Ph., Mons M., Piuzzi F., Chem. Phys. 239,151 (1998).

70

Page 69: Service des Photons, Atomes et Molecules

Ш-3 F'hoto-physical chemistry in the condensed phasePermanent research and technical staff: T. Gustavsson, S. Marguet, D. Markovitsi, T.-H. Tran-ThiPhD students: J. Bondkowski, M.-L. Calvo-Muñoz, A. WlosikPost-doctoral positions, A. Sharonov, M. SchwellCollaborations: P. Argyrakis, L. Gallos (University of Thessaloniki, Greece), A. Ayral, A. El-Mansouri (ENSCM, Montpellier), J.P. Bourgoin. J.C. Mialocq, S. Pommeret (DRECAM/SCM), V.Gulbinas, S. Jursenas (Institut of Physics, Vilnius, Lithuania), S. Kumar (Center for Liquid CrystalResearch, Bangalore, India), H. Ringsdorf (University of Mainz, Germany), С Roux (Université deParis 6), M. Veber (Laboratoire de Physique des Solides, Université Paris XI, Orsay)

Ш-3-а Introduction

The activities concerning photophysical chemistry in the condensed phase can be differentiated into three mainsubjects.The first one concerns the investigation of ultrafast relaxation processes of large molecules in solution. To thisend, we have in the past few years dedicated a major effort to the development of a highly efficient andversatile fluorescence up-conversion spectrometer (resolution 100 fs). This setup has enabled us to study therole of ultrafast hydrogen bond breaking and making in solvation dynamics [Gustavsson 1998], ultrafastinternal conversion in ZnTPP porphyrin by monitoring the S2 fluorescence lifetime (2.35 ps) [Gurzadyan1998] and nonradiative excited-state relaxation via charge-transfer-induced twisting of N,N-dimethylaminobenzylidene-l,3-indandione(DMABI) [Gulbinas 1999].A second subject is centered on the photoprocesses in organized molecular systems. On the one hand, we haveworked with dimers formed in solutions by triarylpyrylium salts and we have shown that it is possible tocharacterize the dynamics of the monomer/dimer equilibrium using time-resolved absorption spectroscopy[Lampre 1998]. On the other hand, we have been interested in triphenylene columnar phases which we used asmodel systems for the study of excitation transport (§111-3-0) and the influence of structural disorder in thephotophysical properties [Marguet 1998].The third subject aims at the elaboration of chemical sensors for air pollutants and relies on our knowledge ofthe photochemical properties of organic dyes and reactivity in confined media.

Ш-3-b Solvation dynamics versus geometrical relaxation of molecules in solutionT. Gustavsson, D. MarkovitsiCollaborations: V. Gulbinas

550 600 650

Wavelength, nm

Figure 3 (a) The studied triarylpyrylium tetrafluoroborates; Ры+: R = R' = CH3, R" = H, PU12*: R = CH3,

R' = CnHzs, R" - H, Pn.n: R = R' = C12H2S, R" = H, Pj.12a2.12*' R= CH3, R'=R"= CI2H25(b) Correctedtime-resolved fluorescence spectra ofPj.i2

+ in hexanol; Xe*=394nm.

71

Page 70: Service des Photons, Atomes et Molecules

A subject of wide interest, both from a theoretical and an experimental point of view is to what extent thesolvent controls intramolecular relaxation processes such as internal conversion and conformational changes.Multi-dimensional reaction paths have been proposed in the literature but the question of how the solvent andthe solute dynamics are coupled with each other remains unanswered.The triarylpyrylium salts shown in Figure 3 are good candidates for studies aiming to elucidate this question.Previously, quantum chemistry calculations predicted the formation of a TICT (twisted intramolecular chargetransfer state) state in the gas phase without an energy barrier [Markovitsi 1994], but the nature of this stateas well as its dynamics in solution remained badly characterized.We have recently performed an investigation of the excited state relaxation dynamics of four triarylpyryliumcations, differing in the number of dodecyl chains attached to the chromophore [Gulbinas 2000]. Combiningthese new results with the existing knowledge we are now able to refine the understanding of the fundamentalprocesses responsible for the rapid non-radiative decay.In particular, the dependence on solvent viscosity has been examined and the results are rationalized in termsof excited and ground state relaxation dynamics. The fastest process is the dynamic fluorescence shift, whichis related to solvent relaxation. The fluorescence intensity decay is slower and can be attributed to moleculartwisting. Interestingly, it seems that these two processes occur more or less independently.The geometrical relaxation reduces fluorescence oscillator strength, but enhances the non-radiative So <— Siinternal conversion rate. Molecular back-twisting combined with vibrational relaxation in the ground state isshown to be the last and slowest process of the reaction.

HI-3-c Columnar liquid crystals: model systems for a quantitative description of energytransport processes/ . Bondkowski, S. Marguet, D. MarkovitsiCollaborations: P. Argyrakis, L. Gallos, S. Kumar, H. Ringsdorf

Sunlight may be beneficial or harmful to life. While it allows plants to grow, it also causes skin cancer due tooverexposure. The molecular processes behind photosynthesis and carcinogenic DNA photo-damage are quitesimilar. A molecule absorbing light energy becomes excited and can undergo chemical reactions. Thesereactions are much more efficient if the reacting molecules are "assisted" by many other molecules that collectand transmit energy to their neighbors until it arrives at the site of a chemical reaction—much as rugby playerspass the ball along until it crosses the goal line. Using columnar liquid crystals as model systems we obtaineda better insight into the molecular level of energy transport properties.

Figure 4. Columnar liquid crystals are characterizedby a highly anisotropic structure, convenient for themodeling of energy transport. They are usuallyformed by molecules containing a flat and rigid,disk-like core, surrounded by flexible tails. Theirstructure corresponds to stacks of disks formingcolumns. In the present study the stacking distance is3.6A and the intercolumnar distance 21A

First, we tried to understand the mechanism responsible for energy transfer from one molecule to another. Thedriving force for energy transfer consists of two types of interactions: interactions due to orbital overlap, andelectrostatic interactions. With the first type of interaction, molecules exchange energy only if they are veryclose to or nearly touching one another, while electrostatic interactions are active at relatively greaterdistances. Until now, only one or the other type of interaction was taken into account in energy transferstudies. We determined the respective strength of each type of interaction and we have shown that they can actsimultaneously when energy is transferred in the singlet state [Markovitsi 1999]. In this case, just after light isabsorbed, some 100 molecules in the same column exchange energy every lps. The transfer of energy towardsneighboring columns will begin only after 1,000 such exchanges have taken place. If the energy is transferredin the triplet state, the exchange time rate is again a few picoseconds but the energy remains in the samecolumn and the migration length is limited by structural defects [Bondkowski 2000].

72

Page 71: Service des Photons, Atomes et Molecules

III-3-d Benzene and toluene chemical sensorsM.-L. Calvo-Munoz, T.-H. Tran-Thi, A. WlosikCollaborations: A. Ayral, J.-P. Bourgoin, A. El-Mansouri, C. Roux

Monocyclic Aromatic Hydrocarbons (MAHs) are organic air contaminants emitted into the atmosphere byautomobile exhaust or by storage, transfer and handling of fuel. The greatest health risk from exposure toMAHs is due to benzene which is carcinogenic [INRS 1992], though toluene is believed to be neurotoxic[INRS 1991]. Following the framework CE directive of 1996, the new daughter directive on benzene hasstrengthened the limit value of benzene in the atmosphere to 5 |ig/m3 (1.5 ppb) [OJEC 1999]. Samplingbenzene in the urban atmosphere and probing its impact on exposed populations will soon become a priority.The economical impact expected in the future has prompted many laboratories to work on benzene sensors.These sensors make use of opened cavitands [Schierbaum 1994; Dickert 1995] and organic [Leray 1996] orinorganic [Barnard 1991] polymers doped with probe molecules to trap the pollutants. The best performance,27.5 ppm and a response time of -60 sec is however far from that required.Taking into account the problems encountered by these authors (trapping-detrapping equilibrium, swelling ofthe polymer host matrix, large variation of the response time), we decided to follow another route. We focuson porous materials based on inorganic and organic/inorganic hybrid polymers, obtained via the sol-gelprocess. They display the required porosity and rigidity. The pore size of these cage-like materials can bemonitored by changing the polymerization parameters and the polarity of the host cavity can be tailored to trapnon-polar pollutants. In particular, we used hybrid systems of tetramethoxysilane (TMOS) andrnethyltrimethoxysilane (MeTMOS) to decrease the polarity of the cavities. Figure 5 shows the distribution ofthe pore radius, determined from adsorption and desorption isotherms, as a function of the ratio of theprecursors (TMOS/MeTMOS) and the nature of the material (monolith or thin film). Increasing the MeTMOScomponent induces two additive effects favorable for benzene and toluene trapping: the pore polarity decreasesand the pore radius distribution shifts to higher values [Calvo-Munoz 2000a].

0 TMOS thin film*:TMOS monolith

TMOS/MeTMOS 7/3

4 6 8Pore Radius (A)

Figure 5: Pore radius distribution of monolithes

1.0

s "n> 0.6•e

Jo.402

0.0

0.02

0.01

(1 20

J^9

* - *

40

TMOS/MeTMOS4/1 thin film

0 500 1000 1500 2000

benzene concentration / ppm

Figure 6: Calibration curve for benzene

The performance obtained for benzene with a thin film (500 run) of TMOS/MeTMOS 4/1 is 10 ppm(Figure €) and a response time of 60 sec: [Calvo-Munoz 2000b], a record as compared to the literature data.This sensitivity can be further improved by increasing the film thickness and by incorporating fluorescingprobes which can interact with the pollutants.

ID-3-e Conclusions and perspectives

During the past years we developed techniques and methodologies for the study of ultrafast processesof molecules in solution on the one hand, and the investigation of transport properties in organized molecularsystems on the other. In the future we intend to use this expertise for the benefit of a new project aimed atunderstanding, on the molecular level, photoprocesses (electron and proton transfer, excitation transport...) indouble-stranded polynucleotides. In order to elucidate the mechanism of the proton transfer, a study of thisprocess involving simpler molecules will be carried out. We will also complete the work, in progress,concerning the spectroscopic characterization of charge transport in columnar phases. With regard to the

73

Page 72: Service des Photons, Atomes et Molecules

applied aspects, tailoring the size and polarity of the pores of hybrid organic-inorganic polymers andoptimizing the interaction of the pollutant with fluorescing probe molecules will remain our priority with theobjective of elaborating cheap, sensitive and selective gas sensors.

lH-3-f Selected references

Barnard S.M.. Walt D.R. Environ. Sci. Technol. 25,1301(1991).

Bondkowski J., PhD thesis, University Paris XI. France, (2000).

Calvo-Murioz M.L., Tran-Thi T.H., Roux C, Bougoin J.P., Ayral A., El-Mansouri A., PRA proceedings(2000a) (in press).

Calvo-Mufioz M.L., Tran-Thi T.H., Roux C , Air Pollution, (2000b) (in press).

Dickert F.L., Reif M, Fresenius J. Anal. Chem., 352, 620 (1995).

Gulbinas V., Kodis G., Jursenas S., Valkunas L., Gruodis A., Mialocq J.C., Pommeret S.,Gustavsson T., J. Phys. Chem. A 103, 3969 (1999).

Gulbinas V., Markovitsi D., Gustavsson T., Karpicz R., Veber M., J. Phys. Chem. A 104, 5181 (2000).

Gurzadyan G., Tran-Thi T.-H., Gustavsson T., /. Chem. Phys. 108, 385 (1998).

Gustavsson T., Cassara L., Gulbinas V., Gurzadyan G., Mialocq J.C., Pommeret S., Sorgius M., van derMeulen P., J. Phys. Chem. A 102, 4229 (1998).

INRS Fiche Toxicologique N°49 (1992).

INRS Fiche Toxicologique N°74 (1991).

Lai C.S.I., Moody G.J., Thomas J.D.R., Mulligan D.C., Stoddart J.F., Zarzycki R., /. Chem. Soc. PerkinTrans. II, 319(1988).

Lampre I., Markovitsi D., Sharonov A., Veber M., Chem. Phys. Lett., 293, 423 (1998).

Leray I., PhD thesis, Ecole Normale Superieure de Cachan, France, (1996).

Marguet S., Markovitsi D., Millie P., Sigal H., Kumar S., J. Phys. Chem. B. 102, 4697 (1998).

Markovitsi D, Sigal H., Ecoffet C , Millie" P., Charra F., Fiorini C , Nunzi J.M., Strzelecka H., Veber M.,Jallabert C , Chem. Phys. 182, 69 (1994).

Markovitsi D., Marguet S., Gallos L., Sigal H., Millie" P., Argyrakis P., Ringsdorf H., Kumar S., Chem. Phys.Lett. 306, 163 (1999).

OJEC (Official Journal of the European Communities)(l999/C 53/07).

Schierbaum K.D., Gerlach A., Gopel W., Muller W.M., Vogtle F., Dominik A., Roth, H.J., Fresenius J.Anal. Chem. 349, 372 (1994).

74

Page 73: Service des Photons, Atomes et Molecules

Ш-4 Nanometric Covalent Systems

Permanent research and technical staff: X. Armand, M. Cauchetier (up to 1999), O. Guillois, N. Herlin-Boime, M. Mayne (from 2000), D. Porterat, С. ReynaudPhD students: A. Galvez, L. Henckes. G. Ledoux, S. Sidis-PetcuPost-doctoral positions: M. Mayne, F. TénégalCollaborations: D. Bahloul-Hourlier. B. Doucey, P. Goursat (Laboratoire de Science des ProcédésCéramiques et Traitements de Surfaces, Université de Limoges), European Network 'Nanomat: Nanopowderspreparation and processing', J. Bill, A. Müller (Max Planck Institute, Stuttgart), R. Alexandrescu, I. Voicu(National Institute for Lasers, Plasma and Radiation Physics, Bucarest, Roumania), J. N. Rouzaud, C. Clinard(Centre de Recherche sur la Matière Divisée, Orléans), V. Paillard (Laboratoire de Physique des Solides,Toulouse), F. Huisken (Max Planck Institute für Strömungsforschung, Göttingen, Germany).

Ш-4-а Introduction

The research theme adopted by our team "Laser powders and Interstellar Dust" is chemical physics ofnanosized covalent particles. We are particularly involved in the synthesis and properties of very small siliconand/or carbon based particles, with sizes in the 2-100 ran range. Our objective is to contribute into tworesearch fields apparently very different: material science and astrophysics. In fact, in both cases, similarproblems arise, which can be solved by a similar approach. In the material field, silicon and/or carbon basednanoparticles of well-controlled sizes and properties are very attractive for the development of nanostructuredmaterials. In astrophysics, carbon and silicon are the main elements found in cosmic dust, but thedetermination of the true nature of this dust is still an enigma, particularly for the very small grains componentwhere confinement effects are expected. This determination has to be made through the reproduction of thespectroscopic data available from the astronomers. Thus, the synthesis of silicon and/or carbon-basednanoparticles and the study of their chemical and physical properties (especially optical properties inastrophysics) is the fundamental interest of our laboratory.A major part of our activity is taken up by the development of Infrared CO2 Laser Pyrolysis as a method ofnanoparticle synthesis. This prccess is based on the interaction of an IR laser beam with a gas flow containinga molecular species absorbing the IR radiation. The temperature in the interaction zone increases quickly, thereactants decompose, a flame appears and particles nucleate and grow rapidly. This process is versatilebecause physical and chemical parameters can be easily varied and controlled. The very small particle size andthe nearly monodisperse size distribution is essentially due to the short and constant residence time in thereaction zone. The well-defined interaction zone forms a wall-less reactor and allows the formation of verypure powders. By acting on the chemical composition of the precursors mixture, we have been able to formsilicon or carbon nanopowders or SiC(N) composite nanopowders doped either with В or with Al and/or Y. Anoriginality of our set-up is that we are able to use both gaseous precursors and liquid precursors thanks to anaerosol introduction device.The properties of the as-formed powders are characterized by different methods in order to correlate theirchemical and physical properties to their synthesis conditions. We are particularly interested in theirmorphological and structural features (shape, agglomeration, size distribution, multistage organization,crystalline order) and in their optical properties (absorption from the UV to the IR, photoluminescence). Forthe SiCN composite nanopowders, we are interested by their sintering behavior, and then by the thermo-mechanical properties of the sintered nanocomposite materials. Such studies are made in our laboratory butalso in collaboration with several laboratories. The main applications concern the Si-based nanopowders suchas SiC and SiCN for their interest in ceramic nanomaterials used for thermo-mechanical or electronic oroptical applications. The most advanced work corresponding to the elaboration of ceramic nanomaterials andto the improvement of their properties as developed in the first item below. We have also used the capabilitiesof the Infrared Laser Pyrolysis for the synthesis of nanocarbons (second item) such as fullerenes andnanoparticles of hydrogenated aromatic carbons. In this last case, the motivation corresponds to theastrophysical question of the nature of the cosmic dust. With the same objective, we have paid attention to therole of the nanocrystalline component in this cosmic dust, and showed that nanodiamonds and nanocrystals ofsilicon can nicely help in the assignment of unidentified astronomical bands (last item).

75

Page 74: Service des Photons, Atomes et Molecules

HI-4-b Ceramic nanopowdersX. Annand, M. Cauchetier, N. Herlin-Boime, M. Mayne, D. Porterat, F. TenegalCollaborations: D. Bahloul-Hourlier, B. Doucey, P. Goursat

For several years, there has been an increasing interest in nanomaterials, which are materials composed ofstructural units with a size scale under 100 rim. The aim is to obtain materials with improved propertiescompared to the properties of conventional materials with a microstructure containing grains on a coarser sizescale (generally > 1 u.m). For the specific case of SisNVSiC structural ceramics, a key improvement would beto obtain materials exhibiting a plastic deformation at high temperature. Such a property would allow tomanufacture pieces more easily, with a good geometrical precision. In order to obtain this property, it isnecessary to develop materials having a microstructure composed of very fine grains with spherical shape. It isthen natural to begin the elaboration process with "fine" ceramic powders. In the past years, we have shownthat Laser Pyrolysis is an efficient route to such fine nanometric powders. This work has been done incollaboration with the laboratories participating in the Research Group of the CNRS named "Physico-chemistry study of Silicon containing nanophasic ceramic powders" [Mayne 1998, S6n6maud 1998, Flank1999, T6negal 2000] and inside the European Network "Nanomat". Nanopowders, a few tens of nanometers insize, with a controlled SiCN chemical composition have been synthesized. These powders, mixed withsintering aids (AI2O3 and Y2O3), have been successfully used to elaborate nanomaterials exhibiting promisinghot-deformation capabilities {Figure 7).Mixing with sintering aids is always tricky and can generate defects (heterogeneity) degrading the properties ofthe final material. To eliminate this critical step, the elements of sintering aids (Y, Al, O) have been directlyincorporated in the powders during synthesis thanks to the spray set-up for the introduction of reactants in theinteraction zone [Cauchetier 1999a]. In these "multi-element" nanopowders, SiCNYAl, the dispersion of Aland Y is homogeneous. First results of the kinetic study of their densification show an improvement attributedto very good dispersion of the sintering elements. This result is very promising [Doucey 1999]. However, thedensification of the material is not complete. This limitation is attributed to the low content of Y and Alincorporated in the powder. To overcome this difficulty, different strategies are being developed in ourlaboratory: the liquid precursors or the aerosol set-up can be changed. Work on the definite control of thechemical composition and the physical properties of these multi-element nanopowders is in progress, in closecollaboration with the University of Limoges.

35

Creep behaviour at 13S0°C under 180 MPa

40 50

Figure 7: Creep resistance of a nanocomposite made with SiCN nanopowders compared with that of a monolithicmaterial obtained from commercial Si 3N4 powders. Inserted are photographs of the nanocomposite sample beforeand after the deformation.

76

Page 75: Service des Photons, Atomes et Molecules

Ш-4-с Nanocarbons by Laser PyrolysisX. Armand, A. Galvez, L. Henckes, M. Cauchetier, N. Herlin-Boime, M. Mayne, D. Porterat, S. SMis-Petcu, C. Reynaud, F. TénégalCollaboration: R. Alexandrescu, I. Voicu, J.-N. Rouzaud, С Clinard

Even if carbon chemistry has been extensively studied, the control of the growth of different forms of carbon isnot well mastered. Due to the allotropy of this element, a huge variety of nanoparticles can be formed withvery different optical, mechanical or electronic properties. In this extensive family, we have synthesized hollowparticles such as fullerenes and hydrogenated aromatic carbon nanoparticles.

FullerenesWe have previously shown that laser pyrolysis of a benzene vapor in presence of an oxidant such as N2O leadsto the formation of soot with high fullerenes content. In contrast with all other methods, a remarkable propertyof this process is that the yield of high-weighted ftillerenes (C7o and besides) is most often superior to C6o[Alexandrescu 1998]. Because high-weighted fullerenes are of fundamental and technological interest forencapsulation applications, we have been led to optimize the synthesis process. We have particularly studiedthe role of the oxidant nature in the reactant mixture, that appears to be critical [Alexandrescu 1998,Cauchetier 1999b, Sidis-Petcu 1999], and evaluated the effect of the СбНб to N2O ratio in the reactant mixtureat constant temperature and pressure. From infrared spectra and HPLC (High Performance LiquidChromatography), it was found that the fullerene content in the soot increases significantly when the C/O ratiodecreases and goes to 1 (Figure 8). Even if the C6o yield increases faster than the C70 yield, this later reachesvalues that make the process promising for high weight fullerene isolation.More investigations are planned to investigate the growth process and to optimize the temperature andpressure parameters at C/O ratio close to 1.

Figure 8: Yield of C60 and C70 in carbon soot obtained by laser pyrolysis of CgH6 + N2O as a function of the C/Oratio in the reactant mixture.

Synthetic Aromatic Carbon ais cosmic dust modelAstronomic observations from UV to IR show the presence of hydrogenated aromatic carbon nanoparticles incosmic dust. For astrophysicists the unsolved problem of the formation and the structure of these nanoparticlesis very important. Many laboratories in the world try to synthesize carbon nanoparticles with spectra similar toastronomical observations, particularly in the infrared range for the interpretation of the so-called UnidentifiedInfrared Bands. In our laboratory, we have used the infrared laser pyrolysis of small hydrocarbons. The mainparameters which govern the synthesis (flame temperature and residence time) have been varied and a familyof hydrogenated aromatic carbon nanoparticles has been obtained [Herlin 1998]. Although their infraredspectra demonstrate interesting analogies with observations, the relative intensities of some bands are difficultto reproduce accurately. In particular, between 600 and 1000 cm'1, the bands characteristic of the aromatic C-H out-of-plane bending modes are puzzling. The band at 752 cm"1, corresponding to three or four adjacent Hat a ring edge, dominates in our sample spectra, which is never the case in astronomical observations wherethe band at 885 cm"1, attributed to lone H, is systematically the more intense. However, we observe aninteresting tendency when the pyrolysis flame temperature increases: a decrease in the 752 cm"1 / 885 cm"1

intensity ratio suggesting an increase of the mean size of the aromatic units.

77

Page 76: Service des Photons, Atomes et Molecules

2.0 - # - 2.0

' -fi " _ - '> .8

•CJ-i -0.8

C,£ - - 34

C.4 - "-3,*

0.1 - I- 5 2

i.C - 1 1 , , . , . , . 1 0.5. - - . . • , : . . . - c & c . t 0 .3 * .o '•* <•* : ^

Mean layer extent {L;

Figure 9: From the thesis of A. Galvez, skeletonized HRTEM images of laser pyrolysis carbons obtained at 1400°C(on the left) and correlation between the CH out of plane infrared bands intensity and the graphene average fringesize for samples obtained at increasing pyrolysis flame temperature (on the right).

To understand the atomic structure responsible for the spectral properties, we have studied the correlationbetween infrared spectroscopy and multiscale organization given by High Resolution Transmission ElectronMicroscopy (HRTEM) [Galvez 1999]. By developing a homemade image analysis, original quantitativestructural and microtextural data can be extracted from skeletonized HRTEM images. A progressive evolutionof the microtexture and the structure is observed as a function of flame temperature. An amorphous like-carbon is obtained below 1000°C. It is made of short, randomly oriented, single graphene layers and L, theaverage fringe size, is smaller than 0.5 nm. With the flame temperature, L increases slightly, reaching 1.15nm at 1400°C and a concentric orientation of the layers progressively improves. A turbostratic carbon with aconcentric microtexture (Figure 9) is observed at the highest flame temperature.A correlation between infrared properties and organization can be observed. The 752 cm"1 / 885 cm"1 ratioobtained from infrared measurements is found to be a decreasing linear function of the average fringe size (L)given by HRTEM measurements (Figure 9). Thanks to this correlation, the extent of aromatic units can bededuced from an infrared measurement. By comparing the infrared spectra of our nanoparticles withastronomical observations, we can extrapolate that in carbon cosmic dust the size of the aromatic units mustbe at least 2 nm, i.e. consisting of about 50 cycles. It corresponds to particles bearing several hundred carbonatoms. Experimental efforts to synthesize such particles are being developed. Theoretical work aimed atrationalizing the relation between the infrared band intensities and the size and structure of the aromatic unitsis also in progress (L. Henckes 2000).

ITJ-4-d Nano-crystalline component of cosmic dustO. Guillois, G. Ledoux, D. Porterat, C. ReynaudCollaboration: V. Paillard (Toulouse), F. Huisken (Goettingen)

Infrared emission of diamond grains in circumstellar envelopes.Since the discovery of a noticeable amount of small diamond particles in meteorites, the question of theirpresence in space was opened. We have been able to bring the first evidence of the existence in space of smallgrains of diamond thanks to the identification of two signatures very specific to these small crystallites[Guillois 1999]. Both signatures appearing in the near infrared emission spectra of Young Stellar Objects,near the well known 3.28 um UIB due to aromatic compounds (Figure 10), had been observed by astronomersfor a long time but had so far been unidentified. We have shown that they can undoubtedly be attributed to thestretching vibrations of C-H groups formed by the H-termination of the crystalline faces of diamond. Thevibrational properties of such C-H groups are well known from studies devoted to the understanding of therole played by hydrogen atoms in diamond growth. Indeed, thanks to the high resolution infrared spectraavailable, we have been able to explain the accurate position, the narrow width and the high intensity of theastronomical bands, in total agreement with the known chemical and physical conditions of the circumstellarmedia where this emission occurs (Figure 10).

78

Page 77: Service des Photons, Atomes et Molecules

nombre d'onde (cm1)3000 2950 2900 2850

diamant

- Observation astronomique 3.53(im ^

(HD 97048)

1,2.. • C(1H)U! H

0.0a35 3.40 3.45 3.50

Longueur d'onde (jam)3.55 3.60

Figure 10: Spectroscopic comparison (on the left) between the near-ir emission spectrum observed in circumstellarmedia and the absorbance spectrum of H-terminated diamond nanocrystals with structure schematized on theright. (Guillois et al, 1999)

Size effects in the photoluminescence of silicon nano-crystallites and Extended Red Emission

The Extended Red Emission (ERE) is an astrophysical phenomenon that manifests itself in a 120-190 nmbroad emission band in the visible spectrum between 600 and 850 nm and has been observed in variousregions of interstellar space. It is well accepted that ERE originates in the photoluminescence (PL) of aninterstellar dust component. However, the restriction that the quantum efficiency can be larger than 10% hassignificantly reduced the number of potential candidates. Indeed, carbon particles, such as hydrogenatedamorphous carbon and other organic compounds, which have been proposed so far, can now be excludedbecause of their extremely low PL yields when they emit in the red. Recently, we have shown that crystallinesilicon nanoparticles offer several advantageous properties making them attractive candidates for ERE[Ledoux 1998]. As porous silicon, isolated crystalline Si nanoparticles exhibit bright PL in the red whenilluminated by ultraviolet radiation. Moreover, the PL- peak shifts with the size of the nanoparticles due toquantum confinement. Consequently, the whole set of ERE observations could be explained by invoking asingle carrier and only assuming different size distributions (i.e. different mean sizes and/or widths).We have carried out a set of designed experiments to corroborate this hypothesis. The silicon nanoparticleswere produced by pulsed CO2 laser pyrolysis of silane (SiH4) in a gas flow reactor at the MPI laboratory ofGottingen. A conical nozzle extending into the reaction zone extracts the nanoparticles and transfers them intoa molecular beam. Time-of-flight mass spectrometry has shown that the velocity of Si particles in the beam issize-dependent, so that a beam chopper can be used to select different masses with narrow size distribution[Ehbrecht 1999]. Thin films of Si nanoparticles with different mean sizes and size distributions have beenproduced. High resolution electron microscopy revealed that the Si particles consisted of a nanocrystalline coreand a surrounding layer of amorphous SiOx whose thickness is about 10% of the particle size [Hofmeister1999].PL studies of as-prepared samples were carried out in our laboratory with a 266 nm laser radiation. The PLyield was determined by accurately measuring the UV power absorbed by the sample and recording the PLphotons with a calibrated detection system. As the average particle size is varied from 2.8 nm to 5 nm, themaximum of the PL shifts from 640 nm to 800 nm, and the experimental peak positions agree very well withthe theoretical model based on quantum confinement [Ledoux 1999, Ledoux 2000]. When we try to reproducethe observed ERE spectra, it turns out that we can almost always find a laboratory PL curve which is in veryclose agreement with the astrophysical observations (Figure 11).

