43
Sheep Breeding and Reproduction Dr. Randy Harp

Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Embed Size (px)

Citation preview

Page 1: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Sheep Breeding and Reproduction

Dr. Randy Harp

Page 2: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Sheep Genetics

• 27 pairs of Genes• Two genes that form a gene pair may be the same

(Homozygous)• If they are different = Heterozygous• If Heterozygous, then one allele of the gene pair

may express itself over another = dominance• This dominance can vary from complete to co-

dominance• A hidden gene expression is called recessive

Page 3: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Sheep Genetics

• Some are sex linked

• Examples

• Genotype vs Phenotype

• Estimated phenotypic variance of the flock (pg BRD 19)

• Heritability

Page 4: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Heritability

• Proportion of the total phenotypic variation that is due to the variation in additive gene effects

• In other words, the proportion of differences due to genetic effects and is important in the prediction of response rates from selection.

• The square root of the variance is the standard deviation, which is the ave. deviation of each indiv. in the pop. from the pop. Average

• Heritability est. – handout BRD 33

Page 5: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Correlation

• Quantifies a relationship between two variables

• Measured between zero and one

• Positive versus negative correlations

• Multiple effects (Regression models)

Page 6: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Animal Identification

• Accurate identification

• Written records

• Accurate measurements of economic importance

• ??? Registered or not

• Two ID nos. , one for flock or indiv. ID and the other for registration ID (if reg.)

Page 7: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Record Keeping

• Determine clear goals

• Allow for records such as pedigree, birth weight, singles or twins, weaning weight, etc.

• Five categories of records:– REPRODUCTION, MATERNAL , GROWTH,

WOOL AND CARCASS

Page 8: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Estimated Breeding Value (EBV)

• EBV = b (P- ave.P), where b is the heritability of a particular trait

• Example; Ram A has a grease fleece weight of 15 # and the ave. flock grease fleece weight is 11 #, then 15-11 = selection differential [4]

• 4 x .4 (h) = 1.6 # of grease fleece advantage for breeding Ram A

Page 9: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

EPD’s (Expected Progeny Differences)

• Simply ½ of the EBV

• The ave. EPD in a population is + or – from the average of the population. A comparison

• Ex. If a ewe has a +.3 for no. of lambs born, then one would expect the progeny to produce .3 more lambs per lambing than the progeny of average ewes.

Page 10: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

EPD’s

• Another ex. is two rams A and B

• +.5 and +1.1 for fleece weight, respectively

• Ram B progeny would be expected to have .6 pounds heavier fleeces than Ram A

• Example 3; Ram has +1.0 and Ewe has +.5 for weaning weight, then the progeny will be 1.5 # more than the pop. ave. for WW

Page 11: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

EPD’s

• Accuracy• Gives an idea of reliability of the estimat• Measured from 0-1• An accuracy of .45 is not very reliable,

whereas > .9 is considered reliable• Low accuracies are a result of limited

information known about the parents or low numbers of progeny occur

Page 12: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Generation Interval

• The time lapse between birth of an animal and the birth of its replacement – usually 3-4 years for sheep

• A measurement of progress or rate of improvement

• Genetic Improvement per year = heritability x selection differential divided by the generation interval

Page 13: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Methods of Selection for Single Traits

• Individual selection-selection on their own performance

• Family selection-selection based on bloodlines; useful when (h) is low

• Pedigree selection-similar to family and is dependent upon how closely related the ancestors. Useful when considering same sex

Page 14: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Methods of Selection for Single Traits

• Progeny Test- observing the performance of the offspring. Must be mated to several ewes and then look at the offspring. Best when looking at carcass traits

• Combined Selection- uses more than one of the above mentioned methods

Page 15: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Methods of Selection for Multiple Traits

• Tandem Selection- focuses on multiple traits, yet one at a time. After the performance of one is achieved, then move to the next trait

• Independent Culling- Set minimum standards for more than one trait at a time for the indiv. Cull any that does not meet the min. stds for any trait

Page 16: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Methods of Selection for Multiple Traits

• Selection Index- rank indiv. animals for two or more traits based on a combination effect

