19
Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter: theoretical analysis of data transmission three kinds of transmission media : guided : copper wire and fiber optics Wireless: terrestrial radio satellite This material will provide background information on the key transmission technologies used in modern networks

Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Embed Size (px)

Citation preview

Page 1: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

The Physical Layer

defines the mechanical, electrical, and timing interfaces to the network.

Topics in this chapter: theoretical analysis of data transmission three kinds of transmission media :

guided : copper wire and fiber optics Wireless: terrestrial radio satellite

This material will provide background information on the key transmission technologies used in modern networks

Page 2: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication Information can be transmitted on wires by

varying some physical property such as voltage or current.

we can model the behavior of the signal and analyze it mathematically (f(t))

Fourier Analysis : periodic function, g(t) with period T can be constructed as

the sum of a (possibly infinite) number of sines and

cosines:

Page 3: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication A data signal that has a finite duration (which all of

them do) can be handled by just imagining that it repeats the entire pattern over and over forever.

Computation of series coefficients :

Page 4: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication Bandwidth-Limited Signals

example: the transmission of the ASCII character ''b'' encoded in an 8-bit byte. bit pattern : 01100010

Root-mean-square:

Page 5: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication

all transmission facilities diminish different Fourier components by different amounts, thus introducing distortion.

Usually, the amplitudes are transmitted undiminished from 0 up to some frequency fc [measured in cycles/sec or Hertz (Hz)] with all frequencies above this cutoff frequency attenuated.

The range of frequencies transmitted without being strongly attenuated is called the bandwidth (0 - fc )

The bandwidth is a physical property of the transmission medium and usually depends on the construction, thickness, and length of the medium

Page 6: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication

In some cases a filter is introduced into the circuit to limit the amount of bandwidth available to each customer. Example:

bandwidth of a telephone wire for short distance: 1 MHz Restricted bandwidth by telephone company : 3100 Hz

Given a bit rate of b bits/sec The time required to send 8 bits is 8/b sec The frequency of the first harmonic is b/8 Hz An ordinary telephone line, often called a voice-grade line,

has an artificially-introduced cutoff frequency just above 3000 Hz

Page 7: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication

The number of the highest harmonic passed through is roughly 3000/(b/8) or 24,000/b

Relation between data rate and harmonics :

Page 8: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication The Maximum Data Rate of a pure Channel

Nyquist’s theorem : an arbitrary signal has been run through a low-pass filter of

bandwidth H, the filtered signal can be completely reconstructed by making only 2H (exact) samples per second.

If the signal consists of V discrete levels, Nyquist's theorem states:

Example: A noiseless 3-kHz channel cannot transmit binary (i.e., two-level) signals at a rate exceeding 6000 bps

Page 9: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication The Maximum Data Rate of a noisy Channel

there is always random (thermal) noise present due to the motion of the molecules in the system.

The amount of thermal noise present is measured by the ratio of the signal power to the noise power, called the signal-to-noise ratio. If we denote the signal power by S and the noise power

by N, the signal-to-noise ratio is S/N. Usually, the ratio itself is not quoted; instead, the

quantity 10 log10 S/N is given (decibels (dB) ).

Page 10: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Physical layer: The Theoretical Basis for Data Communication

Shannon's theorem:

Example: A channel of 3000-Hz bandwidth with a signal to thermal noise ratio of 30 dB (typical parameters of the analog part of the telephone system) can never transmit much more than 30,000 bps.

No matter how many or how few signal levels are used and no matter how often or how infrequently samples are taken.

This is only an upper bound and real systems rarely achieve it.

Page 11: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media Magnetic Media

Bandwidth characteristics is excellent Delay characteristics is poor

Twisted Pair A twisted pair consists of two insulated copper wires, typically about 1 mm

thick. Twisting is done because two parallel wires constitute a fine antenna. Twisted pair categories:

Category 3 UTP (Unshielded Twisted Pair) (a) Category 5 UTP (Unshielded Twisted Pair) (b)

They are similar to category 3 pairs, but with more twists per centimeter, which results in less crosstalk and a better-quality signal over longer distances, making them more suitable for high-speed computer communication.

Page 12: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media

Coaxial Cable It has better shielding than twisted pairs, so it can span longer

distances at higher speeds. Two kinds of coaxial cable

50-ohm cable : is commonly used when it is intended for digital transmission.

75-ohm cable: is commonly used for analog transmission and cable television

The bandwidth possible depends on the cable quality, length, and signal-to-noise ratio of the data signal.

Page 13: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics ) Fiber Optics

An optical transmission system has three key components: Light source: Conventionally, a pulse of light indicates a 1 bit

and the absence of light indicates a 0 bit. Transmission medium: is an ultra-thin fiber of glass Detector: generates an electrical pulse when light falls

on it.

Page 14: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics )

When a light ray passes from one medium to another, for example, from fused silica to air, the ray is refracted (bent) at the silica/air boundary

Fiber types multimode fiber single-mode fiber: diameter is reduced to a few

wavelengths of light

Page 15: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics )

Transmission of Light through Fiber The attenuation of light through glass depends on the

wavelength of the light Attenuation of light through fiber in the infrared region

Page 16: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics ) Fiber Cables

multimode fibers : The core is typically 50 microns in diameter, about the thickness of a human hair

single-mode fibers : The core is 8 to 10 microns.

Page 17: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics )

Fibers can be connected in three different ways Connectors Mechanical Fusion

Two kinds of light sources are typically used to do the signaling LEDs (Light Emitting

Diodes) Semiconductor lasers

receiving end of an optical fiber consists of a photodiode

A comparison of semiconductor diodes and LEDs as light sources.

Page 18: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics ) Fiber Optic Networks

Active repeaters Passive star

A passive star connection in a fiber optics network

A fiber optic ring with active repeaters

Page 19: Sharif University of Technology The Physical Layer defines the mechanical, electrical, and timing interfaces to the network. Topics in this chapter:

Sharif University of Technology

Guided Transmission Media (Fiber Optics ) Comparison of Fiber Optics and Copper Wire

Fiber can handle much higher bandwidths than copper Fiber not being affected by power surges, electromagnetic interference,

or power failures Fiber is thin and lightweight Security in fiber is high Fiber is a less familiar technology requiring skills not all engineers have Fibers can be damaged easily by being bent too much Optical transmission is inherently unidirectional, two-way communication

requires either two fibers or two frequency bands on one fiber fiber interfaces cost more than electrical interfaces