79

Page 78: Service des Photons, Atomes et Molecules

Figure 11: Comparison between ERE observations (thin lines) in threedifferent nebulae : NGC 2247 (a), NGC 2327 (b) and NGC 2023 (c) and PLof three samples of silicon nanocrystallites (thick lines) of different averagesizes : 3.4 nm (a), 3.9 nm (b) and 5 nm (c).

The apparent quantum efficiencies range between 8% and 20% for Sinanoparticles with diameters between 3 and 4.5 nm. Atomic forcemicroscopy studies, carried out for submonolayer deposits producedunder similar conditions, revealed that the thin films werecontaminated by a few larger Si particles (10-30 nm), representing atmost 10% of all deposited particles. These larger particles may absorba substantial part of the exciting radiation, but, regarding theconfinement process, they are too large to luminesce efficiently.Taking this effect into account, corrected quantum efficiencies near100% are determined for Si particles between 3 and 4.5 nm.Moreover, the UV absorption cross section for Si nanocrystals is 10times larger than for overall interstellar dust. Hence, only a very smallproportion of 1% of the dust in the form of Si nanocrystals, either freeor embedded in larger grains, enables the observed ERE intensity to beaccounted for.Such sizes small enough to induce quantum effects are known to bepresent in the lower part of the interstellar dust size distribution, asdetermined by independent observations. Slight variations in the size

distributions of the very small grains allow the observed diffaence in ERE position to be reproduced from oneobject to another and the progressive shift of ERE with increasing distance from the exciting star. Hence, forthe first time, intrinsic size effects in interstellar grains are shown to be the key to the understanding of anastronomical phenomenon.

400 500 600 700 800Wavelength (nm)

900

m-4-e Conclusions and perspectives

We have shown that Infrared Laser Pyrolysis is a powerful technique to form particles of well controlledchemical composition, size and structure. We are able to contribute to the present development in the field ofnanostructured material. Progress in the tailoring of the synthesized particles in connection with the desiredproperties will be one of our future objectives. For this purpose, we will first develop our spray device forprecursor introduction. This is useful for increasing the amount of metallic elements in pre-ceramicnanopowders for our collaboration with the Limoges laboratory. Moreover, we plan to improve this system soas to introduce solutions containing metallic particles able to act as catalyst elements, for example to formnanotubes in a flow reactor. Another objective is to improve the control of the average size of the formedparticles, in particular on the smallest size edge, and to limit the agglomeration of the particles, leading to achain-like structure. In particular, this effort is aimed at investigating the paramagnetic centers and electronicproperties of silicon carbide nanomaterials [Charpentier 1999], and their non-linear optical properties.Finally, due to the high interest in the quantum size effects, for astrophysical as well as material sciencepurposes, we have started building a new experimental set-up designed to form a molecular beam of size-controlled nanoparticles from a Infrared Laser Pyrolysis reactor. This set-up, named SONATE for Size-selected Nanoparticles Source, will produce a continuous beam of neutral nanometric clusters. Our objective isto determine the properties of the carbon nanometric clusters as a function of their size and of their structure.We will pay attention to their infrared spectra in order to progress in the field of carbon cosmic dust and itsvery small grain component.

80

Page 79: Service des Photons, Atomes et Molecules

Ill- 4-ff Selected references

Alexandrescu R., Armand X., Cauchetier M., Herlin N., Petcu S., Voicu I., Carbon 36, 1285 (1998).

Cauchetier M., Armand X., Herlin N., Mayne M., Fusil S.. Lefevre E., J. Materials Science 34, 5257(1999a).

Cauchetier M., Armand X., Herlin N.. Alexandrescu R., Morjan I., Petcu S., Voicu L, Fullerene Science andTechnology 7, 91 (1999b).

Charpentier S., Kassiba A., Emery J., Cauchetier M., /. Phys. Condens. Matter 11,4887 (1999).

Doucey В., Thesis, Limoges University (1999).

Ehbrecht M., Huisken F., Phys. Rev. В 59, 2975 (1999)

Hank A.-M., Armand X., Cauchetier M., Mayne M., /. Sync. Rad. 6, 512 (1999).

Galvez A., Thesis, Orleans University (1999).

Guillois O., Ledoux G., Reynaud C , Astrophys. J. Lett. 521, LI33 (1999).

Henckes L., Thesis, Université Paris XI, (end november 2000).

Herlin N., Bonn I., Reynaud C , Cauchetier M., Galvez A., Rouzaud J.-N., A&A 330, 1127 (1998).

Hofmeister H., Huisken F., Kohn В., Em. Phys. J. D 9, 137 (1999)

Ledoux G., Ehbrecht M., Guillois O., Huisken F., Köln В., Laguna M.A., Nenner L, Paillard V., Papoular R.,Porterai D. Reynaud C , Astron.Astrophys. 333, L39 (1998)

Ledoux Gilles, Thesis, Université Lyon I (1999)

Ledoux G., Guillois O., Reynaud C , Huisken F., Kohn В., Paillard V., Materials Science & EngineeringB69-70, 350 (2000)

Mayne M., Bahloul-Hourlier D., Doucey В., Goursat P., Cauchetier M., Herlin N., J. European CeramicSociety 18, 1187 (1998).

Sénémaud C , Gheorghiu de la Roque A., Dufour G., Herlin N., J. Appl. Phys., 84, 4945 (1998)

Sidis-Petcu Stela, Thesis, Paris XI and Bucarest Universities (1999)

Ténégal F., Gheorghiu de La Rocque A., Dufour G., Sénémaud C , Mayne M., Herlin-Boime N., Armand X.,Cauchetier M., J. Appl. Phys., 87, 7864 (2000)

81

Page 80: Service des Photons, Atomes et Molecules

1H-5 Physical Chemistry with Synchrotron Radiation

Permanent research and technical staff: M. E. Couprie, D. Garzella, N. Leclercq, M. Meyer, P.Morin, L. Nahon, M. SimonPh. D. student: M. Gisselbrecht, A. Marquette, S. Aloise, R. Guillemin, K. Le Guen, D. C6olinPostdoctoral positions: E. Renault, E. Shigemasa, C. MironCollaborations: A. Gruzmailho (Russia), M. Larzilliere (Laval University, Canada), S. Svensson, O.Bjornholm, S. Sorrensen (Uppsala University, Sweden), A. Naves de Brito (Unicamp, Brazil), D.Lindle, O. Hemmers (Las Vegas University, USA), E. Shigemasa, N. Kosugi (UVSOR, Japan), K.Ueda (Sendei University, Japan)

m-5-a Introduction

The activity of the Synchrotron Radiation team is focused on the determination of dynamic properties ofphotoexcited systems from atoms to polyatomic molecules and molecules of biological interest. The SR is aunique tool to excite these systems in the UV-VUV and soft X-Ray photon energy range. Pump-probeexperiments as well as sophisticated coincidence experiments have been developed, in which the team hasspecialized.In the UV range, we are mostly interested in probing photochemical and photophysical processes in the sub-nsand ns time-scales, like internal conversion. SR provides a broad continuum spectrum used to probe (byabsorption in the UV) any system initially excited through the FEL laser radiation available on the Super ACOstorage ring. Systems of biological interest are under study, in the context of the recently-created LFPlaboratory.Most of the team's activity is devoted to the dynamics of core excited molecules (soft X-ray range). Dynamicsin this energy range is governed by core hole relaxation (a few fs) and nuclear motion (typically a few 10 to100 fs), giving rise to interesting competing and interfering processes. Various techniques are used, such asfluorescence and laser-induced fluorescence (i.e. two-color experiments), electron-ion coincidences andangular distribution from fixed-in-space-molecules. The first two techniques are related to energetics andnuclear dynamics, whereas the last one refers to continuum wave function (photoelectron and Auger electron)characterization. As shown later, our studies clearly reveal that excitation and relaxation processes have to beconsidered as a one-step process. We are also interested in studying dissociation processes of complexmolecules to understand the conditions under which selective fragmentation channels can be observed.Numerous collaborations have been established with both experimental and theoretical groups, with exchangeprograms.

m-5-b Towards transient absorption spectroscopy of biomimetic systems: a two-color FEL +synchrotron radiation experimentL. Nahon, M. E. Couprie, D. Garzella, E. Renault

A Transient Absorption (TA) spectroscopy experiment on biological samples has been initiated since 1998. Ittakes advantage of the natural synchronization, pulse-to-pulse, between the Super-ACO UV Free ElectronLaser (FEL) and the Synchrotron Radiation (SR) to photoexcite a chromophore in solution with the FEL andprobe the relaxation dynamics of the excited state and the associated transient species, by absorption with thewhite-light continuum provided by a dipolar magnet (beamline SA5 and SB5). The goal is to gatherinformation on the dynamics of photon-induced photochemical and/or photophysical processes on the sub-nsand ns time-scales, on which many non-radiative relaxation processes of the Sn states are occuring. We will beinterested in the mechanisms of activity and toxicity of antitumoral drugs such as porphyrins andanthraquinones, studied in solution and during their interaction with DNA. On the long term, possibleapplications in cancer photochimiotherapy can be foreseen. Besides we plan to investigate the de-excitation oftriptophan, the major proteic material absorbing in the UV-B region leading to protein photodegradation,involving an internal proton transfer. More generally, the experiment takes place in the larger framework ofphotobiology under UV irradiation, with possible applications in the controlled triggering of biochemicalreactions acting on the metabolism.

82

Page 81: Service des Photons, Atomes et Molecules

As compared to laser-based TA set-ups, the interest of ours is manifold: it is complementary to micro-secondand multi nano-second flash lamp/laser photolysis set-ups and to ps and fs laser set-ups, in terms of dynamics.Besides, it is the only way to obtain sub-ns white light pulses in the UV range, since the white light continuagenerated from ps and fs laser are limited to the visible domain which does not allow the direct probing ofmany radicals. In addition, laser-generated white light continua, through highly non-linear processes, are veryinstable, which is not the case of SR-produced continua.During the last two years, our main effort has consisted in demonstrating the feasibility of such an experimenton a model system: the POPOP, an organic molecule used in dye lasers. We clearly observed a two-photonFEL+SR signal, different from the spectrum obtained with the FEL alone (fluorescence) or the SR alone(absorption in the ground state), appearing as an enhanced absorption in the 550-600 nm region. Such aspectral feature is attributed to the absorption from the Ti triplet state produced by Intersystem Crossing (ISC)from the initially FEL-populated Si state. In the first configuration of the experiments, at 8.32 MHz, we couldnot see any time-dependent signal by tuning the pump-to-probe delay between 0 and 120 ns. This wasinterpreted as being due to the long-living Ti state which traps all the energy deposited into the system. Thespectral modifications induced by the addition of KI, with the iodine heavy atom modifying the ICS rate,confirm this hypothesis.In order to overcome this difficulty, we set up a re-circulation of the solution to refresh the sample in view ofthe photon beams, and we decreased the repetition rate of the experiment, down to 83.2 kHz, so that theinterpulse period (up to 12 jj.s) allowed the decay towards the fundamental ground state. To this end, we used aPockels cell on the FEL to extract one pulse out of 100, and we gated the detection of the transmitted SRthrough the spectrometer.As can be seen in Figure 12, the results are very encouraging, since a clear temporal dependence can beobserved on the ns time-scale corresponding to transient population of the Si state. This shows the feasibilityof the experiments that should be extended to biochemical compounds in the near future.

0.00-,

-0.05-

< -0.10-<

-0.15-

Figure 12: Temporal dependence of the two-colorTransient Absorption signal on the POPOPmolecule excited at 350 nm and probed at 450 nm,showing the variation of the Sj excited stateproduced by FEL-excitation.

-2 0 1time (ns)

111-5-c Rotational cooling after photoionization probed by Laser Induced FluorescenceM. Meyer, M. Gisselbrecht, A. Marquette, S. AloiseCollaborations: A. Gruzmailho, M. Larzillere

In studies dedicated to the investigation of the relaxation processes of molecules, we have analyzed thefluorescence (200 nm < ?l(fluo) < 1000 nm) emitted after innershell excitation of various di- and tri-atomicmolecules [Meyer 1999, Marquette 1999, Marquette 2000a,b]. In particular, the emission of the N2

+ (A 2nu)and N2

+ (B 2I^) states [Marquette 1999] has been investigated after resonant excitation of the N2 (IS'-TC*)

resonance using monochromatized synchrotron radiation from the new high-resolution beamline SB7 ofSuperACO. The vibrational structure of the core excited state as well as of the final ionic state has beenresolved in the photoexcitation and in the dispersed fluorescence spectra, respectively. A detailed analysis ofthe experimental spectra and a comparison with theoretical results show a strong coupling between thevibrational levels in the core excited and the ionic state produced via autoionization. The N2

+ (A 2nu) potentialcurve is almost parallel to the core excited state which causes mainly (Av = 0) transitions in the autoionizationprocess. For the N2+ (B 2Xu+) state, the production via the n* resonance leads to the population of highervibrational states which are only very weakly populated by direct ionization. The calculations reproduce the

83

Page 82: Service des Photons, Atomes et Molecules

observed structures and underline the complementary character of fluorescence and photoelectronspectroscopy.In the series of investigations using the combination of synchrotron and laser radiation we have been able toperform the first experiments related to dissociation processes of photoexcited molecules. The rotationaldistribution of N2

+ ions produced by autoionization of the ndag and nd5g ^ Rydberg states of N2 has beenmeasured by laser-induced fluorescence (LIF) spectroscopy using a pump probe arrangement. A typicalexperimental LIF spectrum of the N2

+ (X 2Zg, v=0) -» (A 2nu, v=4) transitions is given together with asynthesized spectrum in Figure 13. The rotational distribution shows a strong rotational cooling of the N2

+

ions, i.e. the population of the rotational sublevels is no longer described by a Boltzmann distribution of 300K, which is expected for an effusive beam. This finding is explained by strong competition between theautoionization process and the pre-dissociation of the Rydberg states into two neutral atomic fragments. A J-dependent dissociation, where high-J levels are related to a high probability of fragmentation, results inrotational cooling of the N2

+ ion produced via autoionization. This example illustrates well that thecombination of broadband synchrotron excitation and high-resolution laser excitation is an adequate andpowerful tool for studying molecular dissociation processes in the VUV region.

615 614wavelength (nm)613 612

I I611

I610

I

. P12

- , rt-^12&Q11R11

. _ — _ _ P22>-— P21&Q22

- —• R22&Q21R21-

experimental spectrum

I synthezised spectrum at 50 K

. . . A - \ / \ J

•r--r T"»T

16.26 16.28 16.30 16.32 16.34 16.36laser photon energy (cm " x10 )

Figure 13: LIF Spectra recorded on No after SRphotoionization

16.38 16.40

III-5-d Dissociation of core excited molecules after resonant excitationM. Simon, N. Leclercq, P. Morin, R. GuiUemin, K. Le Guen, D. Ceolin, E. Shigemasa, C, MironCollaborations: S. Svensson, A. Naves de Brito, K. Veda

Core excitation of simple molecules in the soft-X-ray regime offers the possibility of inducing electronictransitions into resonant states with selected vibrational energy. It is thus possible to emphasize the role ofnuclear motion in that situation and its interplay with the electronic core-hole relaxation. Of special interest isthe 100-1000 eV photon energy range where the core hole life-time is large enough (10 fs and above) to occuron a competitive time scale as compared to nuclear motion. The geometry of the resonant state of course playsa crucial role in the dissociation dynamics of the system. The specificity of our set up is to provide a selectionof the ion internal energy through coincidence between energy-analyzed electron and fragment ions.We have studied several molecules (BF3 [Simon 1997], CF4 [Ueda 1999], H2S, CO2 [Morin 2000], N2O[Morin 1998], OCS ...) from which CO2 and CF4 are briefly described here as demonstrative examples of therole of the intermediate state in the dissociation dynamics.According to the core equivalent model, excitation of the Cls-> n* in CO2 gives rise to a bent intermediatestate. This lowering of symmetry (Renner-Teller effect) induces a splitting into two configurations AL (bent)and Bj (linear) which can be photoexcited preferentially on the low-energy side (respectively the high-energyside) of the excitation profile. The resonant Auger spectrum is dominated in the valence region by thecontribution from the A "TIu state. We have performed e/ion coincidence measurements at 19.1 eV bindingenergy, corresponding to highly vibrationally excited levels of this A state. Three coincidence spectra arereported below, as recorded on the left, top and right position in the photoexcitation profile. Clearly, O+

production is favored at low photon energy, whereas at high photon energy unfragmented CO2+ is favored.

84

Page 83: Service des Photons, Atomes et Molecules

This result shows clearly that the fragmentation pattern is governed not only by the internal energy of the ionbut also by the way it has been produced. O+ production is possible at this binding energy only if one takesinto account predissociation of the A state through a 4Z repulsive state and a conical intersection induced in thebending coordinate.

BE: 19.1 eV

CO

o+CO*

RightTop

Left

II II I ill i1 HI 1 1 1 i

L±li j I

ill I I II

il I. i

LiVLJ

II UUlt 111

800 900 1000 1100 1200 1300

time of flight (ns)

Figure 14: coincidence spectra between the A state of COf, recorded along the C7s->/7* resonance profile.

The CF4 molecule is another example where core excitation may induce a very specific fragmentation channel.The Cls absorption spectrum of this tetrahedral molecule is dominated by the huge Cls->o* transition into astrongly repulsive state along the C-F coordinate. Recording of resonant Auger spectra along the resonanceprofile shows a participation of the 2t2 and 3t2 final states in the relaxation. Of special interest are thecoincidence measurements with the 2t2 state which show an exceptional enhancement of the CF2

+ + F2

dissociation channel as compared to the CF3+ + F competitive dissociation channel. As in the previous example

(CO2), we give evidence of a dissociation dynamics effect mediated through resonant excitation.We have also investigated relaxation dynamics from fixed-in-space-molecules, in order to characterize theelectron wave function of both photoelectron and Auger electron.

HI-5-e Break down of the Two-step Model in Molecular Normal Auger DecayM. Simon, N. Leclercq, P. Morin, R. Guillemin, K. Le Guen, D. Ceolin, C. MironCollaborations: E. Shigemasa

After the fast (a few attoseconds) photoejection of a core electron, it is assumed that the Auger decay takesplace in a very short time scale (a few femtoseconds). These two processes are assumed to occur in two well-defined steps. The Post Collision Interaction (PCI) is the limit of this model, and occurs when the kineticenergy of the photoelectron is slow (a few eV). The Auger electrons and the photoelectron exchange someenergy. With vibrational resolution, Sundin et al [Sundin 1998] observed this effect for the CO molecule: theB state of CO** is shifted by 30 meV very close to the ionization threshold.We have carried out the first experiment measuring the angular distributions of Auger electrons from fixed-in-space CO molecules by detecting the Auger electrons in coincidence with fragment ions.Two identical ion detectors (cfaanneltrons) with retarding grids were installed at 0° and 90° relative to thepolarizaition vector of the incoming light. Because the photodissociation from the Auger final state isconsidered to occur in a shorter time than the molecular rotation period and along the molecular axis (axialrecoil approximation), the two detectors select £ -> X and £ -> Fl transitions, respectively. We used thedouble toroidal electron analy2:er [Miron 1997], precisely calibrated by well-tabulated angular distributions,for the Auger angular distribution measurements.

85

Page 84: Service des Photons, Atomes et Molecules

In Figure 15, we show the angular distribution of the B state with respect to the molecular axis at threedifferent photon energies (299 eV, 305 eV and 400 eV) obtained in coincidence with the two detectors. Withinthe two-step model, the photoelectron carries the angular momentum away in the first step and the residual ionhas the K shell vacancy whose distribution is cylindrical around the molecular axis.

299 eV90

305 eV

channel180

315

400 eV90

135

O 18'

135

nchannel 18Ot

225

135

O ]80j

225 315

270

0 180)

2 2 5

2 7 0

Figure 15: Angular distribution patterns from fixed in space (II and J. )CO molecule

Because the shape and spatial orientations of the electronic orientation of the orbitals of the core ionizedmolecules are the same for X and FI channels, we should obtain the same angular pattern. Far above threshold(400 eV), as expected, the patterns for Z ad FI channels are almost isotropic. When the energy decreases, weobtain rich structures, markedly different for both channels. On the shape resonance (305 eV), the patternshows a maximum around 45° and two minima close to 0° and 90° very similar to a 6K wave pattern observedfor the Is photoelectrons from fixed-in-space-molecules [Shigemasa 1995]. At 299 eV, the photoelectron has akinetic energy of only 1 eV and the pattern shows 4 nodal structures.

The present observations strongly suggest that the PCI effect induces a dynamical angular correlation betweenthe photoelectron and the Auger electron At present, there are no available theoretical treatments describingour results.

m-5-f Future trends

The team's research in the near future is strongly linked to the use of third generation synchrotron sources andto the new scientific orientation defined in the LFP laboratory. We will use higher and higher brilliancemachines (Max lab in the very near future), taking advantage of both high focusing properties and highspectral resolution. An effort will be made to optimize the various set-ups to benefit from these performancesand to make them easier to move. This instrumental effort is necessary to keep our set-up competitivefollowing the orientations already approved in the LURE instrumentation renovation plan ("Ebauche d'un plande Jouvence des dispositifs experimentaux du LURE", June 1999). Investigation towards biomimetic systemswill also be carried out in the context of the LFP laboratory, as an extension of the selective fragmentationstudies.

86

Page 85: Service des Photons, Atomes et Molecules

Photoionization from fixed-in-space-molecules gives very exciting results that cannot be understood within theframework of a two step picture. We are starting to collaborate with Prof. Cherepkov to develop a newtheoretical approach.Finally, the involvement of the team (L.Nahon and M.Meyer) in the TESLA application program is a goodopportunity to develop time resolved experiments with a new coherent source.

HI-5-g Selected references

Gisselbrecht M., thesis, Paris XI University (2000).

Marquette A., Meyer M., Sirotti F., Fink R.F., /. Phys. B 32, L325 (1999).

Marquette A., Gisselbrecht M., Benten W., Meyer M., Phys. Rev. A 62, 022513 (2000a).

Marquette A., thesis, Paris XI University (2000b).

Meyer M., Marquette A., Gisselbrecht M., J. Electr. Spectr. 101-103, 81 (1999).

Miron C. et al., Rev. Sci. Instrum. 68, 3728 (1997).

Morin P., Simon M., Miron C , Leclercq N., Hansen D.L., /. Electr. Spectr. 93, 49 (1998).

Morin P., Simon M., Miron C , Leclercq N., Kukk E., Bozek J.D., Berrah N., Phys. Rev. A 61, 701(2000).

Shigemasa E. et al., Phys. Rev. Lett. 74, 359 (1995).

Simon M., Miron C , Leclerai N., Morin P., Phys. Rev. Lett. 79, 3857 (1997).

Sundin S. et al., Phys. Rev. A 58, 2037 (1998).

Ueda K., Simon M., Miron C , Leclercq N., Guillemin R., Morin P., Tanaka S., Phys. Rev. Lett. 83, 3800(1999).

87

Page 86: Service des Photons, Atomes et Molecules

ni-6 Theoretical chemistryPermanent research and technical fellow: C. Angelie", V. Brenner, J. P. Dognon, P. Millie", P. de Pujo,J.M. SoudanPhD student: S. Dare-Doyen (codirection with DCC/DPE), J. Delhommelle (codirection with LCPOrsay), A.L. ThomasPostdoctoral positions: G. Granucci, S. Hoyau, F. Rogalewicz-GilardCollaborations: C. Crepin (Laboratoire de Photophysique Mol6culaire C.N.R.S., Orsay), A. Boutin, A.Fuchs, B. Levy (Laboratoire de Chimie Physique, University Paris XI, Orsay), J.P. Dognon, Ph.Guilbaud, C. Rabbe (DCC/DRRV/SEMP, CEA Marcoule), D. Doizi (DCC/DPE , CEA Saclay)

m-6-a Introduction

The principal research of the Theoretical Chemistry team is in the area of quantum chemistry and moleculardynamics with a major topic related to structure and dynamics of complex systems. The research field includesdevelopment of methods and their application to experimental problems in connection with SPAM teams andCEA, CNRS and university teams. Intermolecular potentials used in our team in the last few years are verysuitable for the study of small aggregates [Courty 1998a,b, Le Barbu 1998, Tramer 1998a,b, Mons 1999].Multipolar multicentric distributions used to calculate electrostatic interactions reproduce with an error of lessthan \9c dipolar and quadripolar moments derived from ab initio calculations. Moreover, this distribution isweakly conformation-dependent and the use of multipolar expansion improves the representation ofelectrostatic potential at short distance. If we include dipolar bond polarizability (which is transferable andreproduces the global molecular polarizability with an error lower than 5%) in interaction energy calculation,we have a very accurate tool without the drawbacks of standard charge distributions. But with these accurateintermolecular potentials [Uridat 1998, Coussan 1999], calculation time increases rapidly with system size andmajor difficulties still remain.Effort had to be made for:

• Development of simpler but still realistic mathematical expressions for potentials,• A better accuracy of approximations used in the case of interaction with ions and, particularly, with

metallic ions with large polarizing capacity,• Extraction of dispersion forces from ab initio calculation, for neutral systems for which they can never be

neglected.

We begin to work on the first two points and more precisely, work performed during the last two years iscentered on the search for a better representation of molecular interactions (electrostatic interaction, backpolarization, charge transfer, etc.), the development of tools for potential energy surface exploration (MonteCarlo growth method [Bertolus 1998, Gr6goire 2000], Car-Parrinello DFT method) and correspondingapplications in the area of ion complexation, dimer formation in water, impurity insertion location in a matrix,excitation transfer and excitonic theory [Marguet 1998, Markovitsi 1999, Millie" 1999, Beljonne 2000].

m-6-b Intermolecular potential

Charge distributionG. Granucci, J. Delhommelle, V. Brenner, P. MillieCollaborations: B. Levy, S. Durand, C. Rabbe, J.P. Dognon

Our goal is to obtain a minimal atomic charge distribution which results in decreasing calculation time, whichis able to reproduce ab initio electrostatic potential and is not conformation dependent. This chargedistribution could be used for molecular dynamics simulations. To do this, we have used a method alreadyproposed by B. Levy [Levy 1998]. The basic idea is that classical fit of electrostatic potential on a grid couldlead to indetermination that could be used to obtain conformational independence and transferability withoutloss of precision. For example, this method gives good results on a flexible monoamide CH3-CO-N-(C4H9)2 forwhich a fit with the classical method gives very poor results for nitrogen charge which is hidden [Dognon

Page 87: Service des Photons, Atomes et Molecules

2000]. Good results were also obtained on alkanes. For this, we have developed an atomic charge and bonddipole model that is only weakly dependent on conformation and converges to a limit when increasing thelength of alkane chain. So we can obtain, without calculation, charge distribution on any non-branched longalkane [Delhommelle 1999].

Repulsion-dispersion potential (vapor-liquid equilibria calculation)/ . Delhommelle, P. MillieCollaborations: A. Fuchs, A. Boutin

Predictive numerical simulation of binary mixtures or pure component could be used in industrial processes.The usual method for these simulations is first to choose an analytical form for the intermolecular potential foreach component. Then, with calculation and experimental characterization, one adjusts parameters of thepotential. In a mixture, Lorentz-Berthelot combination rules are used to obtain dispersion-repulsion parametersfrom pure components. This method is not very suitable if we want general potentials because, if terms aremissing in the potential formulation, the fit gives parameters with no physical meaning and no reasons to obeycombination rules. As a result, we do not obtain transferable potentials. So how may we predict quantitativelythermodynamic properties? We have shown in thiols R-S-H and sulfurs R-S-R' (R, R'=alkyl) compounds thatdescribing electrostatic interaction very precisely for one element in the series is sufficient to obtain Lennard-Jones parameters able to predict vapor-liquid thermodynamic diagram quite satisfactorily [Delhommelle2000].

Calculation and modeling charge transferS. Hoyau, A.L. Thomas, V. Brenner, P. Millie, J. M. SoudanCollaboration: J.P. Dognon

The study of properties of complexes between organic ligands and ions in liquid phase is usually carried outusing molecular dynamics. For example, such simulations are performed in nuclear fuel reprocessing researchin CEA/Marcoule (liquid-liquid extraction). Standard model potentials are not very accurate to describemolecule-ion interaction, generally because they do not include polarization and/or charge transfer. Work onpolarization is in progress with the aim of taking into account the back polarization term. We present here onlythe work carried out to model charge transfer in order to allow for it in molecular dynamics simulations. Asecond step involves studying simple ion-molecule systems and clusters.