• One the farm testing:

• Primary focus is on the ewe flock

• Therefore, traits such as prolificacy, weaning weight and fleece weight

Page 17: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

National Sheep Improvement Program

• Oversees the promotion, funding, development and implementation of a national genetic evaluation program for sheep

• Minimum criteria for record keeping• Lamb records: ID #, sire and dam ID, date of

birth, sex, type of birth, & type of rearing.• Additional records are reproductive, growth and

fleece traits

Page 18: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

NSIP

• Focuses on:• Number of lambs born per ewe lambing• Body weight at 30,60,90,120 & 240 days• Grease &/or clean fleece wt.• Staple length• Fleece grade• Pounds of lamb weaned per ewe exposed per year

Page 19: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Adj. Factors for No. of lambs born per lambing to a common ewe

Age of Dam Adj. Factor

1 1.45

2 1.15

3 1.05

4 1.00

5, 6, & 7 .96, .96 & .95

8 .98

9+ 1.00

Page 20: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Major Economically Important Traits

• Reproductive Efficiency• Carcass Merit• Milk Production• Total Ewe Production- # lamb/ewe exposed• Mature Size• Hardiness & Adaptability• Wool Production• Growth Rate

Page 21: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Selection for Growth

• Growth is a very important trait, esp. for meat breeds

• Adjusted 90 day weaning weight• If birth weight is known:• [Actual wt. - birth wt. x adj. Days (90)/

actual age ]+ birth wt.• If birth wt. is not known:• Actual wt. X adj. Age in days/age

Page 22: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Selection for Fleece Traits

• Grease and Clean Fleece Wts• Yield• Staple length- at least 3”/yr.• Fiber diameter• Crimp• Color• Density• Belly Wool-undesirable on sides

Page 23: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Importance of Genetic Improvement in Seedstock

Flocks• Most produce their own replacements• Therefore, genetic improvement from outside is

by the Ram purchased• Theoretically, Genetic merit increases at the same

rate as the genetic merit of the rams, yet because of generation intervals and replacement production usually improvement lags two generations behind

Page 24: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Mating Systems

• Purebreeding- common genetic group• Outbreeding- unrelated within a breed• Inbreeding-closely related with one or more

common ancestors (more than 50% related)• Linebreeding-common ancesters, but not 50%

related• Crossbreeding- mating of different breeds• Grading Up-enhanced concentration of

crossbreeding to rams of a single breed

Page 25: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Inbreeding Coefficients

• Full brother mated to sister = .25

• Sire on daughter = .25

• Half brother to half sister = .125

• Sire on Mother = .5

• Therefore; > .5 has to be compounded over time and added generation to generation

Page 26: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Crossbreeding

• Heterosis or Hybrid Vigor

• Superiority of the crossbred indiv. Relative to the average performance of the parents

• Maximized when parents have no breed ancestry in common (3 breed terminal X)

Page 27: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Crossbreeding Systems

• Two Breed Terminal(50% Heterosis)• Three Breed Terminal (100%)• Three Breed Rotational (86 %)• Four Breed Rotational (93 %)• Two Breed Rotational• Roto-Terminal- combination of rotational and

terminal systems. The poor ewes would still be used in a terminal crossing manner

Page 28: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Inherited Defects

• Many defects are recdessive in nature• Selection pressure is exercised against certain

traits, esp. lethals and fleece defects• Dwarfism, Spider Syndrome, Jaw Defects,

Rectal Prolapse, Inverted Eyelids, Cryptorchidism, Horns or Scurs, Face covering, Color, Skin Folds, Silky, Britch fibers, grey color, paralyzed limbs, earless, etc.

Page 29: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

SheepBreeding and Reproduction

• Improved lamb production

• More lambs per lambing

• More frequent lambing

• Increased percent of total sheep nos.