> Ion-moleculeThe main goal of the present work was first to evidence the charge transfer contribution, then to quantify it,partitioning the interaction energy in its main contributions (electrostatic, polarization, repulsion and chargetransfer), and finally to model it with an analytical term as simple and as accurate as possible. We haveproposed a new method of partitioning interaction energy (in HF, MP2 or DFT framework) and of calculatingthe charge transfer term. We have also determined the orbitals involved in the charge transfer.The [H:!O-Cat2+] systems with Cat2+=Ca2+, Zn2+, Cd2+, Hg2+ were studied in a first step as well known simplemodel systems. Thereafter the same procedure was applied to small lanthanide [H2O-Ln3+] systems.Calculations have been carried out for ions with several effective core potentials. For +2 charged cations, thecharge transfer occurs from a lone pair of the water oxygen to a virtual ns orbital for the cation (Figure 16).As expected, H2O-Ca2+ does not exhibit charge transfer and H2O-Hg2+ exhibits the largest charge transfer.Intermediate contributions were obtained for Zn2+ and Cd2+. For H2O-Hg2+, the variation of the charge transferterm has been studied as a function of angles of approach of the cation and a simple relationship has beenfound between the charge transfer and overlap integrals (between orbitals involved in the charge transfer). For+3 charged lanthanide cations, charge transfer is not negligible contrary to classic ideas. In lanthanumcompounds it represents 20% of the interaction energy. In this case, only CI calculation in a non-orthogonalbasis set allows the analysis of charge transfer (n and a contributions). For lanthanum or lutetium compounds,the charge transfer involves essentially 5d unoccupied orbitals (Figure 16).

89

Page 88: Service des Photons, Atomes et Molecules

HO-Hg" (CT— 6s Hg) H2O-La 3+ 5dLa)

: 0.068 e, v 0.015 e

0.023 e

Figure 16

Clusters

If we now consider the {metal-(molecule)n}+ system, the charge transfer can be described (in a valence bond

framework) by the interaction between different mesomeric forms:• metar-(molecule)n,• metal-molecule+-(molecule)n-i,• metal-molecule-molecule+-(molecule) n.2• etc.

Therefore, we have to calculate non-diagonal and diagonal corresponding matrix elements. We begin our workwith the molecule-molecule system (Figure 17). One can easily show that in the general framework ofHartree-Fock theory, the non-diagonal matrix element is equal to the Fock matrix element (obtained fromHartree-Fock orbitals of neutral system) between localized orbitals involved in the charge transfer.

H

\ f/H

NH3-NH3

H H

A state

NH3-NH3

Figure 17

In order to test these approximations, we performed calculations taking into account correlation effects andpolarization of orbitals. For example, in Q geometry (Figure 17), we calculate the energy of both Au and Ag

states. At long distance (>5 A), the energy difference between these two states is effectively found to be twicethe Fock matrix element (difference < 3%). Consequently, the correlation and polarization were negligible. Forsmaller distances (2.5A or less), a difference lower than 25% is found. Then, we try to correlate the value ofthe Fock matrix element and the overlap between the two orbitals involved in charge transfer. We found alinear relationship. This work is not complete yet and we will work in the future on other geometries and onmetal-molecule systems, exactly in the same way, using selected CI.

90

Page 89: Service des Photons, Atomes et Molecules

ni-6-c Molecular dynamics

Results of standard potentialS. Dare-Doyen, P. MillieCollaboration: D. Doizi, P. Guilbaud

In order to test potentials included in standard molecular dynamics simulation software (AMBER), we havestudied a process that is difficult to model because the results are dependent on compensations of forces fromseveral origins. Molecules like pyronines or rhodamines (used as laser dyes), that are positively charged, formdimers in aqueous solution. Experimental evidence of this association exists and we can obtain structuralinformation for dimer from NMR measurements. Our simulations are essentially carried out putting two dyemolecules and associated counter-ions in a water box with periodic boundary conditions. We study both theevolution of the formed dimer during the molecular dynamics simulation and the formation (or not!) of thedimer from its two separated components. In both these cases, the dimer is stable and the average structure isin good agreement with NMR information. This shows that potential deficiency could be hidden in complexsystems. This formation of a dimer in aqueous solution for plane and rigid molecules could be compared to thechange in conformation observed for flexible molecules in aqueous solution that hides their hydrophobic part.

Matrix isolation of naphthalene moleculeP. de Pujo, V. Brenner, P. MillieCollaboration: C. Crepin

Recent experimental fluorescence spectra obtained by C. Crepin and colleagues with naphthalene trapped in anargon matrix suggest the existence of two main kinds of sites in the matrix. In order to confirm this hypothesis,we have developed an original method of matrix formation simulation by molecular dynamics. We simulatedthe condensation of a gas on a cooled argon medium on a molecular scale by collision of gas particles with asurface made up of some argon solid layers. For an efficient simulation time, it is necessary to adjust collisionfrequency, gas particle mean path and temperature. Scaling factors were applied according to experimentalconditions. Contrary to other methods, no degrees of freedom were freezed. In this manner all possible particledisplacements are allowed, leading to a full relaxation.The calculations show the presence of two types of site, a first one with 4 argon atoms substituted in the planeof the naphthalene molecule, a second one with 5 argon atoms substituted (Figure 18). A slight deformation ofthe matrix near the naphthalene molecule is observed. Modification of neighborhood (and of course differenceof volume between the micro-cavities taking the impurity) has led to a proposed qualitative interpretation ofexperimental shifts and evolution in bandwidth.

0 © © © © O

Figure 18

91

Page 90: Service des Photons, Atomes et Molecules

IQ-6-d Prospects

In the near future, we will carry out work to develop general potentials and to extend areas of applications. Weplan to carry out work in the field of:Intermolecular potentialsRepulsion-dispersion and hydrogen bond (V. Brenner),Metallic ion-molecule systems (and especially heavy elements like lanthanides) (A.L. Thomas, J.P. Dognon),Case of electronic excited states (P. Millie").Molecular dynamicsMonte-Carlo/Molecular dynamics simulations comparisons (F. Rogalewicz-Gilard),Relaxation dynamics (comparison cluster-liquid phase) (J.M. Soudan),Combined statistical-dynamical approach (C. Angeli6),Vibrational spectroscopy of covalent structures (P. de Pujo, J.P. Dognon).

DI-6-e Selected references

Beljonne D., Cornel 1, Silbey R., Millie" Ph., Br6das J.L., /. Chem. Phys. 112, 4749 (2000).

Bertolus M., Brenner V., Millie" Ph., Eur. Phys. J. D 1, 197 (1998).

Courty A., Mons M., Dimicoli I., Piuzzi F., Brenner V., Millie" Ph., /. Phys. Chem. A 102, 4890 (1998a).

Courty A., Mons M., Dimicoli I., Piuzzi F., Gaigeot M.P., Brenner V., de Pujo P., Millie" Ph., /. Phys. Chem.A 102, 6590 (1998b).

Coussan S., Bouteiller Y., Perchard J.P., Brenner V., Millie Ph., Zheng W.Q., Talbot F., /. Chem. Phys. 110,10046 (1999).

Delhommelle J., Granucci G., Brenner V., Millie Ph., Boutin A., Fuchs A.H., Mol. Phys. 97, 117 (1999).

Delhommelle J., Tschirwitz C , Ungerer P., Granucci G., Millie" Ph., Pattou D., Fuchs A.H., J. Phys. Chem. B104, 4745 (2000).

Dognon J.P., Durand S., Granucci G., Levy B., Millie Ph., Rabbe C , /. Mol. Struct. (Theochem) 507, 17(2000).

GregoireG., Brenner V., Millie" Ph., /. Phys. Chem. A 104, 5204 (2000).

Le Barbu K., Brenner V., Millie" Ph., Lahmani F., Zehnacker-Rentien A., /. Phys. Chem. A 102, 128 (1998).

Levy B., Enescu M., /. Mol. Struct. 432, 235 (1998).

Marguet S., Markovitsi D., Millie Ph., Sigal H., Kumar S., J. Phys. Chem. B 102, 4697 (1998).

Markovitsi D., Marguet S., GaUos L.K., Sigal H., Millie Ph., Argyrakis P., Ringsdorf H., Kumar S., Chem.Phys. Lett. 306, 163 (1999).

Millie" Ph., Langlet J., Berges J., Caillet J., Demaret J.Ph., /. Phys. Chem. B 103, 10883 (1999).

Mons M., Dimicoli I., Tardivel B., Piuzzi P., Brenner V., Millie Ph., J. Phys. Chem. A 103, 9958 (1999).

Tramer A., Brenner V., Millie" Ph., Piuzzi F., J. Phys. Chem. A 102, 2798 (1998a).

Tramer A., Brenner V., Milli6 Ph., Piuzzi F., / Phys. Chem. A 102, 2808 (1998b).

Uridat D., Brenner V., Dimicoli I., Le Calve" J., Milli6 Ph., Mons M., Piuzzi F., Chem. Phys. 239, 151 (1998).

92

Page 91: Service des Photons, Atomes et Molecules

IV SCIENTIFIC COMMUNICATIONJanuary 1998 - June 2000

Articles in refereed journals 95

Articles in proceedings 109

Book chapters 113

Invited conferences 115

Invited seminars 121

Oral communications 127

PhD Theses 135

Popularization articles 137

Patent 138

93

Page 92: Service des Photons, Atomes et Molecules

Articles in refereed journals

1998

Effect of SF6 addition in the laser synthesis offuller ene and soot from C<5#</02 or C^i^iO sensitizedmixtures.Alexandrescu R., Armand X., Cauchetier M., Herlin N., Petcu S., Voicu I., 1998, Carbon 36, 1285.

Nonadiabatic heating of a plasma produced by the ionization of a gas by a short intense laser pulse.Andreev N.E., Chegotov M.V., Veisman M.E., Auguste T., d'Oliveira P., Hulin S., Monot P., Faenov A.Ya.,Pikuz T.A., Magunov A.I., Skobelev I.Yu., Rosmej F.B., Romanovskii M.Yu., 1998, JETP-Letters 68, 592.

Can we rationalize the structure of small silicon-carbon clusters ?Bertolus M, Brenner V., Millie Ph., 1998, Eur. Phys. J. D 1,197.

SÍ3N/SÍCN nanocomposites : influence of SiC precipitates on the creep behaviour.Besson J.L., Mayne ML, Bahloul-Hourlier D., Goursat P., 1998, J. Eur. Cer. Soc. 18, 1893.

Temporal dependence of high-order harmonics in the presence of strong ionisation.Bouhal A., Salières P., Breger P., Agostini P., Hamoniaux G., Mysyrowicz A., Antonetti A., Muller H.G.,1998, Phys. Rev. A 58, 389.

Rayleigh scattering of laser and synchrotron radiation from pulsed jetof(Ar)„ and(N2O)„ clusters.Bush A.M., Bell A.J., Frey J.G., Mestdagh J.M., 1998, J. Phys. Chem. A 102, 6457.

Reabsorption of light by trapped atoms.Castin Y., Cirac J.I., Lewenstein M., 1998, Phys. Rev. Lett. 80, 5305.

Laser-induced non-sequential double ionization of small molecules.Cornaggia C , Hering Ph., 1998, J. Phys. В 31, L503.

The Super-ACO FEL operation with shorter positron bunches.Couprie M.E., Nutarelli D., Roux R., Nation L., Visentin В., Delboulbé A., Flynn G., Billardon M., 1998,Nucl. Inst. Meth. A 407, 215.

Implementing storage ring free electron laser for users on synchrotron radiation facilities : from super-ACOto SOLEIL.Couprie M.E., Nutarelli D., Billardon M., 1998, Nucl. Instr. Meth. В 144, 66.

Quantum effects in the threshold photoionization and energetics of the benzene-НгО and benzene-DjOcomplexes : experiment and simulation.Courty A., Mons M., Dimicoli I., Piuzzi F., Gaigeot M.P., Brenner V., de Pujo P., Millie Ph., 1998, J.Phys.Chem. A102, 6590.

Ionization, energetics and geometry of the phenol-S complexes (S=H2O, CH3OH and CH3OCH3).Courty A., Mons M., Dimicoli I., Piuzzi F., Brenner V., Millie Ph., 1998, J. Phys. Chem. A 102, 4890.

Storage ring FEL dynamics and head-tail instability.Dattoli G., Mezi L., Renieri A., Migliorati M., Couprie M.E., Roux R., Nutarelli D., Billardon M., 1998,Phys. Rev. E 58, 6570.

Solvation structure of coumarin I in acetonitrile: Role of the electrostatic solute-solvent potential.Diraison M., Millie Ph., Pommeret S., Gustavsson T., Mialocq J.C., 1998, Chem. Phys. Lett. 282, 152.

95

Page 93: Service des Photons, Atomes et Molecules

Characteristic features of the x-ray spectra of a plasma produced by heating C02 clusters by intensefemtosecond laser pulses with 1=0.8 and 0.4mmDobosz S., Schmidt M, Perdrix M., Meynadier P., Gobert O., Normand D., A. Ya. Faenov, A.I. Magunov,T.A. Pikuz. I.Yu. Skobelev, N.E. Andreev, 1998, J.E.T.P Letters 68,485.

Photofragmentation ofhydrated iron ions Fe(H2O)+„ (n=l-9) at 532, 355, and 266 nmDukan L., del Fabbro L.. Pradel P., Sublemontier O.. Mestdagh J.M., Visticot J.P., 1998, Eur. Phys. J. D 3,257.Wave packet dynamics with Bose-Einstein condensates.Dum R., Sanpera A., Suominen K.A., Brewczyk M., Kus M., Rzcazewski K., Lewenstein M., 1998, Phys.Rev. Lett. 80, 3899.

Infrared electron photo emission from a gold surface.Farkas G., Toth C , Kohazi-Kis A., Agostini P., Petite G., Martin P., Berset J.M., Ortega J.M., 1998, J. Phys.B31.L461.

Configuration-interaction Hartree-Fock calculations for two-electron atoms using a pseudopotential.Féret L., Pascale J., 1998, Phys. Rev. A 55, 3585.

Two-photon double-resonant excitation of the Xe* 5p5nf (J=2) autoionization states using synchronizedlaser and synchrotron radiation pulses.Gisselbrecht M., Marquette A., Meyer M., 1998, J. Phys. В 31, L977.

Femtosecond dynamics of " TICT " state formation in small clusters : the dimethylaminobenzomethyle ester-acetonitrile system.Grégoire G., Dimicoli I., Mons M., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D.,1998, J. Phys. Chem. A 102, 7896.

Is Nal soluble in water clusters ?Grégoire G., Mons M., Dimicoli I., Dedonder-Lardeux C , Jouvet C , 1998, Eur. Phys. J. D 1, 5.

Photoionization of Nal : inward-outward asymmetry in the wavepacket detection.Grégoire G., Mons M., Dimicoli I., Piuzzi F., Charron E., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D., Suzor-Weiner A., 1998, Eur. Phys. J. D 1, 187.

Real time monitoring of the evaporative cooling : an evaporation can hide an other one. Application to thedynamics ofNaI-(NH3)n clusters.Grégoire G., Mons M., Dimicoli L, Charron E., Dedonder-Lardeux C, Jouvet C , Martrenchard-Barra S.,Solgadi D., 1998, J. Chem. Phys. 110,1521.

Excitation processes for the emission of the unidentified IR bands.Guillois O., Ledoux G., Nenner I., Papoular R., Reynaud C , 1998, Far. Disc. 109, 335.

Laser induced intrinsic defects : subpicosecond study of trapping kinetics.Guizard S., Itoh C , Martin P., d'Oliveira P., Meynadier P., Perdrix M., Petite G., 1998,Nucí. Instr. Meth. В 141, 66.

Time-resolved fluorescence spectroscopy of high-lying electronic states of Zn-tetraphenylporphyrin.Gurzadyan G., Tran-Thi Т.Н., Gustavsson T., 1998, J. Chem. Phys. 108, 385.

Femtosecond spectroscopic study of relaxation processes of three amino-substituted coumarin dyes inmethanol and dimethylsulfoxide.Gustavsson T., Cassara L., Gulbinas V., Gurzadyan G., Mialocq J.C., Pommeret S., Sorgius M., Van DerMeulen P., 1998, J. Phys. Chem. A 102, 4229.

96

Page 94: Service des Photons, Atomes et Molecules

Neutral dissociation of hydrogen following photoexcitation of H Cl at the chlorine K-edge.Hansen D.L., Arrásate M.E., Cotter J., Fisher G.R., Leung K.T., Levin J.C., Martin R., Neill P., PereraR.C.C., Sellin I.A., Simon M., Uehara Y., Vanderford В., Whitfield S.B., Lindle D.W., 1998, Phys. Rev. A57, 2608.

Postcollision-interaction effects in HCl following photofragmentation near the chlorine K-edge,Hansen D.L., Armen G.B., Arrásate M.E., Cotter J., Fisher G.R., Leung K.T., Levin J.C., Martin R., Neill P.,Perera R.C.C., Sellin I.A., Simon M., Uehara Y., Vanderford В., Whitfield S.B., Lindle D.W., 1998, Phys.Rev. A 57, R4090.

Photofragmentation of third-row hydrides following photoexcitation at deep-core levels.Hansen D.L., Arrásate M.E., Cotter J., Fisher G.R., Hemmers О., Leung K.T., Levin J.C., Martin R., NeillP., Parera R.C.C., Sellin I.A., Simon M., Uehara Y., Vanderford В., Whitfield S.B., Lindle D.W., 1998,Phys. Rev. A 58, 3757.

Production ofmulticharged atomic ions from laser-induced multiple ionization of small molecules.Hering Ph., Cornaggia C , 1998, Phys. Rev. A 57, 4572.

Nanoparticles produced by laser pyrolysis of hydrocarbons: analogy with carbon cosmic dust.Herlin N., Bohn I., Reynaud C , Cauchetier ML, Galvez A., Rouzaud J.N., 1998, A&A 330, 1127.

Photoabsorption by an ion immersed in a plasma at any temperature.Ishikawa K., Felderhof B.U., Blenski T., Cichocki В., 1998, J. of Plasma Phys. 60, 787.

High-flux and high-resolution spectroscopic facility in the VUV region at Super-ACO.Ito K.r Lagarde В., PolackF., Alcaraz C , Nahon L., 1998, J. Synch. Rad. 5, 839.

New spectroscopic results in Kr VIII.Jacquet E., Boduch Ph., Chantepie M., Lauhlé С , Lecler D., Pascale J., Wilson M., 1998, Physica Scripta 58,570.

Femtosecond fluorescence spectroscopy of self-trapped charge-transfer excitons in films ofdimethylaminobenzylidene 1,3-indandione (DMABI).Jursemas S., Gulbinas V., Gustavsson T., Mialocq J.C., Valkunas L., 1998, Lietuvos Fizikos Zurríalas 38, 53.

Optical properties of nanocrystalline silicon thin films produced by size-selected cluster beam deposition.Laguna M. A., Paillard V., Kohn В., Ehbrecht M., Huisken F., Ledoux G., Papoular R., Hofmeister H., 1998,Journal of Luminescence 80, 223.

Triarylpyrylium salts : dynamics of the monomer-dimer equilibrium via a triplet absorption study.Lampre I., Markovitsi D., Sharonov A., Veber M., 1998, Chem. Phys. Lett. 293,423.

High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses.Lange H.R., Chiron A., Ripoche J.F., Mysyrowicz A., Breger P., Agostini P., 1998, Phys. Rev. Lett. 81,1611.

An experimental and theoretical study of jet-cooled complexes of chiral molecules: the role of dispersiveforces in chiral discrimination.Le Barbu К., Brenner V., Millie Ph., Lahmani F., Zehnacker-Rentien A., 1998, J. Phys. Chem. A 102, 128.

Beam-quality measurement of a focused high-order harmonic beam.Le Dé-roff L., Salières P., Carré В., 1998, Opt, Lett. 23, 1544.

Silicon as a candidate carrier for ERE.Ledoux G., Guillois O., Huisken F., Laguna M.A., Nenner L, Paillard V., Papoular R., Porterat D., ReynaudС , 1998, A&A 333, L39.

97

Page 95: Service des Photons, Atomes et Molecules

Measurement of electric transition dipole moment using intracavity near resonant propagation in atomicvapours.LHermite D.. Comte M., Gobert О., de Lamare J„ 1998, Opt. Commun. 155, 270

Explosion dynamics of rare gas clusters in strong laser fields.Lezius M., Dobosz S., Normand D., Schmidt M., 1998 Phys. Rev. Lett. 80, 261.

Interfacial carrier dynamics of cadmium sulfide nanoparticles.Logunov S., Green T., Marguet S., El-Sayed M.A., 1998, J. Phys. Chem. A 102, 5652.

Influence of disorder on electronic excited states : An experimental and numerical study ofalkylthiotriphenylene columnar phases.Marguet S., Markovitsi D., Millie Ph., Sigal H., Kumar S., 1998, J. Phys. Chem. В 102, 4697.

Surface photovoltage in semiconductors under pulsed optical excitation and its relevance to synchrotronradiation spectroscopy.Marsi M., Nation L., Couprie M.E., Garzella D., Hara T., Bakker R., Billardon M., Delboulbé A., IndlekoferG., Taleb-Ibrahimi A., 1998, J. Electr. Spectr. Rel. Phen. 94, 149.

Reactivity of vinyl chloride ionic clusters.Martrenchard-Barra S., Dedonder-Lardeux C , Dimicoli L, Grégoire G., Jouvet С , Solgadi D., 1998, Chem.Phys. 239, 331.

Thermal behaviour ofSiCN nanopowders issued from laser pyrolysis.Mayne M., Bahloul-Hourlier D., Doucey В., Goursat P., Cauchetier M., Herlin N., 1998, J. Eur. Cer. Soc. 18,1187.

SijN4/SiCN nanocomposites : tensile ductility and rupture behaviour.Mayne M., Rouxel T., Bahloul-Hourlier D., Besson J.L., 1998, J. Eur. Cer. Soc. 18,1985.

Absorption spectroscopy of a radiatively-heated samarium plasma,Merdji H., Missalla T., Blenski T., Perrot F., Gauthier J.C., Eidmann К., Chenais-Popovics С , 1998, Phys.Rev.E 57, 1042.

Photodissociation dynamics of Ch in a xenon cluster.Mestdagh J.M., Berdah M., Auby N., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D.,Visticot J.P., 1998, Eur. Phys. J. D 4, 291.

Site-selective photochemistry of core excited molecules: role of the internal energy.Miron C , Simon M., Leclercq N., Hansen D.L., Morin P., 1998, Phys. Rev. Lett. 81,4104.

Resonant Auger spectroscopy on SiF4 and SiCU molecules excited around the silicon 2p edge.Miron C , Guillemin R., Leclercq N., Morin P., Simon M., 1998, J. Electr. Spectr. Rel. Phen. 93, 95.

Electron/Ion spectroscopy: aprobé of molecular dynamics.Morin P., Simon M., Miron C , Leclercq N., Hansen D.L., 1998, J. Electr. Spectr. Rel. Phen. 93,49.

A new VUV high-resolution undulator-based beamline at Super-ACO.Nahon L., Lagarde В., Polack F., Alcaraz С Dutuit O., Vervloet M., Ito K., 1998, Nucl. Instr. Meth. A 404,418.

OPHÉLIE : a variable polarization electromagnetic undulator optimized for a VUV beamline at Super-ACO.Nahon L., Corlier M., Peaupardin P., Marteau F., Marcouillé O., Alcaraz С, 1998, J. Synch. Rad. 5,428.

Gamma-rays produced by Compton back scattering of the Super-ACO free electron laser.Nutarelli D., Couprie M.E., Nahon L., Bakker R., Delboulbé A., Roux R., Visentin В., Billardon M., 1998,Nucl. Instr. Meth. A 407,459.

98

Page 96: Service des Photons, Atomes et Molecules

Silicon carbide and the 11.3 p.m. feature.Papoular R., Cauchetier M., Begin S., Le Caer G., 1998, A&A 329, 1035.

Photoinduced electron transfer in jet cooled molecular complexes.Piuzzi F., Uridat D., Dimicoli I., Mons M., Tramer A., Le Barbu К., Lahmani F., Zehnacker-Rentien A.,1998, Acta Physica Polonica A 95,121.

Analysis of correlation effects in autoionizing doubly excited states of barium using Coulomb Green'sfunction.Poirier M., Semaoune R., 1998, J. Phys. В 31, 1443.

Ultrafast events in the electron photodetachment from the hexacyanoferrate (II) complex in solution.Pommeret S., Naskrecki R., Van Der Meulen P., Ménard M., Vigneron G., Gustavsson T., 1998, Chem.Phys. Lett. 288, 833.

Generation of attosecond pulse trains during the reflection of a very intense laser on a solid surface.Plaja L., Roso L., Rzazewski K., Lewenstein M., 1998, J. Opt. Soc. Am. В 15, 1904.

High current operation of storage ring free electron laser.Roux R., Couprie M.E., Bakker R.J., Garzella D., Nutarelli D., Nahon L., Billardon M., 1998, Phys. Rev. E.58, 6584.

Temporal and spectral tailoring of high-order harmonics.Salières P., Antoine Ph., de Bohan A., Lewenstein ML, 1998, Phys. Rev. Lett. 81, 5544.

Effects of heat treatment on the electronic structure of nanometric Si/C/N powders by X-ray photoélectronspectroscopy.Sénémaud С , Gheorghiu de la Rocque A., Dufour G., Herlin N., 1998, J. Appl. Phys. 84, 4945.

Spectroscopic techniques using synchrotron radiation and free electron and conventional lasers.Tadjeddine Peremans A., Le Rille A., Zheng W.Q., Ortega J.M., Glotin F., Prazerez R., Meyer M.,Lacoursière J., Nahon L., Gisselbrecht M., Morin P., Larzillière M., Marsi M., Taleb-Ibrahimi A., CouprieM.E., HaraT., Garzella D., 1998, J. Synchr. Rad. 5, 293.

Early stages of the pyrolytic crystallization in amorphous nano-powders of silicon carbonitrides SixCyNz bycombined high X-ray and neutron diffractometry.Ténégal F., Bouchet В., Bellissent R., Herlin N.. Cauchetier M., Dixmier J., 1998, Philosophical Magazine A78, 803.

Characterization of photo-induced electron transfer in jet-formed acceptor-donor complexes : I-Isomericforms of the complexes of anthracene with aniline derivatives.Tramer A., Brenner V., Millie Ph., Piuzzi F., 1998, J. Phys. Chem. A 102, 2798.

Characterization of photo-induced electron transfer in jet-formed acceptor-donor complexes : H-Photo-induced electron transfer : rates and mechanisms.Tramer A., Brenner V., Millie Ph., Piuzzi F., 1998, J. Phys. Chem. A 102, 2808.

Existence of two internal energy distributions in jet-formed van der Waals heteroclusters : example of theanthracene-(argon)„ system.Uridat D., Brenner V., Dimicoli I., Le Calvé J., Millie Ph., Mons M., Piuzzi F., 1998, Chem. Phys. 239, 151.

99

Page 97: Service des Photons, Atomes et Molecules

1999

First polarization measurements of OPHELIE : a versatile polarization VUV undulator at Super-ACO.Alcaraz C , TMssen R., Compin M., Jolly A, Drecher M., Nahon L., 1999, Proc. SPIE 3773, 250.

Characterization of a high-density large scale pulsed gas jet for laser-gas interaction experiments.Auguste T., Bougeard M., Caprin E., d'Oliveira P., Monot P., 1999, Rev. Sei. Instrum. 70, 2349.

Velocity dependence of the emitted light polarisation following single electron capture for the Kr8+ Li(2s)collision system between 0.1 and 3 keV/amu.Boduch Ph., Chantepie M., Cremer G., Jacquet E., Kucal H., LauMé С , Lecler D., Pascale J., 1999, PhysicaScripta T 80, 364.

On the influence of RRC and RSC dimerizations on the shape of semi-integrated voltammograms : a mixedasymptotic and numerical analysis.Bureau Ch., Soudan J.M., Lecayon G., 1999, Electrochimica Acta 44, 3303.

Laser pyrolysis of hydrocarbons in synthesis of soot containing fuller enes.Cauchetier M., Armand X., Herlin N., Alexandrescu R., Morjan I., Petcu S., Voicu I., 1999, FullereneScience and Technology 7, 91.

Si/C/N nanocomposite powders with Al (and Y) additives obtained by laser spray pyrolysis of organometalliccompounds.Cauchetier M., Armand X., Herlin N., Mayne M., Fusil S., Lefevre E., 1999, J. Mat. Sei. 34,1.Effects of excess carbon and vibrational properties in ultrafine SiC powders.Charpentier S., Kassiba A., Bulou A., Monthioux M, Cauchetier M., 1999, European Physical JournalApplied Physics 8, 111.

Investigation of the paramagnetic centres and electronic properties of silicon carbide nanomaterials.Charpentier S., Kassiba A., Emery J., Cauchetier M., 1999, J. Phys. С 11,4887.

Optimizing high harmonic generation in absorbing gases -.model and experiment.Constant E., Garzella D., Breger P., Mevel E., Dorrer Ch., Leblanc С , Salin F., Agostini P., 1999, Phys.Rev. Lett. 82, 1668.

Gamma-rays produced by intra-cavity Compton back scattering of a storage ring free electron laser.Couprie M.E., Nutarelli D., Roux R., Visentin В., Nahon L., Bakker R., Delboulbé A., Billardon M., 1999, J.Phys. В 32, 5657.

Short wavelength free electron laser source.Couprie M.E. in "Les nouvelles sources ultra-brèves de rayons X et leurs applications", 1999, édité par J. C.Gauthier, Numéro Spécial des Comptes Rendus de l'Académie des Sciences.

Interdependence of the electron beam excitations with the FEL stability on the Super-ACO storage ring.Couprie M.E., Roux R., Nutarelli D., Renault E., Billardon ML, 1999, Nucl. Instr. Meth. A 429, 165.

Laser à electrons libres.Couprie M.E., Mosnier A., Ortega J.M., Nenner I., 1999, Actes de l'Académie des Sciences.

Storage ring free electron laser and longitudinal instabilities experiments.Couprie M.E., 1999, Nuovo Cimento A112, 475.

Laser UV à électrons libres.Couprie M.E., 1999, J. de Phys. IV 9, Pr5.

100

Page 98: Service des Photons, Atomes et Molecules

Methanol-acetonitrile complexes trapped in argon and nitrogen matrices : infrared induced isomerizationand theoretical calculations.Coussan S., Bouteiller Y., Perchard J.P., Brenner V., Millie Ph., Zheng W.Q., Talbot F., 1999, J. Chem.Phys. 110, 20.

A new method for deriving atomic charges and dipoles for n-alcanes : investigation of transferability andgeometry dependence.Delhommelle J., Granucci G., Brenner V., Milli6 Ph., Boutin A., Fuchs A.H., 1999, Mol. Phys. 97, 117.

Observation of ionswith energies above 100 keV produced by the interaction of a 60 fs laser pulse withclusters.Dobosz S., Schmidt M., Perdrix M., Meynadier P., Gobert O., Normand D., Ellert C , Blenski T., Faenov A.,Magunov A.I., Pikuz T.A., Skobelev I., Andreev N.E., 1999, J.E.T.P. vol. 88, 1122.

Study of the multicharged ion Ar6+ by a configuration-interaction Hartree-Fock method using apseudopotential.Feret L., Pascale J., 1999, J. Phys. B 32,4175.

Local structure of pre-alloyed Al/Y/SiCN nanopowders studied by XAS at the Al-K edge using fluorescenceyield detection.Flank A.M., Armand X., Cauchetier M., Mayne M, 1999, J. Synch. Rad. 6, 512.

Base specific photocleavage ofDNA induced by pazelliptine sensitization.Fontaine-Aupart M.P., Renault E., Videlot C , Tfibel F., Pansu R., Charlier M., Pernod P., 1999, Photochem.Photobiol. 70, 829.

Influence of molecular oxygen on the charge transfer properties of a Co(II)porphyrin-Al(III)phthalocyanineaggregate. Excited states dynamics and photobiological activities.Fournier T., Tran-Thi T.H., Liu Z., Houde D., Brasseur N., La Madeleine C , Langlois R., Van Lier J.E.,Lexa D., 1999, J. Phys. Chem. A 103, 1179.

Cluster Isolated Chemical Reactions : Medium effects on reactivity.Gaveau M.A., Gee C , Mestdagh J.M., Visticot J.P., 1999, Comments At. Mol. Phys. 34, 241.Atom-Atom correlations induced by resonant coupling with a laser field.Gontier Y., 1999, Phys. Rev. A 59, 4747.

Infrared ion-dip spectroscopy of a noradrenaline analogue : hydrogen bonding in 2-amino 1-phenyl ethanoland its singly hydrated complex.Graham R.J., Kroemer R., Mons M., Robertson E.G., SnoekL.C, Simons J.P., 1999, J. Phys. Chem. A 103,9706.

Diamond infrared emission bands in circumstellar media.Guillois O., Ledoux G., Reynaud C , 1999, The Astrophysical Journal 521, L133.

Charge transfer induced twisting ofN,N-dimethylaminobenzylidene-l,3-indandione in solution.Gulbinas V., Kodis G., Jursenas S., Valkunas L., Gruodis A., Mialocq J.C., Pommeret S., Gustavsson T.,1999, J. Phys. Chem. A 103, 3969.

Multi-Ion Coincidence Measurements of Methyl Chloride Following Photofragmentation Near the ChlorineK-Edge.Hansen D.L., Cotter J., Fisher G.R., Leung K.T., Martin R., Neill P., Perera R.C.C., Simon M., Uehara Y.,Vanderford B., Withfield S.B., Lindle D.W., 1999, J. Phys. B 32, 2629.

Coulomb explosion o/W2 and CO2 using linearly and circularly polarized femtosecond laser pulses.Hering Ph., Cornaggia C , 1999, Phys. Rev. A 59, 2836.

101

Page 99: Service des Photons, Atomes et Molecules

Silicon carbide nanoparticles produced by C02 laser pyrolysis ofSÍH4/C2H2 gas mixtures in a flow reactor.Huisken F., Kohn В., Alexandrescu R., Cojocaru S., Crunteanu A., Reynaud C , Ledoux G., 1999, J.Nanopart. Res. 1, 293.

State-selective electron capture following Kr8+ - Li(2s) collisions for impact energies from 0.1 to 1.5keV/amu.Jacquet E., Chantepie M., Boduch Ph., Lauhlé С , Lecler D., Pascale J., 1999, J. Phys. В 32,1151.

Usefulness of X-ray lasers for science and technology.Jamelot G., Carillon A., Jaegle P., Klisnick A., Ros D., Zeitoun P., Fourcade P., Hubert S., Lagron J.C.,Vanbostal L., Sebban S., Albert F., Agostini P., Garzella D., Brega P., Belsky A., Kamenskikh I., JoyeuxD., Phalippou D., Boussoukaya M., Zeitoun- Fakiris A., de Lacheze-Murel G., Bechir E., 1999, ШЕЕ J. Sel.Top. Quan. Elec. 5, 1486.

Demonstration of two color transient pumping in Ni like silver at 13.9 nm and 16.1 nm. New progress inapplications of X-ray lasers.Klisnick A., Carillon A., Jamelot G., Jaegle P., Ros D., Zeitoun P., Albert F., Fourcade P., Kuba J., MiquelJ.L., Blanchot N., Wyart J.F., Agostini P., Breger P., Garzella D., Müller H., Joyeux D., Phalippou D.,Bechir E., Hubert S., De Lacheze-Murel G., Daido H., 1999, SPJE 3776, 282.

Propriétés de cohérence spatiale d'un faisceau d'harmoniques.Le Déroff L., Carré В., Salières P., Joyeux D., Phalippou D., 1999, J. de Phys. IV 9 , Pr 5,17.

Spectroscopic study of a symmetrical bis-crown fluoroionophore of the diphenylpentadione series.Marcotte N., Fery-Forgues S., Lavabre D., Marguet S., Pivovarenko V.G., 1999, J. Phys. Chem. A 103,3163.Electronic coupling responsible for energy transfer in columnar liquid crystals.Markovitsi D., Marguet S., Gallos L., Sigal H., Millie Ph., Argyrakis P., Ringsdorf H., Kumar S., 1999,Chem. Phys. Lett. 306,163.

Proton-transfer reaction in the ground state of phenol-ammonia clusters : an experimental study.Martrenchard-Barra S., Dedonder-Lardeux C , Jouvet C, Solgadi D., Vervloet M., Grégoire G., Dimicoli L,1999, Chem. Phys. Lett. 310,173.

Internal energy of photofragments studied by dispersed fluorescence spectroscopy.Meyer M., Marquette A., Gisselbrecht M., 1999, J. Electr. Spectr. Rel. Phen. 101, 81.

Spectroscopie laserfemtoseconde dans l'eau, milieu biologique.Mialocq J.C., Gustavsson T., Pommeret S., 1999, J. de Phys. IV 9, Pr5, 101.

Self-association of amphotericin В in water. Theoretical energy and spectroscopy studies.Millie Ph., Langlet J., Berges J., Caillet J., Demaret J.Ph., 1999, J. Phys. Chem. B 103,10883.

Conformations of 2-phenylethyl alcohol and of its singly hydrated complexes : UV and IR/UV ion-dipspectroscopy.Mons M., Robertson E.G., SnoekL.C, Simons J.P., 1999, Chem. Phys. Lett. 310,423.

Site dependence of the binding energy of water to índole : a microscopic approach to the side chainhydration of tryptophan.Mons M., Dimicoli I., Tardivel В., Piuzzi F., Brenner V., Millie Ph., 1999, J. Phys. Chem. A103, 9958.

Applications of UV-storage ring free electron lasers : the case ofSuper-ACO.Nahon L., Renault E., Couprie M.E., Mérola F., Dumas P., Marsi M., Taleb-Ibrahimi A., Nutarelli D., RouxR., Billardon M., 1999, Nucl. Instr. Meth. A 429, 489.

102

Page 100: Service des Photons, Atomes et Molecules

Two-color experiments combining the UV-storage ring free electron laser and the SA5IR beamline at Super-ACO.Nahon L., Renault E., Couprie M.E., Nutarelli D., Garzella D., Polack F., Carr G.L., Williams G., Dumas P.,1999, SPffi 3775, 145.

Polarization effects in autoionization processes of alkaline-earth atoms: Coulomb Green's function analysis.Poirier M., Semaoune R., 1999, Phys. Rev. A 59, 3471.

Optical design and performances of the IR microscope beamline at SUPER-ACO-LURE.Polack F., Mercier R., Nahon L., Armellin С , Marx J.P., Tanguy J.M., Delboubé A., Couprie M.E., DumasP., 1999, Proc. SPIE 3775, 13.

Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies.Quere F., Guizard S., Martin P., Petite G., Gobert О; Meynadier P; Perdrix M., 1999, Appl. Phys. В 68,459

UV dielectric multilayers mirrors for free electron lasers.Renault E., Nutarelli D., Garzella D., Couprie M.E., Billardon M., 1999, SPIE 3738, 354.

Charge-exchange-induced formation of hollow atoms in high intensity laser-produced plasmas.Rosmej F.B., Faenov A.Ya., Pikuz T.A., Magunov A.I., Skobelev I.Yu., Auguste T., d'Oliveira P., Hulin S.,Monot P., Andreev N.E., Chegotov M.V., Veisman M.E., 1999, J. Phys. В 32, L107.

Radiation from autoionizing levels correlated with single excited states of highly charged ions in dense coldplasmas.Rosmej F.B., Faenov A.Ya., Pikuz T.A., Skobelev I.Yu., Flora F., Bollanti S., LazzaroP. Di., Letardi T.,Vigli-Papadaki K., Notolla N., Grilli A., Palladino L., Reale A., Scafati A., Reale L., Auguste T., d'OliveiraP., Hulin S., Monot P., Zigler A., Fraenkel M., 1999, Physica Scripta T 80, 547.

Storage ring free electron laser and coherent synchrotron oscillation : Simulation approach.Roux R., Billardon M., 1999, Nuovo Cimento A 112, 513.

Anderson localization of electromagnetic waves in confined dielectric media.Rusek M., Orlowski A., 1999, Phys. Rev. E 59, 3655.

Frequency domain interferometry in the XUVwith high-order harmonics.Salieres P., Le DéroffL., Auguste T., Monot P., d'Oliveira P., Campo D., Hergott J.F., Merdji H., Carré В.,1999, Phys. Rev. Lett. 83, 5483.

Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion.Salle В., Gobert О., Meynadier P., Perdrix M., Petite G., Semerok A., 1999, Appl. Phys.A.69, 381

Observation of ions with energies above lOOkeV produced by the interaction of a 60fs laser pulse with CO2clusters.Schmidt M., Dobosz S., Perdrix M., Meynadier P., Gobert O., Normand D., Ellert Ch., Blenski T., Faenov A.Ya., Magunov A.I.,. Pikuz T.A,. Skobelev I.Yu,. Andreev , 1999, N.E, J.E.T.P 88,1122.

Fragment emission patterns from Coulomb explosion of diatomic molecules in intense laser fieldsSchmidt M., Dobosz S., Meynadier P., D'Oliveira P., Normand D., Charron E., Suzor-Weiner A., 1999,Phys. Rev. A 60, 4706.

Correlation between nuclear motion in the core excited CF4 molecule and molecular dissociation afterresonant Auger decay.Ueda K., Simon M., Miron C, Leclercq N., Guillemin R., Morin P., Tanaka S., 1999, Phys. Rev. Lett. 83,3800.

High-Harmonics generation at long wavelengths.Sheehy В., Martin J.D.D., DiMauro L.F., Agostini P., Schäfer K.J., Gaarde M.B., Kulander K.C., 1999,Phys. Rev. Lett. 83, 5270.

103

Page 101: Service des Photons, Atomes et Molecules

Dephasing of Josephson oscillations between two coupled Bose-Einstein condensates.Villain P., Lewenstein M., 1999, Phys. Rev. A. 59, 2250.

European project to develop a UV/VUVfree-electron laser facility on the ELETTRA storage ring.Walker R.P., Diviacco В., Fava C , Gambitta A., Marsi M., Mazzolini F., Couprie M.E., Nahon L., NutarelliD., Renault E., Roux R., Poole M., Bliss N., Chesworth A., Clarke J.A., Nolle D., Quick H., Dattoli G.,Giannessi L., Mezi L., Ottaviani P.L., Torre A., Eriksson M , Werin W., 1999, Nucl. Instr. Meth. A 429, 179.

Direct spectroscopic observation of multiple-charged-ion acceleration by an intense femtosecond-pulselaser.Zhidkov A.G., Sasaki A., Tajima T., Auguste T., d'Oliveira P., Hulin S., Monot P., Faenov A.Ya., PikuzT.A., Skobelev I.Yu., 1999, Phys. Rev. E 60, 3273.

2000

Velocity dependence of single electron capture for the 0.4-5 keV/amu Ar8+- Cs(6s) collision system.Bazin V., Boduch P., Chantepie M., Cremer G., Jacquet E., Leclerc D., Pascale J., 2000, Phys. Rev. A (inpress).

Interchain interaction in conjugated materials : The exciton model vs. the supermolecular approach.Beljonne D., Cornel J., Silbey R., Millie Ph., Brédas J.L., 2000, J. Chem. Phys. 112, 4749.

Influence ofcovalence and onion symmetry on the structure of small metal hydroxyde clusters: Sodiumversus silver hydroxyde.Bertolus M., Brenner V., Millie Ph., 2000, Eur. Phys. J. D 11, 387.

A superconfiguration code based on the local density approximation.Blenski T., Grimaldi A., Perrot F., 2000, J. Quant. Spectrosc. Radiât. Transfer 65, 91.

Photoabsorption in dense plasmas.Blenski T., 2000, Astrophys. J. Suppl. Ser. 127, 275.

Cluster Isolated Chemical Reaction (CICR) spectroscopy : Ba atoms and Ba(CH4)n complexes on largeneon clusters.Briant M., Gaveau M.A., Mestdagh J.M., Visticot J.P., 2000, J. Chem. Phys. 112, 1744.

Infrared spectra of the СгНг - HCl complexes : an experimental and ab initio study.Carçabal P., Broquier M., Chevalier M., Picard-Bersellini A., Brenner V., Millie Ph., 2000, J. Chem. Phys. (in press ).

Radiative heating ofB, Al and Ni thin foils at 15-25 eV temperatures.Chenais-Popovics C , Gilleron F., Fajardo M., Merdji H., Missalla T., Gauthier J.C., Renaudin P., Gary S.,Perrot F., Blenski T., Fölsner W., Eidmann К., 2000, J. Quant. Spectrosc. Radiât. Transfer 65,117.

Opacity studies on iron in the 15-30 eV temperature range.Chenais-Popovics C , Merdji H., Missala T., Gilleron F., Gauthier J.C., Blenski T., Perrot F., mapisch M.,Bauche-Arnoult С , Bauche J., Bachelier A., Eidmann К., 2000, Astrophys. J. Suppl. Ser 127, 239.Non-sequential double ionization of small molecules induced by a femtosecond laser field.Comaggia C , Hering Ph., 2000, Phys. Rev. A 62, 023403.

Derivation of an Optimized Potential for Phase Equilibria (OPPE)for sulfides and thiols.Delhommelle J., Tschirwitz C , Ungerer P., Granucci G., Millie Ph., Pattou D., Fuchs A.H., 2000, J. Phys.Chem. В 104, 4745.

104

Page 102: Service des Photons, Atomes et Molecules

On the role of the definition of potential models in Gibbs ensemble phase equilibria simulation of the H2S-pentane mixture.Delhoinmelle J., Millie Ph., Fuchs A.H., 2000, Mol. Phys. (in press ).

Extreme ultraviolet interferometry measurements with high-order harmonics.Descamps D., LyngaC, Norin J., L'Huillier A., WahlstrOm C.G., Hergott J.F., Merdji H., Salieres P., BelliniM., Himsch T.W., 2000, Opt. Lett. 25, 135.

Atomic charges for molecular dynamics calculations.Dognon J.P., Durand S., Granucci G., Levy B., Millie" Ph., Rabbe C , 2000, J. Mol. Struct. (Theochem) 507,17.

Reaction between barium and N2O on large van der Waals clusters: progressive embedding of the BaOproduct inside argon and neon clusters.Gaveau M.A., Briant M., Fournier PR., Mestdagh J.M., Visticot J.P., 2000, Phys. Chem. Chem. Phys. 2,831.Binding energies and structures of NaI-(CHsCN)n=i.9 clusters: theoretical study of the contact ion pairversus the solvent-separated ion pair structures in a molecular cluster.Gregoire G., Brenner V., Millie" Ph., 2000, J. Phys. Chem. A 104, 5204.

Femtosecond pump-probe ionization of small Nal-S,, clusters, S:H2O,NH3. A tool to probe the structure ofthe cluster.Gregoire G., Mons M., Dimicoli I., Dedonder-Lardeux C , Jouvet C, Martrenchard S., Solgadi D., 2000, J.Chem. Phys. 112, 8794.

Ultrafast relaxation processes of triarylpyrylium cations.Gulbinas V., Markovitsi D., Gustavsson T., Karpicz R., Veber M., 2000, J. Phys. Chem. A. 104, 5181.

Soft Xray laser scheme in a plasma created by optical-field-induced-ionization of nitrogenHulin S., Auguste T., d'Oliveira P., Monot P., Jacquemot S., Bonnet L., Lefebvre E., 2000, Phys. Rev E. 61,5693.

Particle-in-cell simulations of multiple ionization of small molecules in a strong laser field.Ishikawa K., Blenski T., 2000, Phys. Rev. A 61, 063408.

Emission line polarization degrees and nlme-distributions produced by state selective electron capture inslow Kr8+ -Li(2s) collisions.Jacquet E., Kucal H., Bazin V., Boduch P., Chantepie M., Cremer G., Laulhe C , Leclerc D., Pascale J.,2000, Phys. Rev. A 62,022712.

Femtosecond excited-state dynamics in N,N-dimethylaminobenzylidene-l,3-indandione (DMABI) films.Jursenas S., Gulbinas V., Kuprionis Z., Kananavicius R., Kodis G., Gustavsson T., Mialocq J.C., ValkunasL., 2000, Synthetic Metals 109,169.

Excitation dynamics in solutions, films and crystals of"indandione-1,3 pyridinium betaine.Jursenas S., Kovalevskij V., Gulbinas V., Gruodis A., Kodis G., Muzikante I., Gustavsson T., Mialocq J.C.,Valkunas L., 2000, Molecular Crystals Liquid Crystals (in press).

Temporal and spatial coherence properties of high-order harmonics.Le DeroffL., Salieres P., Carre B., Joyeux D., Phalippou D., Monot P., d'Oliveira P., Auguste T., Merdji H.,Hergott J.F., 2000, Laser Physics 10, 294.

Measurement of the degree of spatial coherence of high-order harmonics using a Fresnel-mirrorinterferometer.Le DeroffL., Salieres P., Carre B., Joyeux D., Phalippou D., 2000, Phys. Rev. A 61,043802.

105

Page 103: Service des Photons, Atomes et Molecules

Photoluminescence of silicon nanocristallites : an astrophysical application.Ledoux G., Guillois O., Reynaud C , Huisken F., Kohn В., Paillard V., 2000, Materials Science &Engineering В 69, 350.

Potential energies, permanent and transition dipole moments for numerous electronic excited states ofNaK.Magnier S., Aubert-Frécon M., Millie Ph., 2000. J. Mol. Spectrosc. 200, 96.

Transient charge carrier distribution at UVphotoexcited SÍO2/SÍ interfaces.Marsi M., Belkou R., Grupp C , Panacione G., Taleb-Ibrahimi A., Nahon L., Garzella D., Nutarelli D.,Renault E., Roux R., Couprie M.E., Billardon M., 2000, Phys. Rev. В 61, R5070.

Electron relaxation in SÍO2 under strong laser field using high-order harmonics generation.Martin P., Merdji H.s Guizard S., Petite G., Quéré F., Carré В., Hergott J.F., Le Déroff L., Saueres P., GobertO., Meynadier P., Perdrix M., 2000, Laser Physics 10, 270.

Experimental and theoretical study of a differentially-pumped absorption gas cell used as a low energy-passfilter in the VUVphoton energy range.Mercier В., Compin M., Prévost С , Bellec G., Thissen R., Dutuit O., Nahon L., 2000, J. Vac. Sei. Technol.A ( in press ).

Ultra-fast electron relaxation measurements on S1O2 using high-order harmonics.Merdji M., Guizard S., Martin P., Petite G., Quéré F., Carré В., Hergott J.F., Le Déroff L., Salières P.,Gobert O., Meynadier P., Perdrix M., 2000, Laser and Particle Beams ( in press ).

Coherence properties of high-order harmonics: Applications to high density laser-plasma diagnostics.Merdji H., Salières P., Le Déroff L., Hergott J.F., Carré В., Descamps D., Norm J., Lyngâ С , L'Huillier A.,Wahlström CG., Bellini M., 2000, Laser and Particle Beams ( in press ).

Prereactive evolution of monoalkenes excited in the 6 eV region.Mestdagh J.M., Visticot J.P., Soep В., Elhanine M., 2000, J. Chem. Phys. ( in press ).

Intra and intermolecular n-type hydrogen bonding in aryl alcohols : UV and IR/UV ion-dip spectroscopy.Mons M., Robertson E.G., Simons P., 2000, J. Phys. Chem. A 104, 1430.

Role of the bending in the dissociation of selective resonant inner shell excitation as observed in CO2.Morin P., Simon M., Miron C , Leclercq N.. Kukk E., Bozek J.D., Berrah N., 2000, Phys. Rev. A 61, 701.

Commissioning of 0РНЕЫЕ in the DC mode : an electromagnetic planar/helical crossed VUV undulator atSuper-ACO.Nahon L., Peaupardin P., Marteau F., Marcouillé O., Brunelle P., Thissen R., Alcaraz C , Corlier M., 2000,Nucl. Instr. Meth. A 447, 569.

First losing of the FELICITA FEL at DELTA.Nolle D., Garzella D., Geisler A., Gianessi L., Hirsch M., Quick H., Ridder M., Schmidt T., Wille K., 2000,Nucl. Instr. Metfx A 445, 128.

Super АС О FEL oscillation at 300 nm.Nutarelli D., Garzella D., Renault E., Nahon L., Couprie M.E., 2000, Nucl. Instr. Meth. A 445, 143.

Formation offullerenes in the laser-pyrolysis of benzene.Petcu S., Cauchetier M., Armand X., Voicu L, Alexandrescu R., 2000, Combustion & Flame ( in press ).

A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion :application to the spectroscopy of tryptophan.Piuzzi F., Dimicoli I., Mons M., Tardivel В., Zhao Q., 2000, Chem. Phys. Lett. 320, 282.

Light andpH-driven electron transfer in the pyranine-methylviologen system.Prayer C , Tran-Thi Т.Н., Pommeret S., d'Oliveira P., Meynadier P., 2000, Chem. Phys. Lett, (in press).

106

Page 104: Service des Photons, Atomes et Molecules

Experimental evidence of excited multicharged atomic fragments coming from laser-induced Coulombexplosion of molecules.Quaglia L., Cornaggia C , 2000, Phys. Rev. Lett. 84, 4565.

Observation of hot electron relaxation in quartz using high order harmonics.Quéré F., Guizard S., Petite G., Martin P., Merdji H., Carré В., Hergott J.F., 2000, Phys. Rev. В 61, 9883.

Transient absorption spectroscopy using the Super-ACO storage ring FEL.Renault E., Nahon L., Nutarelli D., Garzella D., Mérola F., Couprie M.E., 2000, SPIE 3925, 29.

X-ray radiation from ions with K-shell vacancies.Rosmej F.B., Funk U.N., Geissel ML, Hoffmann D.H.H., Tauschwitz A., Faenov A.Ya., Pikuz T.A.,Skobelev I.Yu., Flora F., Bollanti S., Lazzaro P.Di., Letardi T., Grilli A., Palladino L., Reale A., TomassettiG., Scafati A., Reale L., Auguste T., d'Oliveira P., Hulin S., Monot P., Maksimchuk A., Pikuz S.A.,Umstadter D., Nantel M., Bock R., Dornik M., Stetter M., Stöwe S., Yakushev V., Kulisch M., Shilkin N.,2000, J. Quant. Spectrosc. Radiât. Transfer 65,477.

Status of the european storage ring FEL project at ELETTRA.Roux R., Braceo R., Diviacco В., Ferianis M., Gambitta A., Godnig R., Loda G., Marsi M., Mazzolini F.,Pangon G., Pangos N., Svandrlik M., Trovo M., Walker R.P., Zangrando D., Couprie M.E., Garzella D.,Nahon L., Nutarelli D., Renault E., Poole M.W., Bliss N., Chesworth A., Clarke J.A., Nolle D., Quick H.,Dattoli G., Giannessi L., Mezi L., Ottaviani P.L., Torre A., Eriksson M., Werin S., 2000, Nucl. Instr. Meth.A ( in press ).

Random Green matrices: From proximity resonances to Anderson localization.Rusek M., Mostowski J., Orlowski A., 2000, Phys. Rev. A 61, 022704.

Coherent ultrashori XUV emission by harmonic generation.Salières P., Le Déroff L., Hergott J.F., Merdji H., Carré В., 2000, Comptes Rendus de l'Académie desSciences, Série IV, 3, 317.

Tandem time-of-flight experiment for low energy collision studies.Sublemontier О., Poisson L., Pradel P., Mestdagh J.M., Visticot J.P., 2000, J. Am. Soc. Mass Spectrom. 11,160.

Local order determination in SiCN(AlY) laser-synthesized nanopowders by X-ray photoemissionspectroscopy.Ténégal F., Gheorghiu de La Rocque A., Dufour G., Senemaud C , Mayne M., Herlin-Boime N., Armand X.,Cauchetier M., 2000, Journal of Applied Physics 87, 7864.

107

Page 105: Service des Photons, Atomes et Molecules

Articles in proceedings

Faraday Discussion 108 on the Dynamics of Electronically-Excited States in Gaseous, Cluster andCondensed Media, Brighton, Royaume-Uni, 15-17 Decembre 1997.Dynamics of desorption of reaction products from reactions on large clusters.Visticot J.P., Gaveau M.A., Eulry P., Lengaigne M., Mestdagh J.M., Gee C.Faraday Discussion 108, 401, 1998.

Journees sur le De"veloppement et les Applications des Sources X et X-UV Intenses et Breves, Orsay,France, 5-6 mars 1998.Generation d'harmoniques laser dans les gaz : principals caracteristiques et premieres applications.Le Deroff L., Salines P., Carr6 B.

Lasers a electrons libres sur anneaux de stockage de troisieme generation.Couprie M. E.Ph. Zeitoun Ed., University Paris XI.

Atelier du Programme National Physico-Chimie du Milieu Interstellaire, Hendaye, France, 18-20 mai1998.La spectroscopie des poussieres interstellaires.Reynaud C.

9th CIMTEC, Florence, Italie, 12-19 Juin 1998.Chemical evolution oflaser formed Si/C/N/Al(+Y)/O nanopowders with synthesis conditions.Mayne M., Armand X., Cauchetier M., Doucey B., Bahloul-Hourlier D., Goursat P.Proceedings in Advances in Science and Technology - 14 - Ceramics ; Getting into the 2000's - Part B - P.Vincenzini Ed., Techna Sri, 211,1999.

Electronic structure of nanoscale Si/C/N poudres studied by X-ray photoelectron spectroscopy.S6n6maud M., Gheorghiu-de-la-Roque A., Bonnefont P.A., Dufour G., Cauchetier M., Armand X., Herlin-Boime N., Mayne M.Proceedings in Advances in Science and Technology -14- ceramics ; Getting into the 2000's - Part A - P.Vincenzini Ed., Techna Sri, 337, 1999.

6th European Particule Accelerator Conference, Stockholm, Suede, 22-26 Juin 1998.Beam dynamics in Super-ACO with a new 500 MHz fifth harmonic RF system.Billardon M., Couprie M. E., Nutarelli D., Flynn G., Marin P., Roux R., Sommer M.Institute of Physics Publishing Bristol and Philadelphia, 954.

The Super-ACO storage ring free electron laser operating with an harmonic RF cavity.Billardon M., Couprie M. E., Nahon L., Nutarelli D., Visentin B., Delboulb6 A., Flynn G., Roux R.Institute of Physics Publishing Bristol and Philadelphia, 670.