• Reducing death losses

Page 30: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Sheep Breeding and Reproduction

• breed dependent - seasonal breeding• Puberty-weight and age (70-100 # or 5-9 months)• Breed to lamb as 2 year olds, yet can breed as a

yearling, but with less efficiency• Actually, greater production per lifetime from

yearlings; Ramb. is later maturing and less effic.• gestation - 144-152 days (med wool less)• heat periods - 20 to 42 hours (no signs)

Page 31: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

SheepBreeding and Reproduction

• ovulation occurs late in heat cycle

• 14- 20 day cycle ave. 16-17 days

• Prolifacy - > 100% lamb crop

• flushing ewes works in sheep, too

• Factors affecting reprod.– daylight (<14 hrs/da), temp. ( <74 F or > 100),

nutrition

Page 32: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Hormonal Control

• Progesterone (Progestins)- produced by the corpus luteum

• Prostaglandins- induces the regression of the corpus luteum (ineffective in normally cycling ewes); lutalyse

• Estrogen• Gonadotropins- GnRH, HCG, FSH & LH• Melatonin- regulatory of the seasonal breeder;

produced by the pineal gland• ACTH

Page 33: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

SheepBreeding and Reproduction

• Lambing– > 4 sq. ft. pen for ewes, clean & dry– presentation of front legs– orphan lambs is not uncommon– 25% death loss is common– Feed ewes small amounts of water at first with

oats, wheat bran and hay (small amounts)

Page 34: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

SheepBreeding and Reproduction

• Ram management

• mating guide– ram lamb hand (20-25) pasture (25-35)– yearling or > hand (50-75) pasture (35-60)– use marker rams to detect bred ewes both at

breeding and 60 days after breeding

Page 35: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Replacement Ewe SelectionItem 140 % Prolif 170 % Prolif

No. ewes 100 100

Ewe lambs 70 85

Twin lambs 40 70

Tw lambs > ave. in WW

20 35

Ewe lambs exposed

20 30

Preg. Ewes 20

Page 36: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Physiological changes of reproduction in the ewes

• REPRO – 4 chart

• Ewes in the south have longer breeding patterns

• Sheep near the equator are less likely to have seasonal breeding

Page 37: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Factors affecting reproduction in the ewe

• Heredity• Age• Photoperiod (seasonal)• Temperature and humidity• Nutrition and Exercise• Parturition and lactation• Disease and parasites• Fertility of & assoc. with the ram

Page 38: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Pregnancy Testing

• Breeding Marks• Ultrasonic Scanning- best detected between

70 & 120 days• Bagging or Udder Palpation• Blood Progesterone- at the time of the next

expected heat• PSPB- a protein called pregnancy-specific

protein B after day 21 of breeding.

Page 39: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Factors affecting the reproduction in the Ram

• Breeding soundness exam

• Palpation of the testicles, epididymis, and penis and visual appraisal of feet, legs, eyes and jaws.

• Semen evaluation

• Disease prevention

• Heat stress

Page 40: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Semen Collection

• Components- seminal fluid and sperm• Quality of sperm – morphology and

viability (percent live)• Methods- artificial vagina and

electroejaculation• Semen handling-dilution characteristics:

glucose or fructose, egg yolk, citrate or phosphate, antibitotics, glycerol

Page 41: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Insemination

• Natural- 3-5 billion sperm inseminated• AI – vaginal approach – 200 million “• AI – cervical approach- 100 million “• AI - Intruterine insemination via lapraroscopic

surgery- 20 million• Time of insemination – vaginal or cervical = 12 to

18 hrs after onset of estrus• Synchronizing with progesterone sponge should

be 48-58 hrs after removal

Page 42: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Accelerated and Out-of-Season Lambing

• Day length control (natural or artificial)

• Considerations

• Produce lambs when feeding conditions are favorable (growth rate and cost of feed)

• Market lambs when lamb supply is low

• Fertility and prolificacy

Page 43: Sheep Breeding and Reproduction Dr. Randy Harp. Sheep Genetics 27 pairs of Genes Two genes that form a gene pair may be the same (Homozygous) If they

Desirable traits for accelerated lambing

• Ewes can breed year round

• Ewes that can mate while lactacting

• Ewes that have a good lambing rate (ie twinning)

• Sires that produce a desirable market lamb and have the libido and fertility for conception year round