Operation of the Super-ACO free electron laser with a feedback damping quadrupolar modes of synchrotronoscillations.Billardon M., Bakker R. J., Couprie M. E., Garzella D., Nutarelli D., Roux R., Flynn G.Institute of Physics Publishing Bristol and Philadelphia, 679.

21s' International Symposium on Rarefied Gas Dynamics, Marseille, France, 26-31 Juillet 1998.Reaction between barium and N2O on large neon clusters.Gaveau M.A., Briant M., Vallet V., Mestdagh J.M., Visticot J.P.Proceedings of the 21st RGD.

109

Page 106: Service des Photons, Atomes et Molecules

20th International Free Electron Laser 1998, Williamsburg, Etats-Unis, 16-21 Aout 1998.Complete characterisation of UV dielectric multilayers mirrors for performances improvements of freeelectron lasers.Nutarelli D.. Couprie M.E., Renault E., Roux R., Nahon L., Delboulbe1 A., Boccara C, Billardon M.G. R. Neil, S. V. Benson Eds. Elsevier Science B. V. 11-63, 1999.

15th International Conference on Magnet Technology, Pekin, Chine, 21-31 Octobre 1998.A planar/helicoidal electromagnetic crossed overlapped undulator at LURE.Corlier M , Brunelle P., Herbeaux C , Marcouille' O.. Marlats J.L., Marteau F., Peaupardin P., Sommer M.,Veteran J. et Nahon L.L. Liangzhen, S. Gualiao et S. Luguang Ed., Science Press, 84.1998.

International Symposium on Carbon (TANSO-98), Tokyo, Japon 8-12 Novembre 1998.Study of the atomic configuation in laser synthesized Si/C/N nanopowders by X-ray photoelectronspectroscopy.Gherghiu de la Rocque A., Dufour G., S6n6maud C , Cauchetier M. et Legrand A.P.Materials Research Society Proceedings 501,115-120, 1998.

Characterisation of nanosized Si/C/Npowders formed by laser spray pyrolysis of hexamethyidisiloxame.Legrand A.P., El Kortobi Y., d'Espinose de la Caillerie J.B., Armand X., Fusil S. et Cauchetier M..The Carbon Society of Japan, Tokyo, 218-219.

NMR stdy of the Si/A Y/O/N phase in carbonitride nanocomposites obtained by laser-spray pyrolysis.Legrand A.P., El Kortobi Y., d'Espinose de la Caillerie J.B., Mayne M, Armand X et Cauchetier M.The Carbon Society of Japan, Tokyo, 324-325.

Nationales sur les Composites, Arcachon, France, 18-20 Novembre 1998.Effet d'ajouts d'aluminium ou de bore dans revolution thermique de poudres nanocomposites SiCN.Armand X., Herlin-Boime N., Mayne M., Cauchetier M.Compte rendu des ne m c s Journe'es Nationales sur les Composites, Arcachon, J. Lamon and D. Baptiste Eds.1,61, 1998.

Les Houches School, "Solid Interstellar Matter: The ISO Revolution", Les Ulis, France, 8-12 Mars1999.Present situation in the coal model for interstellar carbon dust.Guillois O., Ledoux G., Nenner I., Papoular R., Reynaud C.Les Houches n° 11, L. d'Hendecourt, C. Joblin & A. Jones Eds., EDP Sciences.

7th European Particule Accelerator Conference, New York, Etats-Unis, 22-26 Mars 1999.Commissioning of OPHELIE, the new electromagnetic crossed overlapped undulator at Super-ACO.Corlier M., Besson J.C., Brunelle P., Claverie J., Godefroy J.M., Herbeaux C , Lefebvre D., Marcouill6 O.,Marlats J.L., Marteau F., Michaut J., Peaupardin P., Petit A., Sommer M., Ve"t6ran J., Nahon L.IEEE Proc. PAC 99 (New York), 2686,1999.

Ultra-Intense Laser Interaction and Application I, , Elounda, Grece, 7-11 Mai 1999.Highly charged ions from rare gas and metal clusters in intense laser fieldsEllert C , Viallon J., Chevaleyre J., Dobosz S., Guet C , Huber B.A., Lebeault M.A., Lezius M.,. NormandD., Sublemontier O.? Schmidt M.

7th International Conference on Modelling, Monitoring and Management of Air Pollution, Palo-Alto,Californie, Etats-Unis, 27-29 Juillet 1999.Benzene and Toluene chemical sensors. Towards a monocyclic aromatic hydrocarbon badge for individualexposure.Calvo-Munoz M.L., Tran Thi T.H., Roux C.Air Pollution, 2000 (sous presse).

110

Page 107: Service des Photons, Atomes et Molecules

18tK International Conference on X-ray and Inner-Shell Processes, Chicago, Etats-Unis, 23-27 Aout1999.Charge exchange induced X-ray transitions of hollow ions in laser field ionized plasmas.Rosmej F.B., Hoffmann D.H.H., Faenov A.Ya., Pikuz T.A., Magunov A.I., Skobelev I.Yu., Auguste T.,d'Oliveira P., Hulin S., Monot P.

Dynamical effects and selective fragmentation after inner shell excitation.Simon M., Miron C , Guillemin R., Le Guen K., Ceolin D., Shigemasa E., Leclercq N., Morin P.AIP Conference Proceedings 2000.

The 1999 International Conference on Strongly Coupled Coulomb Systems, Saint-Malo, France, 4-10September 1999.Electronic structure and statistical mechanics of ionic configurations in hot plasmas.PerrotF.,BlenskiT.Proceeding of the Conference, 2000, (sous presse).

IFSA, Bordeaux, France, 12-17 Septembre 1999.The ASTROLABE 1 experiment: Rayleigh-Taylor instabilities in supernovae.Baclet Ph., Benuzzi-Mounaix A., Bouquet S., Cherfils C , Chieze J.P., Mucchielli F., Munsch P., Poles L.,Reverdin Ch., Teyssier R., Thais F., Thgbault J.P. Troussel Ph.

Investigation of fast ions and hot electrons in laser produced plasmas by means of high resolution X-rayspectroscopy.Rosmej F.B., Hoffmann D.H.H., SUB W., GeiBel M., Faenov A.Ya., Skobelev I.Yu., Magunov A.I., PikuzT.A., Bock R., Letardi T., Flora F., Bollanti S., Di Lazzaro P., Satov Yu. A., Smakovskii Yu. B., StepanovA.E., Roerich V.K., Khomenko S.V., Nischuk S., Makarov K.N., Reale A., Scafati A., Auguste T., d'OliveiraP., Hulin S., Monot P., Sharkov B.Y.X rays absorption in dense plasmas, Theory versus Experiment.Blenski T., Perrot F., Renaudin P., Chenais-Popovics C , Fajardo M., Merdji H., Gilleron F., Gauthier J.C.,Eidmann K., Andiel U.Proceedings published in Inertial Fusion Sciences and Applications 99, C. Labaune, W. J. Hogan and K. A.Tanaka Eds., Elsevier, Paris.

16lh International Conference on Magnet Technology, Ponte Verta Beach, Etats-Unis, 26 septembre - 2Octobre 1999.Performances of OPHELIE: a new type of undulator at LURE.Marteau F., Corlier M., Besson J.C., Brunelle P., Claverie J., Godefroy J.M., Herbeaux C , Lefebvre D.,Marcouille' O., Marlats J.L., Marx J. P., Peaupardin P., Petit A., Sommer M., Veteran J. Nation L.Transactions on Applied Superconductivity 10-1 (2000)

8th International Conference on Multiphoton Processes , Monterey, Etats-Unis, 3-8 Octobre 1999.Applications of high-order harmonic generation.Descamps D., Norin J., Lynga C , Buil S., l'Huillier A., WahlstrOm C.G., Sorensen S.L., Bjorneholm O.,Gisselbrecht M., Meyer M., Hergott J.F., Merdji H., Salieres P., Bellini M.

High order harmonic generation : A coherent ultrashort emission in the XUV range.Salieres P., Hergott J.F., Mardji H., le Deroff L., Cam* B., Auguste T., Monot P., d'Oliveira P., Joyeux D.,Phalippou D.ATP Conference Proceeding 2000.

Workshop "Perspectives on Atomic and Molecular Physics with a 30 Meters long Undulator", Spring8, Japon, 6-7 Decembre 1999.Relaxation dynamics of core excited molecules.Simon M., Miron C , Leclercq N., Morin P.Proceeding 2000 (sous presse).

I l l

Page 108: Service des Photons, Atomes et Molecules

15eme Congres Franc.ais sur les Aerosols, Paris, France, 8-9 Decembre 1999.Utilisation et etude d'un generateur d'aerosols pour la synthese de poudres ceramiques nanometriques.Mayne M.. Allain N., Armand X., Herlin-Boime N., Cauchetier M.Proceeding dans J. of Aerosol Science (sous presse).

5*me Colloque sur les Sources Coherentes et Incoherentes UV, VUV et X. Applications etDeveloppements Recents, He de Porquerolles, France, 16-19 Mai 2000.Etude du front d'onde des nouvelles sources XUV.Le Pape S., Zeitoun Ph., Carre" B., Dhez P., Francois M., Hergott J.F., Idir M., Merdji H., Salieres P.Proceeding 2000 (sous presse).

Organic-Inorganic hybrids : Science, Technology and Applications, Guilford, Royaume-Uni, 12-14Juin 2000.Monocyclic aromatic hydrocarbon sensors based on sol-gel material.Calvo-Munoz M.L., Tran-Thi T.H., Roux C, Bourgoin J.P., Ayral A., El-Mansoun A.PRA Proceedings, Organic-Inorganic Hybrids, (2000)

112

Page 109: Service des Photons, Atomes et Molecules

Book chapters

Rusek M., Qrlowski A.Localization of light in three-dimensional disordered dielectrics.Chapitre du livre: Optics of Nanostructured Materials, edited by Vadim A., Markel V. and Thomas F. (JohnWiley & Sons, Ltd., New York), 2000, to be published.

Salieres P., L'Huillier A., Antoine Ph., Lewenstein M.Study of the spatial and temporal coherence of high-order harmonics.Chapitre du livre: Adv. Atom, Molec. Opt. Phys. 41, 83.edited by Bederson B. and Walther H. (Academic Press ), 1999.

Lezius M, Schmidt M.Experiments on laser-heated rare gas clusters.Chapitre du livre : Introduction to molecules and clusters in intense laser fields , Cambridge UniversityPress., 2000, to be published.

Soep B., Mestdagh J.M.Electron-transfer reactions involving atoms, molecules and clusters.Chapitre du livre: Handbook of Election Transfer, edited by Haas Y. (John Wiley & Sons, Ltd., New York),2000, to be published.

113

Page 110: Service des Photons, Atomes et Molecules

Invited conferences

Agostini P.Circular dichroism in two-photon two-color ionization of atoms.Ultra-intense Laser Interaction and Applications I, Elounda, Grece, Mai 1999.

Agostini P.Ponderomotive shift and cross-correlation measurements of XUVpulses.Journ63S NSF-CNRS, Laboratoire d'Optique Appliquee, Ecole Polytechnique, Palaiseau, France, Juin 1999.

Agostini P.Atoms in intense and super-intense laser fields.Annual Meeting of the European Physical Society, Londres, Royaume-Uni, Septembre 1999.

Agostini P.Presentation generale de {'interaction laser-matiere.JECAM, Saclay, France, 17 Janvier 2000.

Blenski T.Quelques remarques sur les opacites theoriques.Atelier- " Vers une Astrophysique Experimentale aupres des Grands Lasers ", Meudon, France, 9-10Novembre 1998.

Blenski T.X-ray absorption in dense plasmas.Atelia-" Intense Laser Fields: X-Ray Generation and Applications", Les Houches, France, 8-11 Mars 1999.

Breger P.High harmonic generation and quasi-phase matching with self-guided femtosecond laser pulses.Ultrafast Phenomena, Garmish-Partenkirchen, Allemagne, 11-17 Juillet 1998.

Carre" B.Generation d'harmoniques laser dans les gaz : principals caracteristiques et premieres applications.Journees " DeVeloppement et Applications des Sources XUV Intenses et Breves ", University Paris XI,Orsay, France, 5-6 Mars 1998.

Cam* B.High-order harmonic generation : An XUV source in the femtosecond range.12th International Conference on Vacuum Ultraviolet Radiation Physics, San Francisco, Etats-Unis, 3-7 Aout1998.

Carre'B.Temporal and spatial coherence of high order harmonics.8th International Laser Physics Workshop (LPHYS'99), Budapest, Hongrie, 2-6 Juillet 1999.

CamJB.Generation d'harmoniques d'ordre eleve dans les gaz.Journees " Optiques UVX ", CNRS, Paris, France, 25 Septembre 1999.

Carr6B.La generation d'harmoniques d'ordre eleve: une source ultra-breve dans I'UVX.JECAM, Saclay, France, 17 Janvier 2000.

Carre" B.Coherence properties of high harmonic generation and applications.7th International Conference on X-Ray Lasers, Saint-Malo, France, 19-23 Juin 2000.

115

Page 111: Service des Photons, Atomes et Molecules

Cornaggia C.Laser-induced non-sequential double and multiple ionization of small molecules.7th International Laser Physics Workshop (LPHYS'98), Berlin, Allemagne , 4-10 Juillet 1998.

Couprie M. E.Implementing storage ring free electron lasers for users on synchrotron radiation facilities : from Super-ACO toSOLEIL.Free Electron Laser Facilities and Applications, Keihanna Plaza, Kyoto, Japon, Janvier 1998.

Couprie M. E.Lasers a electrons libres sur anneaux de stockage de troisieme generation.Journeys " De"veloppement et Applications des Sources X et X UV Intenses et Breves ", University Paris XI, Orsay,France, 5-6 Mars 1998.

Couprie M. E.Storage ring FEL and longitudinal instabilities.Workshop " Non Linear Problems in Charged Beam Transport in Linear and Recirculated Accelerators, Analysisof Transverse and Longitudinal Instabilities ", ENEA, Frascati, Italie, 13-15 Mai 1998.

Couprie M. E.Laser UV a electrons libres.UVX98, Collonges-la-Rouge, France, 6 Octobre 1998.

Couprie M. E.Overview of storage ring based FELs.Current Development on FELs, Lund, Suede, 18 Octobre 1998.

Couprie M. E.Ring based FELs in the UV.Workshop " New Sources of Coherent X-rays", Aix-en Provence, France, 5 Juillet 1999.

Couprie M. E.Are FEL's the fourth generation light sources?CERN Accelerator School, B6nodet, France, Septembre 1999.

Couprie M. E.The Super-ACO FEL source.Workshop " Synchrotron Radiation", JINR, Dubna, Russie, 1-3 Novembre 1999.

Dimicoli I.Structure and binding energy of organic molecule - water complexes.International Symposium on Molecular Clusters, Niederpocking by Munich, Allemagne, 25-29 Mai 1999.

EllertC.Highly charged ions from rare gas and metal clusters in intense laser fieldsUltra-Intense Laser Interaction and Application I, 7-11 Mai 1999, Elounda, Grece.

Gaveau M.A,Reaction between barium and N2O on large neon clusters.21eme International Symposium on Rarefied Gas Dynamics, Marseille, France, 26-31 Juillet 1998.

Gre"goire G.Separation de charges dans les agregats Nal - Sn ; S=H2O, NH3, CH3CN.GDR Agr6gats, Carry Le Rouet, France, 25-27 Novembre 1998.

Gr6goire G.La photoionisation par lasers femtoseconde: une sonde de la dynamique moleculaire.JECAM, Saclay, France, 17 Janvier 2000.

116

Page 112: Service des Photons, Atomes et Molecules

Marguet S.Transfert d'energie a I'etat singulet dans des cristaux liquides colonnaires.Lumieres sur les Systemes Mol£culaires Organises, Mulhouse, France, 10-12 Juin 1998.

Markovitsi D.Electronic excited states and excitation transport in columnar liquid crystals.Annual Meeting of the British Liquid Crystal Society, Leeds, Royaume-Uni, 6-8 Avril 1998.

Markovitsi D.Electronic excited states and excitation transport in columnar liquid crystals.Workshop of the D4 COST Action, Riva del Sole, Italie, 25-28 Avril 1998.

Markovitsi D.Excitation transport in columnar liquid crystals.Workshop on Organic Semiconductors, Marburg, Allernagne, 29 Septembre-ler Octobre 1999.

Merdji H.Interferometry using high-order harmonics: Application to high density laser plasma diagnostic.Workshop " Applications of High-Order Harmonics ", Lund, Suede, 17-18 Mars 2000.

Merdji H.Nouvelles perspectives de diagnostics de plasmas denses par generation d'harmoniques.5eme Colloque sur les Sources CoheYentes et Incohe'rentes UV, VUV et X. Applications et D6veloppementsRecents, He de Porquerolles, France, 16-19 Mai 2000.

Millie" Ph.Agregats moleculaires : de la structure a la rfactivite.GDR Agr6gats, Carry Le Rouet, France, 25-27 Novembre 1998.

Millie" Ph.Methode de Car et Parrinello : raise en service dans le cos de petits agregats silicium-carbone.Journees " Simulation Numerique, Matiere Condensed et D£sordre ", 5eme Edition, Universit6 Paris VI,France, 8-9 Juin 1999.

Structure des agregats moleculaires ionises.Energ&ique et R6activite" des Ions en Phase Gazeuse : Experience et The"orie (ERIG 99), Gif sur Yvette,France, 17-19 Novembre 1999.

Mons M.Ion-dip spectroscopy of conformers andhydrated clusters.International Symposium on Molecular Clusters, Niederpocking by Munich, Allemagne, 25-29 Mai 1999.

Mons M.Photoionisation laser de systemes moleculaires; photoexcitation de cations moleculaires: quelquesexemples et applications.Energ&ique et Reactivite" des Ions en Phase Gazeuse : Experience et The'orie (ERIG 99), Gif sur Yvette,France, 17-19 Novembre 1999.

Mons M.Energetics of hydrogen bonding in biomimetic molecules.Euroconference " Experimental Tools and Quantum Chemistry : Molecules of Biological Interest in the GasPhase "„ Les Houches, France, 13-18 Mai 2000.

Morin P.Le projet SOLEILColloque annuel de l'Association Francaise de Cristallographie, Orleans, France, 5-7 F6vrier 1998.

117

Page 113: Service des Photons, Atomes et Molecules

Morin P.Auger-ion coincidence spectroscopy applied to free molecules in the soft X ray regime.VUV 12, plenary session, San Francisco, Etats-Unis, 3-7 Aout 1998.

Morin P.Photoionisation dissociative de molecules isolees.Ecole th£matique Temps-Position-Image, Orsay, France, 3-5 Novembre 1999.

Nahon L.Applications of UV-storage ring free electron lasers : the case of Super-ACO.

20 t h international FEL 98 Conference and 5 t h FEL Users Workshop, Williamsburg, Etats-Unis, 16-21Aout 1998.

Nahon L.Potentialities offered by UV-storage ring FELs as a source for scientific applications.Low Energy Sources Workshop, Daresbury, Royaume-Uni, 5-6 Mars 1999.

Nahon L.Performances obtenues sur la ligne SU5 de Super-ACO : une ligne VUV a haute resolution et a polarisationvariable.UVX2000, He de Porquerolles, France, 16-19 Mai 2000.

Nutarelli D.Complete characterisation of dielectric multilayers mirrors for performance improvement of free electronlasers.20th FEL International Conference, Williamsburg, Etats-Unis, 16-21 Aoflt 1998.

Pascale J.Approche CTMC aux collisions ions multicharges-atomes. Perspectives et difficultes d'application auxmolecules.Atelier " Multi-ionisation et Instabilit6 de Molecules et d'Agr6gats ", Saclay, France, 12-13 Mars 1998.

Piuzzi F.Photoinduced electron transfer in jet cooled molecular complexes.The Jablonski Centennial Conference, Torun, Pologne, 27-31 Juillet 1998.

Piuzzi F.Characterization of electron transfer in anthracene clusters (n=l to 5).International Symposium on Molecular Clusters, Niederpocking by Munich, Allemagne, 25-29 Mai 1999.

Piuzzi F.Photoinduced electron transfer in jet cooled anthracene clusters.Photoprocesses in Molecular Assemblies, Dourdan, France, 27-30 Juin 1999.

Piuzzi F.New desorption-expansion method for generation of isolated cold biological molecule : application to thespectroscopy of ' triptophan.ALT '99, Potenza et Lecce, Italie, 19-24 Septembre 1999.

Piuzzi F.New desorptiorv'expansion device for generation of isolated cold biological molecules : Application to the spectroscopyoftryptophan and guanine.International Conference on Photodynamics from Isolated Molecules to Condensed Phases, La Havane,Cuba, 14-19 Fevrier 2000.

118

Page 114: Service des Photons, Atomes et Molecules

Renault E.Perspective of the transient absorption spectroscopy: Ionization ofDNA components in aqueous solution.EMBO Workshop " Potential Future Applications in Structural Biology of an X-ray Free Electron Laser atDESY ", Hambourg, Allemagne, 4-8 Juillet 1999.

Renault E.Photobiology by the transient absorption of different FEL-excited chromophoric compounds at the Super-ACO FEL.6th FEE Users Workshop, Hambourg, Allemagne, 22-27 Aoilt 1999.

Reynaud C.Present situation in the coal model for interstellar carbon dust.Les Houches School," Solid Interstellar Matter: The ISO Revolution", Les Houches, France, F6vrier 1998.

Roux R.Storage ring free electron laser and coherent synchrotron oscillation : Simulation approach.Workshop " Non Linear Problems in Charged Beam Transport in Linear and Recirculated Accelerators,Analysis of Transverse and Longitudinal Instabilities ", ENEA, Frascati, Italic 13-15 Mai 1998.

Salieres P.Generation d'harmoniques laser dans les gaz : principals caracteristiques et premieres applications.Journees " D6veloppement et Applications des Sources XUV Intenses et Breves ", University Paris XI,Orsay, France, 5-6 Mars 1998.

Salieres P.Generation d'harmoniques d'ordre eleve.S6minaire "Interaction Laser-Matiere", Seignosse, France, 25-29 Mai 1998.

Salieres P.Coherence properties of high-order harmonics and applications.Intense Laser Fields : X-ray Generation and Applications, Les Houches, France, 8-11 Mars 1999.

Salieres P.High-order harmonic generation : a coherent ultrashort emission in the XUV.8th International Conference on Multiphoton Processes, Monterey, Etats-Unis, 3-8 Octobre 1999.

Salieres P.Introduction to high-order harmonic generation.Workshop " Applications of High-Order Harmonics", Lund, Suede, 17-18 Mars 2000.

Salieres P.Source UVX coherente et ultrabr$ve par generation d'harmoniques d'un laser intense.5iws Colloque sur les Sources Coherentes et Incoh&entes UV, VUV et X. Applications et D6veloppementsr6cents, He de Porquerolles, France, 16-19 Mai 2000.

Schmidt M.Clusters in strong laser fields.EC AMP 98, Siena, Italie 14-18 Juillet 1998.

Schmidt M.Generation de rayons X durs par irradiation laser d'agregats de gaz rares.UVX 98, Collonges-la-Rouge, France, 5-9 Octobre 1998

Schmidt M.Generation de rayons Xpar irradiation laser d'agregats de gaz rares.S6minaire annuel du LULI, Seignosse, France, 24 Mai 1998.

119

Page 115: Service des Photons, Atomes et Molecules

Schmidt M.Cluster Beams in Strong Laser Fields.Intense Laser Fields : X-ray Generation and Applications, Les Houches, France, 8-11 Mars 1999.

Schmidt M.Cluster explosion dynamics and X-ray generation from clusters in intense laser fields.Gordon Research Conferences on Multiphoton Processes, New Hampshire, Etats-Unis, 14-19 Juin 1998

Schmidt M.Atomic and Molecular Cluster Jets in Strong and Ultra-short Laser Fields.SYLF '99, Friihjahrstagung der DPG, Heidelberg, Allemagne, 14-19 Mars 1999

Schmidt M.High intensity laser/matter interactions.American Physical Society Centennial Meeting, Atlanta, Etats-Unis, 20-26 Mars 1999.

Schmidt M.Clusters in Strong and Ultra-short Laser Fields,ICOMP 8, Monterey, Etats Unis, 3-10 octobre 1999.

Schmidt M.Le projet PREUVE et le defi de la lithographie dans Vextreme ultraviolet54me Colloque sur les Sources CoheYentes et IncoheYentes UV, VUV et X. Applications et D6veloppementsr6cents, He de Porquerolles, France, 16-19 Mai 2000

Simon M.Perspectives for electron-ion spectroscopy of core excited molecules.Workshop " Perspectives on Atomic and Molecular Physics at MAX II", Uppsala, Suede, 9-10 Mars 1998.

Simon M.Relaxation dynamics of core excited molecules.Workshop " Perspectives on Atomic and Molecular Physics with a 30 Meters long Undulator", Spring,Japon, 6-7 Decembre 1999.

Simon M.Dynamical effects and selective fragmentation after inner shell excitation.18th X-ray and Inner-Shell Processes, Chicago, Etats-Unis, 23-27 Aout 1999.

Tran-Thi T.H.Excited state proton transfer from pyranine to water. What is the molecular pathway ?Research Workshop of the Israel Science Foundation" Proton Solvation and Proton Mobility ", Neve-Ilan,Israel, 18-22 Octobre 1998.

Tran-Thi T.H.A strong internal electrical potential can reverse the direction of electron transfer.XIX International Conference on Photochemistry, Durham, North Carolina, Etats-Unis, 1-6 Aout 1999.

Visticot J.P.Spectroscopy and reactivity of barium atoms and complexes on large neon clusters.Colloque Franco-Taiwanais " Dynamique Mol6culaire et Dynamique des Reactions Alcalin/Hydrogene ",Universitf Paris XI, Orsay, France,12-14 Octobre 1998.

120

Page 116: Service des Photons, Atomes et Molecules

Invited seminars

Agostini P.Transitions a deux couleurs XUV-IR et applications.S6minaire du cours de C. Cohen-Tannoudji, College de France, Paris, France, 26 Octobre 1999.

Carr6 B.Interaction laser matiere en champ fort au SPAM.DAM/CESTA, Bordeaux, France, 6 Decembre 1999.

Cornaggia C.La covariance : une analyse statistique des signaux de multifragmentation.Ecole Th6matique " Defection, Temps, Position, Image ", University Paris XI, Orsay, France, 3-5 Novembre1999.

Couprie M.E.The Super-ACO free electron laser source.Kyoto University, Japon, 21 Janvier-3 Fe"vrier 1998.

Couprie M.E.The Super-ACO free electron laser dynamics.Argonne Laboratory, Etats-Unis, 5-17 Avril 1999.

Ellert Ch.Agregats en champ fort.Reunion preparatoire du GDR Agr6gats, Orsay, France, 17 Mai 1999.

GrSgoire G.Separation de charges dans les agregats moleculaires.Laboratoire de Physico-Chimie des Rayonnements, Orsay, France, 5 Juin 1998.

Gr6goire G.Separation de charges dans les agregats moleculaires : Dynamique et spectroscopie. Application au systemeNal -(solvants polaires)n.Laboratoire de Photophysique Moleculaire, CNRS, Orsay, France, 25 Septembre 1998.

Gustavsson T.Ultrafast relaxation processes of photoexcited triarylpyrylium cations.Institut fur Physikalische und Theoretische Chemie, Humboldt-Universitat, Berlin, Allemagne, 4 Octobre1999.

Hergott J.F.Proprietes optiques du rayonnement harmonique.Reunion GDR SAXO, University Paris VII, France, 9-10 Mars 2000.

Hulin S.OFI X-ray laser scheme in H-like nitrogen.Reunion r&eau laser X europeen, Amesee, Allemagne, 8-9 Fevrier 1999.

Hulin S.Laser X en recombinaison dans un jet d'azote ionise par effet de champ (OFI). Simulations numeriques etexperiences.DAM/B3, Bruyeres le CMtel, France, 26 Novembre 1999.

Hulin S.Soft X-ray laser scheme based on OFI.Reunion reseau laser X europeen, York, Royaume-Uni, 7-8 F6vrier 2000.

121

Page 117: Service des Photons, Atomes et Molecules

Ledoux G.La Photoluminescence des nanocñstaux de silicium..Ecole Centrale de Lyon, France, 24 Mars 1998.

Markovitsi D.Transfert d'énergie à l'état excité singulet dans des phases colonnaires.Université de Mons-Hainaut, Mons, Belgique, 22 Avril 1998.

Markovitsi D.Excitation energy transfer in columnar liquid crystals.Université de Ioannina, Ioannina, Grèce, 19 Octobre 1998.

Markovitsi D.Electronic excited states and energy transfer in columnar liquid crystals.Université d'Osaka, Osaka, Japon, 30 Novembre 1998.

Markovitsi D.Electronic excited states and energy transfer in columnar liquid crystals.Institute for Molecular Science, Okazaki, Japon, 1 Décembre 1998.

Merdji H.Génération de rayonnement X et applications.Centre Lasers Intenses et Applications, Bordeaux, France, 8 Février 1999.

Merdji H.Applications interféromètriques des harmoniques d'ordre élevé au diagnostic de plasmas denses.Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, Palaiseau, France, 9 Novembre1999.

Merdji H.Propriétés de cohérence de la génération d'harmoniques d'ordre élevé et applications.DAM/CESTA, Bordeaux, France, 6 Décembre 1999.

Mestdagh J.M.Dynamique réactionnelle au contact de gros agrégats de van der Waals.Université Paris ХШ, Villetaneuse, France, 20 Novembre 1998.

Mestdagh J.M.Comportement préréactionnel d'alcènes excités électroniquement.Université Paris XI, Orsay, France, 5 Mai 2000.

Millié Ph.Calculs ab initio et modélisation.Journée Galilée "Modélisation-Interaction-Molécules Biologiques", Institut Galilée, Université Paris XIII,France, 17 Juin 1998.

Millié Ph.Potentiels intermoléculaires et agrégats.Laboratoire de Physico-Chimie des Rayonnements, Université Paris XI, Orsay, France, 26 Juin 1998.

Millié Ph.Méthodes de la fonctionnelle de la densité et agrégats : quelques résultats récents.Laboratoire des Collisions Atomiques et Moléculaires, Université Paris XI, Orsay, France, 9 Décembre1998.

Millié Ph.Les méthodes de la fonctionnelle de la densité : principe, réussites et échecs.Université de Bordeaux I, France, 22 Novembre 1999.

122

Page 118: Service des Photons, Atomes et Molecules

Mons M.Hydrogen-bonded complexes of jet-cooled organic molecules with water: structure and energetics.Physical and Theoretical Chemistry Laboratory, University of Oxford, Royaume-Uni, 26 Avril 1999.

Mons M.Experimental binding energies of water to aromatic molecules : microscopic approach to the side chain ofaromatic aminoacids.Department of Chemistry, University College, London, Royaume-Uni, 25 Juin 1999.

Mons M.Spectroscopie infrarouge de molecules flexibles en phase gazeuse.Laboratoire de Photophysique Mol6culaire, CNRS, Orsay, France, 7 Janvier 2000.

Mons M.Les liaisons hydrogene des molecules d'interet biologique : une approche en agregat.IRSAMC, Universit6 Paul Sabatier, Toulouse, France, 5 Juin 2000.

Mons M.Hydratation de molecules flexibles en phase gazeuse.Service des Photons, Atomes et Mol6cules, Saclay, France, 19 Juin 2000.

Nahon L.Synchrotron Radiation, Free electron lasers and conventional lasers : different and complementary photonsources, allowing the performance of multi-color experiments.AMOLF/FOM, Amsterdam, Pays-Bas, 10 Fe"vrier 1998.

Nahon L.The SU5 high resolution/high flux VUV beamline with exotic polarizations at Super-ACO: Why ? How ?and first results.Photon Factory, s^minaire g6n6ral joint avec Electro-Technical Labs, Tsukuba, Japon, 26 Octobre 1998.

Nahon L.La ligne SU5 de Super-ACO : une ligne VUV a haute resolution et polarisation variable pour laspectroscopie et le dichroisme.Centre de Biophysique Moteculaire, CNRS, Orleans, France, 31 Mars 2000.

Normand D.Interaction dynamics of clusters in strong laser fields.Department of Chemistry Scholl of Science - Universite de Tokyo, Japon, jeudi 29 juin 2000.

Nutarelli D.Le laser a electrons libres de Super-ACO, une source laser UV accordable performante pour lesapplications.Laboratoire des Collisions Atomiques et Mol&ulaires, University Paris XI, Orsay, France, 15 D6cembre1999.

Piuzzi F.Novel desorption method for vaporization of intact biomolecules; application to the gas phase spectroscopyoftryptophan and guanine and the guanine complex with water.Institut de Physique de la Matiere Condensed, University de Lausanne, Lausanne, Suisse, 7 Avril 2000.

Poisson L.Proprietes spectroscopiques et collisionnelles des ions Fe(H2O)n

+ et Co(H2O)n+.

Laboiratoire des M6canismes R6actionnels, Ecole Polytechnique, Palaiseau, France, 22 Fe"vrier 2000.

de Pujo P.Dynamique moleculaire : application a Vetude de systemes moleculaires.Laboiratoire de Physico-Chimie des Rayonnements, Universal Paris XI, Orsay, France, 22 Janvier 1999.

123

Page 119: Service des Photons, Atomes et Molecules

de Pujo P.Spectres de vibration dans les agrégats de Van der Waals : Comparaison avec des calculs ab initio.Laboratoire de Chimie Physique des Matériaux Amorphes, Université Paris XI, Orsay, France, 25 Mars1999.

Renault E.Développement de l'absorption transitoire combinant le laser à électrons libres et le rayonnementsynchrotron.Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Orsay, France, 19 Mars 1999.

Reynaud C.Nanosolides carbonés modèles de la poussière interstellaire.Laboratoire de Spectrométrie Ionique et Moléculaire, Université Claude Bernard, Lyon, France, 18 Mars1999.

Reynaud СLes nanosolides modèles de la poussière cosmique.Groupe de Physique des Solides, Université Paris VI et VII, Paris, France, 27 Mai 1999.

Reynaud C.Effets de taille dans les solides carbonés.Laboratoire des Collisions Atomiques et Moléculaires, Université Paris XI, Orsay, France, 16 Juin 1999.

Roux R.Fonctionnement du laser à électrons libres de Super-ACO avec une cavité harmonique à 500 MHz.Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, Orsay, France, 7 Juillet 1998.

Salières P.Coherence properties of high-order harmonics.Lund Laser Center, Lund, Suède, 17 Mars 1999.

Saueres P.Propriétés du rayonnement d'harmoniques d'ordre élevé et applications.DAM/B3, Bruyères-le-Châtel, France, 28 Février 2000.

Schmidt M.Agrégats de gaz rares en champ laser intense.Laboratoire Aimé Cotton, Orsay, France, 14 Mai 1998.

Schmidt M.Clusters in strong laser fields.Max Planck Institut für Quantenoptik (MPQ), Garching, Allemagne, 17 Novembre 1998

Schmidt M.Agrégats en champ fort.Réunion préparatoire du GDR Agrégats, Orsay, France, 17 Mai 1999.

Schmidt M.X-ray generation from laser irradiation of cluster jets.Philips and ASM/L, Eindhoven, Pays Bas, 23 Juin 1999.

Schmidt M.Agrégats en champ fort.CEA/DAM, Bruyères le Chatel, France, 28 Juin 1999.

Schmidt M.Agrégats en champ fort.LASIM, Université Claude Bernard, Lyon, France, 1 Juillet 99.

124

Page 120: Service des Photons, Atomes et Molecules

Simon M.Techniques de coincidences.Ecole the'matique "Detection, Temps, Position. Image", Universit6 Paris XI, Orsay, France, 3-5 Novembre1999.

Thomas A.L.Potentiels modeles dans les systemes cation-molecules.Laboratoire de Chimie Physique, University Paris XI, Orsay, France, 26 Mai 2000.

Tran - Thi T.H.Capteurs chimiques d'hydrocarbures aromatiques monocycliques.E.N.S. Cachan, Departement de Chimie, Cachan, France, 9 Juin 2000.

125

Page 121: Service des Photons, Atomes et Molecules

Oral communications

Journées annuelles du Groupe Français de la Céramique (GFC), 3-4 Février 1998, Cadarache, France.Rôle d'une seconde phase nanométrique SiC(N) sur la densification et la microstructure de nanocompositesSÍ3N4/SÍQN).Mavne M. , Bahloul-Hourlier D., GoursatP.

Colloque de l'AFC, 4-5 Février 1998, Orléans, France.Le projet SOLEIL.Morin P.

Atelier MIMA98, 13 Mars 1998, Saclay, France.Multiionisation et explosion coulombienne moléculaire en champ laser intense.Hering Ph., Cornaggia С.

2 n d International Workshop on Laboratory Astrophysics with Intense Lasers, 19-21 Mars 1998,University of Arizona, Tucson, Etats-Unis.Opacity study on iron in the 15-30 eV temperature range.Chenais-Popovics C , Merdji H., Missalla T., Gilleron F., Gauthier J.C., Blenski T., Perrot F., Klapish M.,Bauche-Arnoult С , Bauche J., Eidmann К.

11th APS Topical Conference on Atomic Processes in Plasmas, 22-26 Mars 1998, Auburn, Etats-Unis.Effect of configuration interaction in M-shell samarium opacities.Merdji H., Blenski T., Missalla T., Chenais-Popovics C, Gauthier J.C.. Perrot F., Eidmann К.

Journée de la section Atomes et Molécules du LURE, 25 Mars 1998, Orsay, France.Effets dynamiques et fragmentation sélective dans des molécules excitées en couche interne.Simon M., Miron C , Leclercq N., Guillemin R., Morin P.

Journées femtoseconde du DRECAM, 27 Avril 1998, Saclay, France.Multiionisation moléculaire induite par laser.Hering Ph., Cornaggia С.

1er* Conférence Roumaine sur les Matériaux Carbonés, 25-26 mai 1998, Bucarest, Roumanie.Poudres à base de carbone contenant des fullerènes par interaction laser-Hydrocarbures.Alexandrescu R.. Armand X. Cauchetier M., Herlin N., Morjan I., Petcu S., Voicu I.

European Conference on Laser Interaction with Matter-98, 4-8 Mai 1998, Formia, Italie.Experimental and theoretical studies ofL-shell iron opacities.Merdji H., Chenais-Popovics С , Missalla T., Gauthier J.C., Blenski T., Perrot F., Bar-Shalom A., KlapischM., Bauche-Arnoult C, Bauche J., Eidmann K.

Réunion du Groupe Français de Photochimie, 4-5 juin 1998, Paris, France.Relaxations intra - et inter-moléculaires en solution. Etude en spectroscopie de fluorescence femtoseconde.Gustavsson T.. Diraison M., Pommeret S., Mialocq J C.Effet d'un champ électrique local sur le transfert photoinduit d'électronTran-Thi Т.Н.. Sharonov A.Yu., Hynes J.T.

E-MRS Spring Meeting, 16-19 juin 1998, Strasbourg, France.Optical properties of nanocrystalline Silicon thin films produced by size-selected cluster beam deposition.Laguna M.A., Paillard V., Kohn В., Ehbrecht M., Huisken F., Ledoux G., Papoular R., Hofmeister H.

5e"1' colloque sur la Dynamique des Ions, des Atomes et des Molécules (DIAM), 7-10 Juillet 1998,Reims, France.Sélectivité et mouvement nucléaire dans la dynamique de relaxation de molécules excitées en couche interne.Miron С Simon M., Leclercq N., Morin P.

127

Page 122: Service des Photons, Atomes et Molecules

Ultrafast Phenomena 98, 12-17 Juillet 1998, Garmish-Partenkirchen, Allemagne.Kilohertz high harmonic generation in hallow core fibers.Garzella P.. Breger P., Agostini P., Constant E., Mevel E., Salin F., Dorrer C, Le Blanc C.

6th International Conference on X-Ray Lasers, 31 Aout-4 Septembre 1998, Kyoto, Japon.Investigation of population inversion from field ionized ions followed by double electron capture into nln'V-levels.Auguste T.. d'Oliveira P., Hulin S., Monot P., Faenov A.Ya., Pikuz T.A., Magunov A.I., Skobelev I.Yu.,Rosmej F.B.

Conduction and Transport Mechanisms in Organic Materials, 27-30 Septembre 1998, Heidelberg,Allemagne.Influence of disorder on electronic excited states: an experimental and numerical study ofalkyithiotriphenylene columnar phases.Marguet S., Markovitsi D., Millie Ph., Sigal H., Kumar S.

IXth International Conference on the Physics of Highly Charged Ions, 14-18 Septembre 1998,Bensheim, Allemagne.Radiation from autoionising levels correlated with single excited states of highly charged ions in dense coldplasmas.Rosmei F.B.. Faenov A.Ya., Pikuz T.A., Skobelev I.Yu., Flora F., Bollanti S., Di Lazzaro P., Letardi T.,Vigli-Papadaki K, Notolla N., Grilli A., Palladino L., Reale A., Scafati A., Reale L., Auguste T., d'OliveiraP., Hulin S., Monot P., Zigler A., Fraenkel M.

Colloque PCMI, 16-18 Septembre 1998, Toulouse, France.Structure de petits agregats silicium-carbone.Millie" Ph., Bertolus M.Analogues terrestres de poussieres carbonees interstellaires : hypotheses de depart et demarcheexperimental.Rouzaud J.N.. Galvez A., ClinardC, Herlin-Boime N., ReynaudC.

6eme Reunion des Chimistes Theoriciens Franc.ais, 13-16 Octobre 1998, Villeneuve d'Ascq, France.Methode de Car et Parrinello : mise en oeuvre dans le cas de petits agregats silicium-carbone.Bertolus M.. Finocchi F., Brenner V., Millie1 Ph.Transfert de charge dans les systemes ion-molecules : mise en evidence et modelisation.Hovau S., Brenner V., Dognon J P., Millie Ph.Simulation des melanges alcanes - molecules polaires : derivation de potentiels.Delhommelle J.. Granucci G., M11116 Ph., Boutin A., Fuchs A.Etude theorique preliminaire de la photoionisation acide du phenol et du cyanophenol.Granucci G.. Millie Ph., Hynes J.T., Than-Thi T.H.

Workshop on European Synchrotron Light Sources, 5-6 Novembre 1998, Universite de Dortmund,Allemagne.Magnetic design and recent results on the OPHELIE undulator at Super ACO.Marcouilie P.. Corlier M., Brunelle P., Marteau F., Peaupardin P., Sommer M. et Nahon L.Status report of the Super-ACO FELRoux R.

Atelier Laser Megajoule et Astrophysique, 9-10 Novembre 1998, Observatoire de Paris, Meudon, France.Absorption des transitions 2-3 duferpar unefeuille chauffee par laser.Chenais-Popovics C . Merdji H., Missalla T., Gilleron F., Gauthier J.C., Blenski T., Klapish M., Bauche-Arnoult C , Bauche J., Eidmann K.

l l i m e Journees Nationales sur les Composites, 18-20 Novembre 1998, Arcachon, France.Effets d'ajouts d'aluminium ou de bore sur revolution thermique de poudres nanocomposites Si/C/N.ArmandX.. Herlin-Boime N., Mayne M.Cauchetier M.

128

Page 123: Service des Photons, Atomes et Molecules

3rd project meeting " Development of a Combined Synchrotron Radiation and VUV Free ElectronLaser Facility ", 23 Novembre 1998, Daresbury, Royaume-Uni.Mirrors of the ELETTRA storage ring FEL project.Renault E.

First network meeting " Towards a Storage Ring Free Electron Laser at 200 nm ", 1-2 Fe"vrier 1999,Orsay, France.The operation of the Super-AGO FEL source.Renault E.Transient absorption in the UV.Renault E.Survey on the international situation for FELs in the UV and european context.Couprie ME.

Intense Laser Fields : X-Ray Generation and Applications, 8-12 Mars 1999, Les Houches, France.Ultrafast dynamics measurements of hot electrons in SiC>2 using high-order harmonic generation.Oue"r6F., Martin Ph., Petite G., Guizard S., Merdji H., Carre" B., Hergott J.F.

VUV FEL User Workshop, 11-12 mars 1999, Hambourg, Allemagne.Time-resolved photoelectron spectroscopy with the TESLA-FEL on laser-produced photofragments.Nahon L.

American Physical Society Centennial Meeting, 20-26 Mars 1999, Atlanta, Etats-Unis.Application of density functional theory and Car and Parrinello 's method to the study of small silicon-carbon clusters.Bertolus M., Millie" Ph., Finocchi F.Energy transfer and electronic coupling in columnar liquid crystals.Gallos L.K., Argyrakis P., Markovitsi D.

PAC 99, 22-26 Mars 1999, New York, Etats-Unis.First results obtained with the electromagnetic crossed overlapped undulator OPHELIE at Super-ACO.Corlier M., Besson J.C., Brunelle P., Claverie J., Godefroy J.M., Herbeaux C, Lefebvre D., Marcouille" O.,Marlats J.L., Marteau F., Michaut J., Peaupardin P., Petit A., Sommer M., Ve"t6ran J., Nahon L.

17th Advanced Beam Dynamics Workshop on Future Light Sources, APS, 5-17 Avril 1999, Argonne,Etats-Unis.The Super-ACO FEL.Couprie M. E.Ultimate characteristics ofSRFELs.Couprie M. E.Report of the "Ring Based-Sources" working group.Couprie M. E.

Ultra-Intense Laser Interaction and Application I, 7-11 Mai 1999, Elounda, Grece.Ultrafast time resolved photoemission spectroscopy using high-order harmonics generation.Merdji H., Quere" F., Martin Ph., Petite G., Guizard S., Salieres P., Gobert O., Carre" B.

E-MRS Spring Meeting, 31 Mai - 4 Juin 1999, Strasbourg, France.Photoluminescence of silicon nanocristallites : an astrophysical application.Ledoux G., Guillois O., Reynaud C , Huisken F., Kohn B., Paillard V.

IV Journees des Phenomenes Ultra-rapides, 21-22 Juin 1999, Dijon, France.Etude experimental et theorique de Vaccord de phase des harmoniques d'ordre eleve generees dans desfibres creuses.Hergott J.F., Salieres P., Carre" B., Le De"roff L., Merdji H., Agostini P., Breger P., Garzella D., Constant E.Generation d'harmoniques d'ordre eleve: mesure de la coherence spatiale et temporelle.LeDeroffL.. Carre" B., Salieres P.

129

Page 124: Service des Photons, Atomes et Molecules

La spectroscopie de fluorescence résolue en temps par conversion de fréquence. Quelques exemples desétudes de réactivité en phase liquide.GustavssonT,, Mialocq J.C.Explosion coulombienne moléculaire induite par laser femtoseconde en polarisation linéaire et circulaire.Hering Ph., Cornaggia С, Brewczyk M.

ECERS VI, 20-24 Juin 1999, Brighton, Royaume-Uni.Synthesis ofnanometric Si/C/N/B preceramic powders by laser spray pyrolysis.Armand X., Herlin-Boime N., Mayne M., Cauchetier M.

Physique en Herbe 99, 20-25 Juin 1999, Ile d'Oléron, France.Reaction dynamics of barium on large van der Waals clusters.Briant M., Gaveau M.A., Mestdagh J.M., Visticot J.P.

Applications of High Field and Short Wavelength Sources VIII, 26-30 Juin 1999, Potsdam, Allemagne.Frequency-domain interferometry in the XUVwith high-order harmonics.Salières P., Le Déroff L., Hergott J.F., Merdji H., Carré В., Auguste T., Monot P., d'Oliveira P.

Photoprocesses in Molecular Assemblies, 27-30 Juin 1999, Dourdan, France.Electronic coupling responsible for energy transfer in columnar liquid crystals.Marguet S., Markovitsi D., Gallos L., Sigal H., Millie Ph., Argyrakis P., Ringsdorf H., Kumar S.

8 th International Laser Physics Workshop (Lphys'99), 2-6 Juillet 1999, Budapest, Hongrie.Time resolved hot electrons relaxation measurements in SiO2.Martin Ph.. Quere F., Petite G., Guizard S., Merdji H., Carré В.Coherence properties and applications of high-order harmonics.Lynga С Bellini M., Delfín С , Descamps D., Gaarde M.B., Hansen T.W., Hergott J.F., L'Huillier A.,Merdji H., Norin J., Salières P., Wahlström CG.

Applications in Structural Biology, 4-8 juillet 1999, Hambourg, Allemagne.Perspective of the transient absorption spectroscopy : ionization of DNA components in aqueous solution.Renault E., Nahon L., Nutarelli D., Garzella D., Guillou T., Couprie M.E., Mérola F., Billardon M.

XXXIst Europhysics Conference, European Group for Atomic Spectroscopy (EGAS), 6-9 Juillet 1999,Marseille, France.Emission line polarization degrees and nlm distributions produced by state-selective one-electron capture inslow Kr8* - Li(2s) collisions.Jacquet E., Kucal H., Pascale J., Bazin V., Boduch Ph., Lecler D., Chantepie M.

SPIE International Symposium on Optical Sciences : accelerator-based sources of Infra-Red andspectroscopie applications II, 18-23 Juillet 1999, Denver, Etats-Unis.Two-color experiments combining the UV-storage ring free electron laser and the SA5IR beamline at Super-ACO.Nahon L.. Renault E., Couprie M.E., Nutarelli D., Garzella D., PolackF., Dumas P., Carr G.L., Williams G.Optical design and performances of the IR microscope beamline at super-ACO.PolackF., Nahon L., Mercier R., Armellin C , Marx J.P., Tanguy M., Delboubé A., Couprie M.E., Dumas P.Commissioning of OPHELIE : a variable polarization electromagnetic undulator for the SU5 VUVbeamline at Super-ACO.Nahon L., Alcaraz Ch., Thissen R., Corlier M., Peaupardin Ph., Marteau F., Marcouillé O., Jolly A., DrecherM.

7th International Conference on Modelling, Monitoring and Management of Air Pollution, 27-29 Juillet1999, Palo-Alto, Californie, Etats-Unis.Benzene and toluene chemical sensors. Towards a monocyclic aromatic hydrocarbon badge for individualexposure.Calvo-Munoz M.L., Tran-Thi Т.Н., Roux С.

130

Page 125: Service des Photons, Atomes et Molecules

FEL 99, 21-27 Août 1999, Hambourg, Allemagne.Super ACO FEL oscillation at 300 nm.GarzellaD., Nutarelli D., Renault E., Nahon L., Couprie M.E.Photobiology by the transient absorption of different FEL excited chromophoric compounds at Super-ACOstorage ring FEL.Renault E.

Is' Conference on Inertial Fusion Sciences and Applications (ISFA 99), 12-17 Septembre 1999,Bordeaux, France.Measurement of the absorption coefficients of Al and Ni thin foils at 15-25 eV temperatures.Chenais-Popovics С Fajardo M., Merdji H., Teubner U., Gauthier J.C., Renaudin P., Gary S., Bruneau 1,Perrot F., Blenski T., Andiel U., Fölsner W., Eidmann K.Charge exchange induced formation of hollow ions in high energy density plasmas.Rosmei F.B., Hoffmann D.H.H., Faenov A.Ya., Pikuz T.A., Magunov A.I., Skobelev I.Yu., Auguste T.,d'Oliveira P., Hulin S., Monot P., Andreev N.E., Chegotov M.V., Veisman M.E.

Réunion DFG-CNRS Elementary Chemical Processes in Liquids, 6-8 octobre 1999, Bad Herrenalb,Allemagne.Ultrafast relaxation processes of photoexcited triarylpyrylium cations.Gustavsson T., Markovitsi D., Gulbinas V.

Journées femtoseconde du DRECAM, 14-15 Octobre 1999, Saclay, France.Multiionisation moléculaire : dynamique et explosion coulombienne.Hering Ph., Cornaggia C.Etats excités des fragments issus de l'explosion coulombienne moléculaire.Ouaglia L., Forest M., Cornaggia СGénération d'harmoniques dans une fibre creuse et focalisation par lentille de Bragg-Fresnel.Hergott J.F., Carré В., Merdji H., Salières P., Zeitoun P., Le Pape S., Garzella D., Breger P., Agostini P.Expériences d'interférométrie utilisant les harmoniques.Merdji H., Hergott J.F., Carré В., Salières P., d'Oliveira P., Monot P., Auguste T.Interaction laser-diélectriques : claquage optique et UPS résolue en temps.Ouéré F.. Guizard S., Martin P., Petite G., Merdji H., Hergott J.F., Le Déroff L., Carré B.Séparation de charges dans les agrégats moléculaires.Grégoire G., Dimicoli L, Mons M., Dedonder-Lardeux C , Jouvet C , Martrenchard-Barra S., Solgadi D.Intercorrélation et mesures des impulsions XUVpar élargissement pondéromoteur.Paul P.M., Breger P., Cheret M., Agostini P., Tana.E., Muller H.G.

7th Annual Workshop on European Synchrotron Light Sources, 7-9 Novembre 1999, Berlin, Allemagne.Super-ACO storage ring FEL and its applications.Renault E.

Réunion du Groupe Français de Photochimie, 18-19 Novembre 1999, Paris, France.Couplage électronique et transfert d'énergie dans des cristaux liquides colonnaires.Markovitsi D., Mar guet S., Gallos L., Sigal H., Millié Ph., Argyrakis P., Ringsdorf H., Kumar S.

Workshop on Relativistic Effects in Laser-Matter Interactions , 19-20 Novembre 1999, Saclay, France.Electrons temperature studies of optical-field N2 plasma at 1019W/cm2.Monot P.

TMR Network Meeting, 22 Novembre 1999, Eindhoven, Hollande.The Super-ACO FEL group activity : Theory versus experiment.Couprie M. E.Transient absorption spectroscopy on FEL-excited samples : applications in biology (vis-UV) and inmaterial sciences (IR).Nahon L.

131

Page 126: Service des Photons, Atomes et Molecules

15еше Congrès Français sur les Aérosols, 8-9 Décembre 1999, Paris, France.Utilisation et étude d'un générateur d'aérosols pour la synthèse de poudres céramiques nanométriques.Mayne M., Allain N., Armand X., Herlin-Boime N., Cauchetier M.

Colloque Utilisateur du Lure : table ronde FELs et Applications, 9-10 décembre 1999, Orsay, France.From Super-ACO to SOLEIL : the SR-FELs applications side.Nahem L.

Biomédical Applications of Free Electron Lasers, 23-28 Janvier 2000, San Jose, Etats-Unis.Transient absorption spectroscopy using the Super-ACO storage ring FEL.Renault E., Nahon L., Nutarelli D., Garzella D., Couprie M.E., Mérola F.

20th Workshop of Physics of High Energy Density in Matter, 31 Janvier-4 février 2000, ffirshegg,Autriche.Direct spectrocopic observation of multiple-charged MeV ions acceleration by intense femtosecond-pulselaser.Faenov A.Ya., Skobelev I.Yu., Magunov A.I., Pikuz T.A., Auguste T., d'Oliveira P., Hulin S., Monot P.,Zhidkov A.G., Sasaki A., Tajima T.

Réunion du Groupe Français de Photochimie, 27-28 Avril 2000, Cachan, France.Photophysique et photochimie sur de gros agrégats de van der Waals.Gaveau M.A.Spectroscopie de molécules d'intérêt biologique mises en phase vapeur par une nouvelle méthode associantdésorption laser et détente supersonique.Piuzzi F.Photoluminescence du silicium nanocristallin: effets de taille et application astrophysique.Reynaud C, Ledoux G., Guillois O., Kohn В., HuiskenF.

30 th Annual Anomalous Absorption Conference, 21-26 Mai 2000, Ocean City, Mariland, Etats-Unis.Direct spectroscopie observation of multicharged MeV ions in plasma heated by intense femtosecond laserradiationFaenov A.Ya., Skobelev I.Yu., Magunov A.I., Pikuz T.A., Auguste T., d'Oliveira P., Hulin S., Monot P. ,Zhidkov A.G., Sasaki A., Tajima T.

Réunion Réseau GAUS-XRP, 2 Juin 2000, Pise, Italie.High order harmonie generation: Spectral selection and focusing - absolute photon number measurements.Hergott J.F., Salières P., Merdji H., Carré В., Zeitoun Ph., Le Pape S., Agostini P.

The IEEE International Conference on Plasma Science, 4-7 Juin 2000, New Orleans, Louisiane, Etats-Unis.X-ray spectromicroscopy investigation of fast ions and hot electrons in plasmas, heated by nanosecond laserradiation with different wavelengths.Faenov A.Ya., Skobelev I.Yu., Magunov A.I., Pikuz T.A., Rosmej F.B., Hoffmann D.H.H., Suss W., GeisselM., Bock R., Letardi T., Flora F., Bollanti S., Di Lazzaro P., Satov Yu.A., Smakovskii Yu.B., Stepanov A.E.,Roerich V.K., Khomenko S.V., Nischuk S., Makarov K.N., Reale A., Scafati A., Auguste T., d'Oliveira P.,Hulin S., Monot P., Sharkov B.Yu.

ISSI Workshop on the Role of Laboratory Experiments in the Characterisation of Cosmic Materials,8-12 Mai 2000, Berne, Suisse.Synthesis and properties of carbon materials of astrophysical interest.Reynaud C.Progress and open questions in the problem of the identification of the Unidentified Infrared (UIR) bandscarriers in the frame of the solid state hypothesis.Guillois O.

132

Page 127: Service des Photons, Atomes et Molecules

Organic-Inorganic Hybrids : Science, Technology and Applications, 12-14 juin 2000, Guilford,Royaume-Uni.Monocyclic aromatic hydrocarbon sensors based on sol-gel materialCalvo-Mufloz M.L., Tran-Thi T.H., Roux C, Bourgoin J.P., Ayral A., El-Mansoun A.

7th International Conference on X-Ray Lasers, 19-23 Juin 2000, Saint-Malo, France.Measurement of the wavefront of several XUV sources.Le Pape S., Zeitoun Ph., Hergott J.F., Carre" B., Dhez P., Francois M., Idir M., Merdji H., Ros D., CarillonA., SalieresP.Recombination X-Ray laser scheme in an optically ionized plasma,HulinS., Jacquemot S., Bonnet L., Lefebvre E., Auguste T., Monot P., d'Oliveira P.

133

Page 128: Service des Photons, Atomes et Molecules

PhD Theses

Bertolus MarjorieEtude de petits agrégats mixtes par la méthode de la fonctionnelle de la densité et par des potentielsmodèles.Thèse de l'Université Paris XI, Orsay, le 5 Octobre 1998.

Dobosz SandrineInteraction d'agrégats de gaz rares avec un champ laser intense.Thèse de l'Université Paris XIII, Villetaneuse, le 30 Novembre 1998.

Sublemontier OlivierMise au point d'un dispositif expérimental pour l'étude collisionnelle de complexes ioniques.Mémoire de diplôme d'ingénieur CNAM, le 11 Décembre 1998.

Roux RaphaëlDynamique et conditions de stabilité du laser à électrons libres de Super-ACO. Fonctionnement avecune cavité RF simple ou double.Thèse de l'Université Paris VI, le 28 Janvier 1999.

Grégoire GillesSéparation de charges dans les agrégats moléculaires : Dynamique et spectroscopie. Application ausystème Nal -(solvants polaires)„.Thèse de l'Université Paris XI, Orsay, le 3 Février 1999.

Gisselbrecht MathieuSpectroscopie induite par laser sur des espèces atomiques et moléculaires préparées par unrayonnement VUV.Thèse de l'Université Paris XI, Orsay, le 25 Juin 1999.

Ledoux GillesEtude de la photoluminescence du silicium nanocristallin : application astrophysique à l'EmissionRouge Etendue.Thèse de l'Université Lyon I, le 14 Octobre 1999.

Galvez AymericElaboration, organisation et propriétés de nanoparticules de carbone modèles de la poussièreinterstellaire.Thèse de l'Université d'Orléans, le 22 Octobre 1999.

Petcu StelaRéactions chimiques hétérogènes induites par pyrolyse laser : applications à la synthèse de poudrescarbonées et defullerènes.Thèse de l'Université de Bucarest, le 2 Novembre 1999.

Féret LaurentEtude théorique d'un atome ou ion à deux électrons actifs par une méthode d'interaction effective.Thèse de l'Université Paul Sabatier, Toulouse, le 5 Novembre 1999.

Le Déroff LaurentEtude des propriétés de cohérence de la génération d'harmoniques d'ordre élevé : qualité du faisceau,cohérence spatiale et temporelle et application.Thèse de l'Université Paris VI, le 29 Novembre 1999.

135

Page 129: Service des Photons, Atomes et Molecules

Hering PhilippeContribution a I'etude de la multiionisation et de la fragmentation moleculaire en champ laserintense.These de 1'University Paris XIII, Villetaneuse, le 9 Decembre 1999.

Marquette ArnaudEtude de la relaxation radiative (UV-visible) d'atomes et de petites molecules excites en coucheinterne par rayonnement synchrotron.These de 1'University de Lille, le 17 Janvier 2000.

Nutarelli DanieleDynamique et performance du laser a electrons libres de Super-ACO avec une cavite RF harmoniquea '500 MHz.These de 1'University Paris XI, Orsay, le 20 Janvier 2000.

Bondkowski JensCristaux liquides colonnaires du triphenyiene : etude spectroscopique des etats triplets et des porteursde charge.These de l'Universitd Paris XI, Orsay, le 2 Mars 2000.

136

Page 130: Service des Photons, Atomes et Molecules

Popularization articles

Agostini P.Atome habille par un champ laser intense.Clefs CEA, numero spécial sur les interactions photons-matière, 41, 4 (1999).

Bonnaud G., Lefebvre E., Monot P.Effets relativistes dans l'interaction laser-plasma à ultra-haute intensité^Clefs CEA, numéro spécial sur les interactions photons-matière, 41, 39 (1999).

Bonnet L., Jacquemot S., Miquel J.L., Auguste T.Physique atomique hors équilibre et laser X.Clefs CEA, numéro spécial sur les interactions photons-matière, 41, 26 (1999).

Cauchetier M., Mayne M., Goursat P., Besson J.L.La photochimie infrarouge au service des matériaux céramiques.Clefs CEA, 42, 22 (1999).

Cornaggia C, Simon M., Morin P., Nenner I.Explosion moléculaire induite par laser et rayonnement synchrotron.Clefs CEA, numéro spécial sur les interactions photons-matière, 41, 66 (1999).

Couprie M.E.Le rayonnement synchrotron, pour quoi faire ? Le rayonnement synchrotron, outil de recherchepolyvalentEncyclopédie Larousse Bordas (2000)

Gaveau M.A.Voyage au centre de l'agrégat.Phases magazine, 25 (2000).

Guillois O., Ledoux G., Reynaud СDes nanocristaux de silicium dans l'espace.Phases magazine, 23 (2000)

Markovitsi D., Marguet S., Millié Ph.Cristaux liquides colonnaires : Systèmes modèles pour une description quantitative de la migrationd'excitation.Sciences chimiques, Lettres des départements scientifiques du CNRS, 71,4 (1999).

Markovitsi D., Lavery R.Réflexions sur la chimie physique.Actualité Chimique, 11-12, 26, (1998).

Markovitsi D., Mordenti L,Lorsque les molécules jouent avec un ballon de lumière.CNRS Info, 379, 19, (1999).

Mons M., Grégoire G., Jouvet СImpulsions courtes et dynamique réactionnelle.Clefs CEA, numéro spécial sur les interactions photons-matière, 41,56 (1999).

Salières P., Carré B.Des harmoniques plus vives que l'éclair.Phases magazine, 21 (1999).

137

Page 131: Service des Photons, Atomes et Molecules

Salieres P., Carre" B.L'arc-en-ciel des harmoniques d'un laser intense.Clefs CEA, numero special sur les interactions photons-matiere, 41,19 (1999).

Salieres P., Lewenstein M.Table-top lasers crash through the water window.Physics World, 11, 26, (1998).

Salieres P.L'arc-en-ciel des harmoniques d'un laser intense.Dejeuner de Presse DSM en l'honneur de C. Cohen-Tannoudji, Paris, 17 Novembre 1999.

Salieres P.L'arc-en-ciel des harmoniques d'un laser intense.Dejeuner de Presse DSM en l'honneur de C. Cohen-Tannoudji, Paris, 17 Novembre 1999.

Schmidt MSystemes moleculaires en champ laser intense et brefDejeuner de Presse DSM en l'honneur de C. Cohen-Tannoudji, Paris, 17 Novembre 1999.

Schmidt M., Normand D.Systemes moleculaires en champ laser intense et bref.Clefs CEA, nume"ro special sur les interactions photons-matiere, 41, 61 (1999).

Villain P., Lewenstein M.Vers un nouvel etat de la matiere: Le condensat de Bose-Einstein.Clefs CEA, numdro special sur les interactions photons-mati&re, 41, 51 (1999).

PATENT

Brevet No. 99.12949.Procede pour la generation de lumiere dans I 'extreme UV pour la microlithographicSchmidt M. et Sublemontier O. (1999)

138

Page 132: Service des Photons, Atomes et Molecules

SPAM WITHIN THE SCIENTIFIC COMMUNITY

Scientific awards 141

Networks and contracts 143

Relations with Universities

• Corresponding Research Laboratories 147

• Teaching 149

• Reception of University students and other scholars 151

Collaborations with other laboratories 153

Post-docs 155

Foreign visitors 156

Organisation of conferences and workshops 157

Evaluation of research

• Evaluation of laboratories, program committees and evaluation committees 159

• Thesis committees 161

• Young scientist seminars 165

139

Page 133: Service des Photons, Atomes et Molecules

Scientific awards

M.E. Couprie1998 : Prix de 1'Interdivision "Acce"16rateurs et Techniques Associe'es" de la Societe" Franc, aise de Physique.

M. Schmidt1998 : Prix "Aime" Cotton" de la Socie"t6 Francaise de Physique.

141

Page 134: Service des Photons, Atomes et Molecules

Networks and Contracts

Groupements de Recherche

Groupe Poudres Laser et Grains InterstellairesGDR CNRS n°1168 "Etude physico-chimique de poudres ceramiques nanophasiques a base desilicium" (1998-2000)

Groupe Poudres Laser et Grains InterstellairesGDR CNRS n°1752 "Nanotubes" (1999-pr6sent)

Groupe Photophysique Photochimie en phase condensfeGDR CNRS n° 1017 "Processus elementaires en phase liquide" (1997-2000)

Groupes Photophysique Photochimie en phase gazeuse et Chimie The"oriqueGDR CNRS-CEAn°1021 "Agregats" (1998-1999)

Groupes Photophysique Photochimie en phase gazeuse - Chimie Th6orique - Applications des PlasmasGDR CNRS-CEA n°2107 "Agregats etReactivite" (2000-pr&sent)

Groupes Interaction Laser Matiere en Champ Fort - Applications des Plasmas - G6n6rationd'harmoniquesGDR SAXO n°1851 "Nouvelles Sources de Rayons X et leurs Applications" (1999-pr6sent)

National Programs

Groupes Poudres Laser et Grains Interstellaires et Chimie Th6oriqueProgramme national CNRS-CEA-CNES "Physique et Chimie du Milieu Interstellaire" (1996-1999)

Groupe Applications des PlasmasCEA-CNRS-Universit6-Industrie "Programme sur la lithographie dans Vextreme UV (PREUVE)"(1999-2001)

European Networks

Research Training Networks

Rayonnement SynchrotronM.E. Couprie (coordonnateur)"Towards a storage ring free electron laser source at 200 nm" (1997-2001)

Rayonnement SynchrotronM.E. Couprie"Development of a combined Synchrotron Radiation and VUVfree electron laser facility"

Poudres Laser et Grains InterstellairesN. HerlinNanomat: "Nanopowders : preparation and processing NANOMAT" (1998-2002)

Interaction Laser Matiere en Champ FortP. Agostini: "Generation and applications of ultra-short X-ray pulses" (1996-2000)

143

Page 135: Service des Photons, Atomes et Molecules

Interaction Laser Matiere en Champ FortP. Salieres : "Generation and characterization of attosecond pulses in strong laser-atom interaction"(2000 - 2004)

Access to Research Infrastructure

Rayonnement SynchrotronM.E. Couprie, rdseau en liaison avec le laboratoire ELETTRA, Trieste, Italie"Combined synchrotron radiation and VUVfree electron laser facility"

Marie Curie Fellowships

Chimie ThdoriquePh. Milli6 - G. Granucci (post-doc 06/1997 - 06/1999)"Photo-induced acid base chemistry in solution : excited state phenol reaction dynamics in water"

Photophysique Photochimie en phase condensedT.H. Tran-Thi - M.L. Calvo-Munoz (doctorante 10/1997-09/2000)"Capteurs chimiques d'hydrocarbures aromatiques monocycliques"

Applications des PlasmasM. Schmidt - Christoph Ellert (post-doc 10/1998-02/2000)"Agregats metalliques en champ laser intense et ultra-bref

Program COST

Photophysique Photochimie en phase condensedD. Markovitsi Programme COST D14 - (1999-2003)"Experimental and modelling aspects of electron and energy transfer in organised molecularmaterials"

Rayonnement SynchrotronL. Nahon DESY COST RTD - 5thprogramme (2000-2003)"Development of a pump-probe facility with sub-picosecond time resolution combining a high-poweroptical laser and a soft X-ray free electron laser"

Program INT AS

Interaction Laser Matiere en Champ FortC. Cornaggia"Experimental and theoretical study of molecular dynamics in a strong laser field"(May 2000 - April 2003)

Interaction Laser Matiere en Champ FortP. Agostini"Coherence and interference effects in high harmonic generation and above threshold ionization"(May 2000 - April 2003)

144

Page 136: Service des Photons, Atomes et Molecules

Joint Research Programs

France-Allemagne : Programme "Procope", D. Markovitsi avec D. Haarer, Université de Bayreuth,Allemagne"Etude de transfert de charges dans des cristaux liquides colonnaires photoconducteurs" (1998-1999)

France-Allemagne : Programme "Procope", С. Reynaud avec F. Huisken, Max Planck Institut,Götüngen, Allemagne"Propriétés optiques de films minces nanostructurés produits par dépôt de clusters" (1999-2000)

France-Allemagne : Programme "Procope", N. Herlin avec F. Aldinger, Max Planck Institut, Stuttgart,Allemagne"Synthèse et comparaison de pré-céramiques amorphes Si/C/N obtenues par pyrolyse laser outhermolyse en four" (2000 - 2002)

France-Pologne : Programme "Polonium", T. Blenski avec K. Rzazewski, Institut de Physique de ГAcadémie Polonaise des Sciences"Approche hydrodynamique pour l'étude de la dynamique de liquides fermioniques et bosoniques"(1997-2000)

France-Russie : Ministère des Affaires EtrangèresT. Auguste avec A. Faenov et T. Pikuz, Mendeleiev National Institute of Physical-Technical andRadiotechnical Measurements, Moscou"Spectroscopie X des interactions laser-matière sous éclairement laser extrême"

France-Roumanie : Ministère des Affaires EtrangèresM. Cauchetier, С Reynaud avec Y. Voicu, Institut de Physique Atomique de Bucarest"Réactions chimiques hétérogènes induites par pyrolyse laser : application à la synthèse de poudrescarbonées de fullerènes"

France-Etats-Unis : "NSF-CNRS", Т.Н. Tran-Thi avec J.T. Hynes, Université du Colorado, Boulder,Etats-Unis"Transfertphotoinduit de proton : expérience et théorie" (1997-2000)

France- Etats-Unis : Contrat OTAN CRG (1992-présent)P. Agostini avec Di Mauro, Brookhaven National Laboratory, Upton New York, Etats-Unis"Electron correlation in multiphoton ionization"

Other Research Contracts

Chimie Théorique - Ph. MilliéAvec la Direction du Cycle du Combustible (DCC/DPE) (1998-2000)"Etude théorique des colorants laser"

Chime Théorique - Ph. MilliéAvec le Haut Commissariat à l'Energie Atomique (1999-2001)"Interaction ion métallique-molécule : une action conjointe théorie-expérience"

Chimie Théorique - Ph. MilliéAvec Г Institut de Chimie des Substances Naturelles (CNRS) (1999)"Réactivité et énantiomères"

145

Page 137: Service des Photons, Atomes et Molecules

Interaction Laser Matiere en Champ Fort - T. AugusteAvec la Direction des Applications Militaires (DAM) (1997-2000)"Design and applications of laser-plasma X-ray lasers"

Interaction Laser Matiere en Champ Fort - B. Carre", O. Gobert, J. Pascale, M. PoirierAvec la Direction du Cycle du Combustible (DCC/DPE) (2000)"Peuplement de niveaux metastables de Vion U* dans le procede SILVA"

Matiere a Haute Densit6 d'Energie - T. BlensiciAvec la Direction des Applications Militaires (DAM) (1997- 1999)"Calcul de laphotoabsorption dans lesplasmas denses"

Serveurs Lasers - O. GobertAvec la Direction du Cycle du Combustible (DCC/DPE) (2000)"Prise en compte des effets d'indice d'une vapeur epaisse sur la propagation"

146

Page 138: Service des Photons, Atomes et Molecules

Relationship with Universities

Corresponding Research Laboratories

In order to give a formal basis of the relations between CEA and University, the concerned ministerialoffices for CEA has encouraged us to establish so-called LRC contracts. These contracts have a minimumduration of 2 years and are designed to link a CEA research group with a University laboratory therebyincluding a financial support for the University and University staff working at CEA.

Team Polyatomic molecules and clusters in strong fieldCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 97-01The research team of Professor Jean-Pierre Rozet, as a part of the Solid state physics group (GPS -University PARIS VI and PARIS VII) headed by Professor Jean Klein, works since many years in the fieldof fast, multiply charged ion impact physics and is a LRC laboratory of the CEA (contract n° DSM 97-01).The scientific activity is devoted to the study of high density of excitation in matter either induced by fast ionprojectiles or by strong laser pulses : experiment and theory.Created in 1997 and renewed in 1999 for 2 years.

Teams Polyatomic molecules and clusters in strong field and Photophysics andPhotochemistry in the Gaseous PhaseCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 97-02The group « simple systems in strong laser fields » headed by Profs. Annick Suzor-Weiner and AlfredMaquet of the Laboratory of Chemical Physics Matter and Radiation (CPMR) at the University Paris VI - isa LRC laboratory of the CEA (contract n° DSM 97-02). The research project is divided into two main topicsdealing with the interaction dynamics of molecules irradiated by ultra-short (lOfs a 1 ps) and intense laserpulses:Analysis and elucidation of the mechanisms responsible for molecular alignmentDynamic control of the molecular ionization and dissociationCreated in 1997 and renewed in 1999 for 2 years.

Team Production of coherent XUV light by harmonic generation and ApplicationsCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 97-04The research team «Intense lasers and Application » headed by Dr. Francois Salin, in collaboration with thegroup of Dr. Robert Gayet of the Center of Theoretical Physics and Modeling, at the University Bordeaux Iis a LRC laboratory of the CEA (contract n° DSM 97-04, director Prof. Christian Stenz). The researchproject is focused on the study of the high order harmonic generation (HHG) in gases and includes two mainactivities:Theoretical study of relativistic effects in atomic and molecular physics induced by ultra-short and intenselaser fieldsDevelopment and applications of HHG sources at high repetition rate.Created in 1997 and renewed with the. collaboration of CEA/DAM.

Team Polyatomic molecules and clusters in strong fieldCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 98-16The laboratory of Chemical Physics Matter and Radiation (CPMR) at the University Paris VI, headed byProfessor Alfred Maquet is a LRC laboratory of the CEA (contract n° DSM. 98-16).The research project in centered on two subjects:High order harmonic generation, especially with clusters.Laser-matter interaction in strong laser field.Created in 1999 for 4 years.

147

Page 139: Service des Photons, Atomes et Molecules

Team Interstellar Dust and Laser-produced PowdersCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 97-03The group "Novel ceramic materials" headed by Professor Goursat of the University of Limoges and of theEcole Nationale SupeYieure de Ceramique Industrielle is a LRC laboratory of the CEA (contract n° DSM 97-03).The research project is devoted to:Shaping and densification by sintering under high pressure of the laser-produced powders which have beensynthesized at SPAMThe study of thermo-mechanical properties of the developed materialsCreated in 1997 for 4 years.

Teams Polyatomic molecules and clusters in strong field and Interstellar Dust and Laser-produced PowdersCorresponding Research Laboratory (LRC) of the CEA, contract n° DSM 99-21The "Laboratoire de Spectroscopie Ionique et Moleculaire" (LASIM) of University Claude Bernard (Lyon,UMR 5579) headed by Professor Michel Broyer is a LRC laboratory of the CEA (contract n° DSM 99-21)The research project is devoted to:Synthesis by laser Pyrolysis of carbon/silicon heterofullerenesOptical properties of large carbon clustersHeating of metal clusters with short and intense laser pulsesCreated in 2000 for 4 years.

148

Page 140: Service des Photons, Atomes et Molecules

Teaching

University and continuing educationBrenner V."Préceptorat de Chimie des Liaisons"2ième année, Ecole Supérieure de Physique et de Chimie Industrielles - ESPCI - Paris (1998-présent) lOh/an"Travauxpratiques de Chimie Quantique"Tronc commun du DEA de physico-chimie moléculaire, Université Paris XI - (1998-présent) - 16h/an

Dimicoli I."Cours Applications des lasers en analyse"DESS "Instrumentation et méthodes physico - chimiques d'analyse", Université Paris XI et INSTN(1998-présent) - 6h/an

Fourni er P.R."Cours Vide, cryogénie, bouteilles de gaz, gaz comprimés".Stage des animateurs de sécurité, INSTN, Saclay (1999-2000) - 8h/an

Gilard F."Ecole de spectrométrie de masse"Formation permanente CNRS - Université Paris XI - (2000) - 20h/an

Granucci G."Travaux dirigés de thermodynamique"Classes préparatoires PCEM - Université Paris XI - (1998) - 30h/an"Interrogations orales de thermodynamique et atomistique"DEUG Sciences de la vie, Université Paris XI (1998-1999) - 18h/an"Préceptorat de Chimie des Liaisons"2ième année, Ecole Supérieure de Physique et de Chimie Industrielles - ESPCI - Paris (1999) - 10h/an

Grégoire G."Travauxpratiques lasers"DESS "Instrumentation et méthodes physico - chimiques d'analyse", Université Paris XI et INSTN(1998-2000) - 36h/an"Travauxpratiques d'optique"NFI Université Paris XI (1998-2000) - 60h/an

Mayne M."Travauxpratiques de chimie générale"DEUG Physique et Chimie, Université d'Evry - (1999) - 30h/an

Mestdagh J.M."Cours de Collision"Tronc commun du DEA de physico-chimie moléculaire, Université Paris XI (1998-2000) - 30h/an

Millié Ph."Cours et travaux dirigés en Chimie Quantique"Tronc commun du DEA de physico-chimie moléculaire, Université Paris XI (1998-présent) - 30h/an"Les méthodes de la fonctionnelle de la densité en chimie"6ème Ecole d'été de Physico-Chimie Théorique, Marly-Le-Roi (6-10 septembre 1999) - 2h"Forces intermoléculaires et simulation numérique"Option du DEA de physico-chimie moléculaire, Université Paris XI (1998-présent) - 9h/an

149

Page 141: Service des Photons, Atomes et Molecules

Monot P." Cours Optique et détection "DEA de Modélisation et Instrumentation en Physique - Université Paris VI (1999-présent) - 10h/an

Morin P."Applications du rayonnement synchrotron: photoionisation-photodissociation"D.E.A. - Université Paris VI (1998-présent) - 9h/an

Nutarelli D.

"Cours Physique du XXeme siècle"DEUG de Physique 2lème année, Université de Cergy-Pontoise (1997-1998) - 20h/an

Poisson L."Elaboration et encadrement de travaux pratiques de chimie organique"Monitorat à l'Ecole Polytechnique, Palaiseau (1998-2000) - 96h/an."Encadrement de travaux pratiques de chimie organique"ENSTA, Palaiseau (1998-1999) - 12h/an

Piuzzi F."Cours Applications des lasers en analyse""Organisation des travaux pratiques laser et des stages en entreprise des étudiants"DESS "Instrumentation et méthodes physico-chimiques d'analyse", Université Paris XI et INSTN (1998-présent) - 30h/an"Cours Applications physico-chimiques des lasers"DEA de Modélisation et Instrumentation en Physique, Université Paris VI (1998- présent) - 6h/an

Simon M."Cours Photoionisation et photodissociation en phase gazeuse dans le domaine UV-X mous"Option du DEA de physico-chimie moléculaire, Université Paris XI et du DEA de Chimie InorganiqueUniversité Paris VI. (1998-présent) - 8h/an

Tardivel B."Travauxpratiques lasers"DESS "Instrumentation et méthodes physico-chimiques d'analyse", Université Paris XI et INSTN(1998-présent; - 12h/an.

Thomas A.-L."Travaux dirigés de thermodynamique et atomistique"Classes préparatoires PCEM Université Paris XI (1999-présent) - 44h/an"Préceptorat de Chimie des Liaisons"2ième année, Ecole Supérieure de Physique et de Chimie Industrielles - ESPCI - Paris (1999-présent) 10h/an"Préceptorat de Réactivité"3ième année, Ecole Supérieure de Physique et de Chimie Industrielles - ESPCI - Paris (1999-présent) 5h/an"Interrogations orales de Chimie"Classes préparatoires PCSI Lycée Biaise Pascal, Orsay (1999) - 20 h/an

Visticot J.P."Cours Spectroscopie en temps réel"Option du DEA de physico-chimie moléculaire, Université Paris XI (1998-2000) - 10h/an.

150

Page 142: Service des Photons, Atomes et Molecules

Reception of University students and other scholars

Amaas D.Becu L.Bouchon M.Bregeion T.Bouvier B.Carre V.Dubois E.Hergott J. F.Lafon R.Le Guen K.Paul P. M.Poisson L.Quaglia L.Tessier E.

Stagiaires 3eme Cycle

Ecole Centrale de LyonUniversit6 Paris VIESPEOUniversity Paris XIUniversity Paris XIUniversity de MetzUniversity de Marnes la Vall6eUniversity Paris XIBroohaven National LaboratoryUniversal Paris VIUniversity Paris VIUniversit6 Paris VIEcole Polytechnique et University Paris XIUniversity Paris VI

4 mois et demi6 mois et demi6 mois6 mois5 mois et demi4 mois4 mois4 mois1 mois et demi5 mois4 mois11 mois2 mois5 mois et demi

Agnus G.Allain N.Biasi A.Brianne C.Campo D.Dubin F.Evain B.Guilloun C.Mairesse Y.Mairesse Y.Moneron G.Moreau A.Moreau P.Sacquin S.Teahu A.

Dufrenoy Ph.Forterre M.Gastori S.Gerbron S.Giordana C.Lancry S.Meski Nacer M.Riedel D.Rogombe M.Roux J.Vilmay M.Zelmai: Y.

Stagiaires 2eme Cycle

Stage universitaire LicenceStage universitaire MaitriseStage universitaire NFIStage universitaire LicenceStage de MagistereEcole d'ing^nieur 4eme anne"eStage universitaire MaitriseStage de MagistereStage universitaire LicenceStage de MagistereStage de MagistereStage Universitaire MaitriseStage universitaire LicenceStage de MagistereStage Universitaire Maitrise

Stagiaires le r Cycle

Stage universitaire BTSStage de fin d'&ude BTSStage E.N.C.P.B.Stage universitaire IUTStage universitaire IUTStage universitaire IUTStage universitaire IUTStage universitaire IUTStage universitaire DUTStage universitaire BTSStage universitaire DUTStage universitaire BTS

1 mois5 mois3 mois1 mois2 mois3 mois1 mois2 mois1 mois3 mois2 mois2 mois1 mois1 mois2 mois

et demi

et demi

et demi

etdemiet demi

etdemietdemiet demietdemi

2 mois et demi3 mois4 mois et demi3 mois3 mois3 mois3 mois

11 mois2 mois3 mois5 mois4 mois et demi

151

Page 143: Service des Photons, Atomes et Molecules

Collaborations with other laboratorieswithout formal contract

National

Centre de Recherche sur la Matiere Divise"e, CNRS, Orleans.

Centre d'Erudes des Lasers Intenses et Applications, CNRS, Bordeaux.

Centre Interdisciplinaire de Recherche avec les Ions Lasers, L.S.A., University de Caen.

Direction des Applications Militaires, CEA, Bruyeres le Chatel.

Direction des Techniques Avanc6es, LETI, CEA, Saclay.

Direction du Cycle du Combustible, DRRV, CEA, Marcoule.

Direction du Cycle du Combustible, DPE, CEA, Saclay.

Ecole Nationale Sup6rieure des Techniques Avanc6es, UMR 7639, Ecole Polytechnique, Palaiseau.

Ecole Normale SupeYieure UMR 8640, Paris.

Institut de Chimie des Substances Naturelles, CNRS, Gif sur Yvette.

Institut d'Optique The'orique et Appliquee, CNRS, Orsay.

Laboratoire Aim6 Cotton, CNRS, Orsay.

Laboratoire de Chimie Physique, University Paris XI.

Laboratoire de Chimie The'orique, University Paris VI.

Laboratoire des Mat6riaux et Proce'des Membranaires , Ecole Nationale Sup&ieure de Chimie, Montpellier

Laboratoire d'Optique Appliquee - des Techniques Avance'es, Palaiseau.

Laboratoire de Photophysique Mole"culaire, CNRS, Orsay.

Laboratoire de Physique des Solides, Universit6 Paris XI.

Laboratoire de Physique Quantique, University de Toulouse.

Laboratoire de Spectrom6trie Ionique et Moleculaire, University de Lyon.

Laboratoire de Spectroscopie Atomique et Ionique, Universite" Paris XI.

Laboratoire pour 1'Utilisation des Lasers Intenses, Ecole Polytechnique, Palaiseau.

Service de Recherche sur les Surfaces et l'lrradiation de la Matiere, DRECAM, CEA, Saclay.

Service des Ions, Atomes et Agre"gats, DRFMC, CEA, Grenoble.

International

Advanced Photon Research Center, JAERI, Japan.

AMOLF FOM Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands.

Brookhaven National Laboratory, Upton New York, USA.

Center for Theoretical Physics of the Polish Academy of Sciences, Warsaw, Poland.

Hannover Universitat, Hannover, Germany.

Institut fur Kernphysik, TU-Darmstadt, Darmstadt, Germany.

153

Page 144: Service des Photons, Atomes et Molecules

Institut fur Rontgenphysik, Universita't Gottingen, Gottingen, Germany.

Institute for Molecular Sciences, UVSOR, Okasaki, Japan.

Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.

Institute of Theoretical Physics, Warsaw University, Warsaw, Poland.

Kuchatov Institute, Moscow, Russia.

Laboratoire de Physique Atomique et Moleculaire, University Laval, Canada.

Las Vegas University Nevada and Advanced Light Source, Berkeley, USA.

Lund Institute of Technology, Lund, Sweden.

Max Plank-Institute fur Quantenoptik, Garching, Germany.

Max Plank-Institute fur Stromungsforschung, Gottingen, Germany.

Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow, Russia.

Oregon University, Oregon, USA.

Photon Factory, Tsukuba, Japan.

Research Institute for Scientific Measurements, Sandai, Japan.

Rheinliche Westphalische Technische Hochschule, Aachen, Germany.

University libre de Berlin, Berlin, Germany.

University Libre de Louvain La Neuve, Belgium.

University Technique d'Aix la Chapelle, Aix la Chapelle, Germany.

University of Bialystok, Bialystok, Poland.

University of Missouri-Rolla, Rolla, Missouri, USA.

Upsala University, Upsala, Sweden.

Uzhgorod University, Uzhgorod, Ukraine.

154

Page 145: Service des Photons, Atomes et Molecules

Post-Docs

Name

Ceccoiti Tiberio.

Ishikawa Kenichi

De Niiino Giovanni

Ellert Christoph

Guard Françoise

Granucci Giovanni

Hoyau Sophie

Merdji Hamed

Mocellin Alexandra

Zao Qingchun

Renault Eric

Rusek Marian

Ténégal François

Funding

PREUVE contract

CEA

CEA

EEC/Marie Curie Fellowship

Contract

EEC/Marie Curie Fellowship

CEA

CEA

CNPq

EGIDE

CEA

CEA

CEA

Dates

03.2000 au 02.2001

10.1998 au 09.2000

10.1999 au 10.2000

09.1998 au 02.2000

05.2000 au 12.2000

06.1997 au 06.1999

02.1998 au 08.1998

10.1998 au 09.2000

01.2000 au 01.2001

11.1998 aulO. 1999

07.1998 au 06.2000

07.1998 au 07.2000

09.1999 au 08.2000

155

Page 146: Service des Photons, Atomes et Molecules

Foreign Visitors

Name

Alexandrescu Rodica

Brewczyk Miroslaw

Faenov Anatoli

Faubel Manfred

P:ormichev Serguei

Di Mauro Luigi

Ito Kenji

Mostowski Jan

Müller Anita

Pikuz Tatiana

Shigemasa Eiji

Skobelev Igor

Suran Vasyl

Voicu Ion

Wieland Marek

Zaretski David

Affiliation

Inst. of Physics and Technology of Radiation Devices, Bucarest, Roumania

University Bialystok and Center for Theoretical Physics, Warsaw, Poland

MISDC of VNHFTRI, Mendeleevo, Russia

MPI für Strömungsforschung, Göttingen, Germany

Inst. Kourchatov, Moscow, Russia

Brookhaven National Laboratory, USA

Inst. of Materials structure Science, Tsukuba, Japon

Inst. Of Physics, Warsaw, Poland

Max Planck Institute, Stuttgart, Germany

MISDC of VNIIFTRI, Mendeleevo, Russia

National Laboratory for High Energy Physica KEK Japan

MISDC of VNIJPTRI, Mendeleevo, Russia

Uzhgorod University, Uzhgorod, Ukraine

Inst. of Physics and Technology of Radiation Devices, Bucarest, Roumania

Inst. für Röntgenphysik, Göttingen, Germany

Inst. Kourchatov, Moscow, Russia

Date

1 month in 1998

2 months over 1998-1999

2 months in 1998

3 months over 1998-1999

2 months in 1999

3 months over 1998-1999

2 months over 1998-1999

1 month in 1999

1 month in 2000

4 months over 1999-2000

18 months over 1998-1999

2 months in 1998

3 months in 1999

1 month in 1999

2 months in 1999

3 months over 1998-1999

156

Page 147: Service des Photons, Atomes et Molecules

Organization of conferences and workshop

Agostini P.Co-Pr&ident du Workshop "Relativistic Effects in Laser-Matter Interaction", l'Orme des Merisiers, France,19-20 Novembre 1999.

Membre du comit6 de programme de Pisa 2000 "Atoms, Molecules and Quantum dots in laser fields:Fundamental processes", Pise, Italie, 12-16 Juin 2000.

d'Oliveira P.Membre du comit6 d'organisation "Developpement et Applications des Sources X et UVX Intenses etBreves", Orsay, France, 5-6 Mars 1998.

Dimicoli I.Membre du comit6 d'organisation "Energetique et reactivite des ions en phase gazeuse: experience ettheorie", Gif sur Yvette, France, 15-17 Novembre 1999.

Gustavsson T.Membre du comit6 d'organisation "Photoprocesses in molecular assemblies", Dourdan, France, 27-30 Juin1999.

Markovitsi D.Pr6sidente du comit6 d'organisation "Photoprocesses in molecular assemblies", Dourdan, France, 27-30Juin 1999.

Merdji H.Membre du comite" d'organisation "JECAM, Journies de conferences interdisciplinaires du DRECAM",Saclay, France, 17-19 Janvier 2000.

Membre du comit6 d'organisation "Doctoriales Paris VI - Ecole Polytechnique", La Brosse-Montceaux,France, 15-21 Novembre 1998.

Meynadier P.Membre du comit6 d'organisation "JECAM, Journees de conferences interdisciplinaires du DRECAM",Saclay, France, 17-19 Janvier 2000.

Millie; Ph.Membre du comite" d'organisation "Photoprocesses in molecular assemblies", Dourdan, France, 27-30 Juin1999.

Morin P.Membre du comite' d'organisation du Workshop "Industrie et Recherche appliquee autour du RayonnementSynchrotron", Aix en Provence, France, 28-29 Avril 1998.

Reynaud C.Membre du comite" d'organisation du Workshop "The role of laboratory experiments in the characterisationof cosmic materials", Berne, Suisse, 8-12 Mai 2000

Simon M.Membre du comite' d'organisation de l'6cole the"matique "Detection, Temps, Position, Image", Universit6Paris XI, Orsay, France, 3-5 Novembre 1999.

157

Page 148: Service des Photons, Atomes et Molecules

Evaluation of research

Evaluation of laboratories, program committees,and evaluation committees

Agostini P.Membre du comite de direction du Programme FEMTO de 1'European Science Foundation.Membre du comity de programme de LIF-ENSTA-X, Palaiseau.Coordinateur du projet INT AS "Coherence and interference effects in high harmonic generation".

Carre B.Membre du comite de programme Atomes et Molecules du LURE (1998-present).

Couprie M.E.Expert a Bruxelles :Bourse Marie Curie (5ieme PCRD) (1999).Reseau (5ieme PCRD) (1999).

Gustavsson T.Membre de la commission de specialistes n° 8, Ecole Normale Superieure de Cachan (2000).

Mestdagh J.M.Membre du groupe de travail dirigg par J. Dupont-Roc pour l'examen du Laboratoire d'Optique Quantiquede Palaiseau (1999).Membre du conseil scientifique du Laboratoire de Photophysique Moleculaire (2000).

President du comite de programme Atomes et Molecules du LURE (1998-present).President du comite devaluation du laboratoire de Chimie Quantique et Modeiisation (UMR7551) (2000).Membre du conseil de la Division de la Recherche de l'Universite Paris XI (1998-present).Membre du conseil scientifique de la Direction des Applications Militaires (1998-present).Membre du conseil scientifique du LURE (1999).Membre du conseil scientifique du GDR Agregats et Reactivite (2000-present).Membre du comite de suivi du Rayonnement Synchrotron (CEA-CNRS) (1999-present).

Morin P.Membre du scientific and technical advisory comniitee of the Synchrotron Radiation Research Center ofTaiwan (1998-2002).Membre de l'APD SOLEIL (Juillet 1996 Avril 1999).Participation et preparation des reunions du Conseil Scientifique SOLEIL.

Normand D.Membre du conseil scientifique du Centre de Physique Theorique et de Modeiisation de Bordeaux.

Reynaud C.Membre du conseil scientifique du Programme National CEA-CNRS-CNES "Physico-Chimie du MilieuInters tellaire" (1996-present).

Salieres P.Membre du comite scientifique du GDR SAXO (2000-present).

Visticot J.P.Membre du comite scientifique de 1'Action Concertee Incitative "Photonique" (2000).

159

Page 149: Service des Photons, Atomes et Molecules

Thesis committees

Agostini P. (Opponent at the PhD thesis defense)High order harmonics characterisation, optimisation and applications.Cl. Lynga - University de Lund, 19 Novembre 1999.

Blenski Th. (rapporteur)Etude de la deformation du cortege electronique en presence d'un champ magnetique intense.P. Pourre - These de l'Universite' Paris XI, Orsay, 16 Septembre 1998.

Blensld Th. (rapporteur)Etude du transfert radiatifet de I'opacite d'un plasma cree par rayonnement X.F. Gilleron - These de l'Ecole Polytechnique, 30 Juin 2000.

Carr6 B. (rapporteur)Etats creux du lithium atomique et ionique.S. Diehl-Guilbaud - These de l'Universitg Paris XI, Orsay, 29 Mai 1998.

Carre' B. (rapporteur)Extension du pompage des lasers X-UV aux ions nickelloi'des. Realisation d'un laser a 13.9 nm.Modelisation de la coherence spatiale des lasers X-UV.D. Ros - These de l'Universitd Paris XI, Orsay, 18 Decembre 1998.

Carr6 B. (rapporteur)Spectroscopie laser sur des especes atomiques ou moleculaires preparees par un rayonnement VUV. M.Gisselbrecht - These de l'Universite' Paris XI, Orsay, 25 Juin 1999.

Carre-B.Etudes des proprietes de coherence de la generation d'harmoniques d'ordre eleve: qualite du faisceau,coherence spatiale et temporelle et application.L. Le Deroff - These de l'Uni versit6 Paris VI, 29 Novembre 1999.

M. CauchetierEtude par RMN de poudres nanocomposites a base de silicium obtenues par pyrolyse laser de precurseursorgano-metalliques.Y. El Kortobi - These de l'Universit6 Paris VI, 2 Juin 1998

M. CauchetierEtude spectroscopiques de nanomateriaux a base de carbure de silicim : structures et proprieteselectroniques.S. Charpentier - These de l'UniversM du Maine, Le Mans, 25 Juin 1998

M. CauchetierCouche minces nanostructurees de silicium et de carbure de silicium preparees par depot de petits agregats: structures et proprietes electroniques.P. Keghelian - These de l'Universit6 Claude Bernard, Lyon I, 12 Decembre 1998

Cauchetier M.Nanocomposites Sifl/SiC : stability thermique et densification des poudres SiCN (Al, 0) synthetisees parpyrolyse laser, comportement aufluage desfrittes.B. Doucey - These de l'Universite' de Limoges, 16 Decembre 1999.

Cornaggia C.Contribution a V etude de la multiionisation et de la fragmentation moleculaire en champ laser intense.P. Hering - These de l'Universit6 Paris XIII, Villetaneuse, 9 Decembre 1999.

161

Page 150: Service des Photons, Atomes et Molecules

Couprie M. E. (rapporteur)Défauts locaux absorbants et diffusants, rôle et évolution dans l'irradiation. Corrélation et études multi-échelles.A. Gatto - Thèse de l'Université Saint-Jérôme, Marseille, 1er Octobre 1999.

Couprie M. E.Dynamique et conditions de stabilité du laser à électrons libres de Super-ACO. Fonctionnement avec unecavité RF simple ou double.R. Roux - Thèse de l'Université Paris VI, 28 Janvier 1999.

Couprie M. E.Dynamique et performances du laser à électrons libres de Super-ACO avec une cavité RF à 500 MHz,D. Nutarelli - Thèse de l'Université Paris XI, Orsay, 20 Janvier 2000.

Dimicoli I.Séparation de charges dans les agrégats moléculaires. Dynamique et spectroscopie. Application au systèmeNal -(solvants polaires)„.G. Grégoire - Thèse de l'Université Paris XI, Orsay, 3 Février 1999.

Gustavsson T.Caractérisation de billes de latex fluorescentes pour l'élaboration de nano-capteurs.R. Méallet-Renault - Thèse de l'Ecole Normale Supérieure de Cachan, 20 mars 2000.

Herlin-Boime N.Elaboration, organisation et propriétés de nanoparticules de carbone modèles de la poussière interstellaire.A. Galvez - Thèse de l'Université d'Orléans, 22 Octobre 1999.

Markovitsi D.Etude des états électroniques et de la dynamique de relaxation d'un dimère de phtalocyanine de silicium.L. Oddos-Marcel - Thèse de l'Université Joseph Fourier, Grenoble I, 14 Septembre 1998.

Markovitsi D.Reconnaissance chirale et énantiosélectivité dans des complexes de van der Waals.K. Le Barbu - Thèse de l'Université Paris XI, Orsay, 29 Janvier 1999.

Markovitsi D.Etude du transfert d'énergie dans des systèmes supramoléculaires- effet d'antenne.P. Choppinet - Thèse de l'Université Paris XI, Orsay, 3 Février 2000.

Mestdagh J.M.Mise au point d'un dispositif expérimental pour l'étude collisionnelle de complexes ioniques.O. Sublemontier - Mémoire CNAM, 11 Décembre 1998.

Millié Ph. (rapporteur)Caractérisation de processus réactionnels élémentaires à l'aide de la théorie des catastrophes.X. Krokidis - Thèse de l'Université Paris VI, 20 Mai 1998.

Millié Ph.Etude de petits agrégats mixtes par la méthode de la fonctionnelle de la densité et par des potentielsmodèles.M. Bertolus - Thèse de Г Université Paris XI, Orsay, 5 Octobre 1998.

Millié Ph.Contribution à la théorie de la fonctionnelle de la densité. Application de la méthode de la transformationd'échelle locale aux matrices densités réduites avec ou sans spin; effets de corrélation et effets de couche.R. Pavlov - Thèse de 1' Université Paris VI, 23 Février 1999.

162

Page 151: Service des Photons, Atomes et Molecules

Milli6 Ph. (rapporteur)Etude de la reactivite d'ions solvates en phase gazeuse : approche de la solvatation.G. Van Der Rest - These de l'Ecole Polytechnique, ler Juillet 1999.

Milli6 Ph. (rapporteur)Memoire d'habilitation.Anne Boutin - University Paris XI, Orsay, 21 Juillet 1999.

Millie" Ph. (rapporteur)Etude experimental et theorique des spectres de vibration de Vetat excite SI d'heterocycles azotes derivesdu biphenyle.V. de Waele - These de 1'University Lille I, 14 Octobre 1999.

Milli6 Ph. (rapporteur)Interaction Cation-Oxygene : Developpement de nouveaux potentiels classiques.X. Peiiole - These de l'Universit6 Paul Sabatier, Toulouse, 5 Novembre 1999.

Milli6 Ph. (rapporteur)Etude theorique de la reaction C + CH.M. Boggio-Pasqua - These de l'Universit6 Bordeaux I, 23 Novembre 1999.

Milli6 Ph.Etablissement de potentiels d'interaction pour la simulation moleculaire. Application a la prediction desequilibres liquide-vapeur de melanges binaires alcane-molecule multipolaire.J. Delhommelle - These de l'Universite' Paris XI, Orsay, 2 F6vrier 2000.

Millie" Ph.Nucleation reactive et transfert de charge comme sondes de la structure electronique des agregatsmetaliiques.I. Tigneres - These de l'Universit6 de Cergy-Pontoise, 30 Mars 2000.

Normand D.Etude du sillage laser: application a Vacceleration d'electrons.F. Dorchies - These de l'Ecole Polytechnique, 17 juin 1998.

Normand D.Effets relativistes dans ['interaction laser-plasma a tres hautflux : instability parametriques electroniqueset force ponderomotrice.B. Quesnel - These de l'Ecole Polytechnique, 18 juin 1998.

Pascale J. (rapporteur)Modelisation semi-classique par invariance adiabatique des collisions reactives ion-molecule.A. Djebri - These de l'Universite Paris VI, 16 Decembre 1998.

Pascale J. (rapporteur)Classical trajectory Monte Carlo simulation of ion-atom collisions.A. N. Perumal - Thesis at Banaras Hindu University, Varanasi, India, May 1999.

Pascale J.Etude theorique d'un atome ou ion a deux electrons actifs par une methode d'interaction effective.L. Feret - These de l'Universitg Paul Sabatier, Toulouse, 5 Novembre 1999.

Poirier M.Etude theorique d'un atome ou ion a deux electrons actifs par une methode d'interaction effective.L. Feret - These de l'Universit6 Paul Sabatier, Toulouse, 5 Novembre 1999.

163

Page 152: Service des Photons, Atomes et Molecules

Pradel P.Mise au point d'un dispositif expérimental pour l'étude collisionnelle de complexes ioniques.O. Sublemontier - Mémoire CNAM, 11 Décembre 1998.

Reynaud C.Caractérisation de matériaux complexes sur une large gamme spectrale par des techniques optiques etphotothermiques; application au carbone amorphe hydrogéné.V. Paret - Thèse de l'Université Paris VI, 21 Janvier 1999.

Reynaud C. (rapporteur)Etude des agrégats mixtes bicovalents.C. Ray - Thèse de l'Université Claude Bernard, Lyon, 23 Juin 1999.

Reynaud C.Etude de la photoluminescence du silicium nanocristallin : Application astrophysique à l'Emission RougeEtendue.G. Ledoux - Thèse de L'Ecole Centrale, Lyon, 14 Octobre 1999.

Reynaud C.Réactions chimiques hétérogènes induites par pyrolyse laser: application à la synthèse de poudrescarbonées et de fullerènes.S. Petcu - Thèse de l'Université Paris XI et de l'Université de Bucarest, 2 Novembre 1999.

Reynaud C. (rapporteur)La désorption d'ions négatifs stimulée par impact d'électrons de basse énergie sur les molécules condensées:effets de l'environnement et réactivité induite.M. Lachgar - Thèse de l'Université Paris XI, 25 Février 2000.

Schmidt M.Interaction d'agrégats de gaz rares avec un champ laser intense.Dobosz Sandrine - Thèse de l'Université Paris XIII, Villetaneuse, le 30 Novembre 1998

164

Page 153: Service des Photons, Atomes et Molecules

Young scientist seminars

As a part of a professional education for the PhD students preparing their thesis in our laboratories, theSPAM has since many years established a tradition of regularly held young scientist seminars. Each studentmust present his research work at least twice during the three year period of his Ph.D. grant. As a rule eachseminar has a formal character, is officially announced and the student must defend his work in presence ofan exterior senior scientist. Prof. Alain Fuchs, (University of Paris XI, Orsay) and Prof. Jacques Baudon,(University of Paris XIII, Villetaneuse) are in charge as supervising seminar Professors. The seminars areconsidered as a part of the general educational program proposed by the SPAM to our young scientists.Other trainee programs include job search, language courses, special PhD conferences, etc. The seminarschedule for 1998-2000 is displayed below.

Gilles Gr6goireEtude experimental de la separation de charges dans les agregats Nal-solvantn (S= H2O, NH3, CH3CN).29 Janvier 1998

Aymeric GalvezAnalogues terrestres de poussieres carbonees interstellaires.12Fevrier 1998

Gilles Ledouxhe silicium un materiau de passe... et d'avenir.12 Maxs 1998

Philippe HeringIonisation multielectronique moleculaire induite par laser: explosion coulombienne et geometrie.29 Avril 1998

Pierre VillainEtude des proprietes de coherence de phase d'un condensat de Bose-Einstein.14 Mai 1998

Laurent Le DeroffGeneration d'harmoniques d'ordre eleve : qualite dufaisceau et mesure de la coherence spatiale.25 Juin 1998

Daniele NutarelliOptiques UV et performances du LEL de Super-ACO.2 Juillet 1998

Marc BriantDynamique reactionnelle du baryum sur de gros agregats de gaz rare.ler Octobre 1998

Arnaud MarquetteSpectroscopie de fluorescence sur des molecules excitees en couche interne par rayonnement synchrotron.22 Octobre 1998

Sandrine DoboszAgregats de gaz rares en champ laser intense.6 Novembre 1998

165

Page 154: Service des Photons, Atomes et Molecules

Olivier SublemontierMise au point d'un dispositif experimental pour I'etude collisionnelle de complexes ioniques.2 Decembre 1998

Sara ViviritoPhotoemission processes in laser irradiation of a metal surface.7 Janvier 1999

Raphael RouxDynamique et conditions de stabilite du laser a electrons libres de Super-ACO.Fonctionnement avec une cavite RF simple ou double.11 Janvier 1999

Martine MayneNanopoudres ceramiques du systeme Si/C/N.1. Synthese par pyrolyse laser.2. Stabilite thermique - Aptitude au frittage.25 F6vrier 1999

Laurent HenckesSpectroscopie INS : Modelisation par mecanique moleculaire. Application au NMA et au charbon.ler Avril 1999

Stela PetcuSynthese de fullerenes par pyrolyse laser.13 Avril 1999

Matthieu GisselbrechtSpectroscopie induite par laser sur des especes atomiques et moleculaires preparees par RayonnementSynchrotron (RS).9 Juin 1999

Pierre VillainL'ergodicite revisitee avec les condensats de Bose-Einstein.17 Juin 1999

Aymeric GalvezAnalogues terrestres de poussieres carbonees interstellaires obtenus par pyrolyse laserd'hydrocarbures.18 Octobre 1999

Laurent Le DeroffProprietes de coherence de la generation d'harmoniques d'ordre eleve: qualite de faisceau, coherencespatiale et temporelle et application.22 Novembre 1999

Philippe HeringContribution a Vetude de la multionisation et de la multifragmentation moleculaire en champ laser intense.3 Decembre 1999

Daniele NutarelliDynamique et performances du laser a electrons libres de Super-ACO avec une cavite RF harmonique a 500MHZ.12 Janvier 2000

166

Page 155: Service des Photons, Atomes et Molecules

S6bastien HulinLaser X en recombinaison dans un plasma d'azote cree par OFI.2 Mars 2000

Stephanie Dar6-DoyenDimerisation de molecules de colorants dans I'eau : experiences et simulation numerique.23 Mars 2000

Marc BriantDynamique reactionnelle du baryum sur gros agregats de gaz rare.27 Avril 2000

Jean-Franc,ois HergottGeneration d'harmoniques d'ordre eleve : optimisation, focalisation et applications.12 Mai 2000

Kenichi IschikawaExplosion d'agregats de gaz rares dans un champ laser intense.25 Mai 2000

Lionel PoissonProprietes collisionnelles desagregats CofHzO),* etFe(H20)n

+ (n=J...9).15 Juin 2000

167

Page 156: Service des Photons, Atomes et Molecules

LIST OF THE LABORATORY STAFF(15 September 2000)

NORMANDBANDURACROZATJACQUART

DIRECTION

Didier CEA (33)169 08 24 73Jacqueline CEA (33)1 69 08 74 09Daniel CEA (33)169 08 65 85Sandrine CEA (33)169 08 93 91

dnorman @[email protected]@ drecam.cea.frjacquart @ drecam .cea. fr

SERVEURS LASERS FEMTOSECONDE

D'OLIVEIRAFILLONGOBERTGUYADERMEYNADIERPERDRIX

PascalAndréOlivierDidierPierreMichel

CEACEACEACEACEACEA

MATIERE SOUS

(33)1 69 08 82 60(33)169 08 46 47(33)1 69 08 94 86(33)169 08 46 47(33)1 69 08 58 84(33)1 69 08 58 84

CONDITIONSInteraction Laser Matière en Champ fortCARREAGOSTINIAUGUSTEBOUGEARDBREGERCAPRINCHERETCORNAGGIADOBOSZGONTIERHERGOTTHULINMERDnMONOTPASCALEPAULQUAGLIASALIERES

Matière à Haute

BLENSKIISHIKAWALAGADECPAINPOIRIERTHAIS

BertrandPierreThierryMichelPierreEricMichelChristianSandrineYvesJ.FrançoisSébastienHamedPascalJeanP. MarieLucaPascal

CEACEACEACEACEACEACEACEACEACEA

cmCFRP.docCEACEAMRESMRESCEA

Densité d'Energie

ThomasKenichiHervéJ. ChristopheMichelFrédéric

CEAP. DocCEAMRESCEACEA

Groupe d'applications des Plasmas

SCHMIDTBOUCHONCECCOTTILE DEROFFSEGERSSUBLEMONTIER

MartinMathildeTiberioLaurentMarcOlivier

CEASTAG.P. DocColl. ExtCTCICEA

(33)169 08 58 40(33)169 08 5162(33)1 69 08 91 49(33)1 69 08 25 34(33)1 69 08 58 40(33)1 69 08 25 34(33)1 69 08 65 51(33)1 69 08 96 65(33)1 69 08 63 40(33)169 08 3163(33)169 08 63 39(33)1 69 08 63 39(33)1 69 08 51 63(33)1 69 08 91 49(33)1 69 08 51 61(33)1 69 08 69 01(33)1 69 08 63 40(33)1 69 08 63 39

(33)1 69 08 96 64(33)1 69 08 58 88(33)1 69 08 22 45(33)1 69 08 58 88(33)1 69 08 46 29(33)1 69 08 65 14

(33)1 69 08 26 57(33)1 69 08 57 03(33)1 69 08 26.57(33)1 69 08 57 03(33)1 69 08 57 03(33)1 69 08 26 57

[email protected]@[email protected]@drecam.cea.frmeynadier @ drecam. cea. frperdrix @ drecam. cea. fr

EXTREMES

[email protected]@[email protected]@[email protected]

mcheret @ drecam .cea. [email protected]@[email protected]@[email protected]@[email protected]@[email protected]@ [email protected]

[email protected]@[email protected]@[email protected]@cea.fr

[email protected] @ [email protected]@[email protected] @ drecam.cea. fr

169

Page 157: Service des Photons, Atomes et Molecules

PHYSICOCHIMIE D'EDIFICES MOLECULAIRES

PhotophysiqueVISTICOTDIMICOLIBRIANTCALVO MUÑOZFOüRNIERGAVEAUGUSTAVSSONLEPETITMARKOVITSIMARGUETMESTDAGHMONSPIUZZIPOISSONTARDIVELTRANTHIWLOSIK

photochimieJean-PaulIlianaMarcM. luisaP.RichardM.AndréThomasFabienDimitraSylvieJ.MichelMichelFrançoisLionelBenjaminThuHoaAlexandre

CEACEACFRMRESCEACEACNRSCEACNRSCNRSCNRSCEACEADEACEACNRSADEME

(33)169 08 68 43(33)169 08 63 75(33)169 08 50 66(33)1 69 08 94 27(33)1 69 08 65 50(33)1 69 08 50 66(33)169 08 93 09(33)1 69 08 24 45(33)169 08 46 44(33)1 69 08 62 83(33)169 08 25 45(33)1 69 08 20 01(33)1 69 08 30 79(33)1 69 08 25 45(33)1 69 08 33 95(33)1 69 08 49 33(33)1 69 08 94 27

[email protected] @ [email protected]@drecam.cea.frfournier @ drecam .cea. [email protected]@[email protected]@[email protected] @ [email protected]@[email protected]@[email protected] @ drecam.cea. fr

Poudres Laser/Grains Interstellaires

REYNAUDARMANDGUILLOISHENCKESHERLIN BOIMEMAYNEPORTERATTENEGAL

CécileXavierOlivierLaurentNathalieMartineDominiqueFrançois

Chimie Théorique

DOGNONANGELEBRENNERde PUJOGILARDMILLIESOUDANTHOMAS

Jean PierreChristianValériePatrickFrançoisePhilippeJean MaikAnne Laure

Rayonnement Synchrotron

MORINALOISECEOLINCOUPRIEDENTNNOGARZELLAGISSELBRECHTGUILLEMINHIRSCHLECLERCQLEGUENMEYERNAHONRENAULTSIMON

PaulStéphaneDenisM.EmmanuelleGiovanniDavidMathieuRenaudMathiasNicolasKarineMichaelLaurentEricMarc

CEACEACEACFRCEACEACEAP. Doc

CEACEACEACEAP. DocС Seien.CEACFR

CEAMRESMRESCEAP. DocCEAMRESMRESMRESCEAMRESCNRSCEAP.DocCEA

(33)169 08 69 16(33)1 69 08 61 27(33)1 69 08 91 87(33)1 69 08 67 49(33)1 69 08 36 84(33)169 08 52 62(33)1 69 08 63 32(33)1 69 08 31 39

(33)1 69 08 37 14(33)1 69 08 28 55(33)1 69 08 76 42(33)1 69 08 80 37(33)1 69 08 37 40(33)1 69 08 63 42(33)1 69 08 37 40(33)169 08 37 88

(33)164 46 8124(33)164 46 80 96(33)164 46 80 96(33)164 46 80 44(33)164 46 81 16(33)164 46 80 91(33)1 64 46 80 96(33)164 46 81 19(33)1 64 46 80 44(33)164 46 8188(33)164 46 8188(33)164 46 80 97(33)164 46 88 60(33)164 46 80 44(33)1 64 46 80 97

[email protected]@[email protected]@cea.frher lin @drecam. cea.frmayne @ drecam. cea. [email protected]énégal @drecam .cea.fr

[email protected]

[email protected]@[email protected]@[email protected]@[email protected] @ olive, saclay.cea.fr

[email protected] @ lure.u-psud. frceolin @ lure, u-psud. frcouprie @ lure, [email protected]@[email protected] @ lure, u-psud.frhirsch @ lure, u-psud. frleclercq @lure.u-psud.frleguen @ [email protected] @ [email protected]@lure.u-psud.fr

170