31
EFES-NSCL February 6, 2010 Mihai Horoi CMU Shell Model Analysis of the Double-Beta Decay Half-Life Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY-0758099 and DOE grant DF-FC02-09ER41584 is acknowledged

Shell Model Analysis of the Double-Beta Decay Half-Lifebrown/EFES-2010/pdf/horoi.pdfDouble-Beta Decay Half-Life Mihai Horoi Department of Physics, Central Michigan University, Mount

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Shell Model Analysis of the Double-Beta Decay Half-Life

    Mihai Horoi Department of Physics,

    Central Michigan University, Mount Pleasant, Michigan 48859, USA

     Support from NSF grant PHY-0758099 and DOE grant DF-FC02-09ER41584 is acknowledged

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Plan of the Talk

    •  Shell Model Approaches to 2 Neutrino DBD –  Recent status of the experimental data –  Direct diagonalization approach –  Lanczos strength functions –  Comparison with experimental data

    •  Shell Model Approach to Neutrinoless DBD –  Status of present and future experiments –  The anatomy of the 0vββ matrix element –  Analysis of 48Ca, 76Ge and 82Se

    •  Conclusions and Outlook

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Office of Science Financial Assistance Funding Opportunity Announcement

    DE-PS02-09ER09-24Topical Collaborations in Nuclear Theory

    ・a. Effective field theory descriptions of nuclear forces ・b. Properties of nuclei far from stability ・c. Microscopic studies of nuclear input parameters for astrophysics ・d. Calculations of electroweak corrections to precision data ・e. Microscopic nuclear reaction theory ・f. Analysis of the spectrum of excited baryons and mesons ・g. Studies of the phases of strongly-interacting matter ・h. Phenomenology of hard probes of hot, dense matter ・i. Phenomenology of thermal probes of hot matter ・j. Simulations of core collapse supernovae ・k. Lattice simulations of hadron properties ・l. Lattice simulations of thermal quantum chromodynamics ・m. Ab initio many-body calculations ・n. Phenomenology of neutrino oscillations ・o. Dynamics of fission ・p. Calculations of double beta decay nuclear matrix elements ・q. Extensions of the Standard Model

  • Neutrino Masses

    EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    - Tritium decay:

    - Cosmic Microwave Background (CMB) power spectrum:

    Δm122 ≈ 8 ×10−5 eV 2 (solar) Δm23

    2 ≈ 2.4 ×10−3 eV 2 (atmospheric)€

    c12 ≡ cosθ12 , s12 = sinθ12 , etc

    Two neutrino mass hierarchies

    3H → 3He + e− +ν e

    mν e = Uei2mi

    i=1

    3

    ∑ < 2.2eV (Mainz exp.)

    Katrin exp. (in progress): goal mν e < 0.3eV

    m1 +m2 +m3 < 0.6eV

  • Double Beta Decay Problem

    EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Adapted from Avignone, Elliot, Engel, Rev. Mod. Phys. 80, 481 (2008) -> RMP08

    2-neutrino double beta decay

    neutrinoless double beta decay

    mββ = mkUek2

    k∑

    T1/ 2−1 (0v) =G0v (Qββ ) M

    0v (0+)[ ] 2< mββ >me

    ⎝ ⎜

    ⎠ ⎟

    2

    Qββ

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Two neutrino double-beta decay half-lives: recommended values

    Source: Barabash arXiv:0807.2948

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    2v Double Beta Decay (DBD) of 48Ca

    Horoi, Stoica, Bown, PRC 75, 034303 (2007) 48Ca - 250 1+ states

    f7 / 2€

    p1/ 2

    f5 / 2

    p3 / 2

    G

    T1/ 2−1 =G2v (Qββ ) MGT

    2v (0+)[ ] 2

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Comparison with Experiment

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    MGT2v = 3 〈σ τ +0 f

    1k+〉〈1k

    +

    H − Egs + E0k∑ στ−0i〉

    = 3〈σ τ +0 f1

    H − Egs + E0σ τ−0i〉

    HLN =

    α1 β1 0 0β1 α2 β2 0 00 β2α3 β3 0 0 0 βN−1αN

    ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

    ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

    σ τ−0i〉 = c− dw−〉 = c− L1−〉

    σ τ +0 f 〉 = c+ dw+〉 = c+ L1+〉

    MGT2v ≈ 3c+c− 〈dw +1k

    +〉LN 1EL

    N (1k+) − Egs + E0k

    ∑ LN〈1k+ dw−〉

    Caurier, Poves, Zuker, PLB 252, 13 (1990)

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    HLN =

    α1 β1 0 0β1 α2 β2 0 00 β2α3 β3 0 0 0 βN−1αN

    ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

    ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

    σ τ−0i〉 = c− dw−〉 = c− L1−〉

    σ τ +0 f 〉 = c+ dw+〉 = c+ L1+〉

    MGT2v ≈ 3c+c− 〈dw +1k

    +〉LN 1EL

    N (1k+) − Egs + E0k

    ∑ LN〈1k+ dw−〉

    1HL

    N − Egs + E0L1− = g1

    − L1− ++ gN

    − LN−

    Engel, Haxton, Vogel, PRC 46, 2153R (1992)

    MGT2v ≈ 3c+c− gm

    − 〈dw + Lm− 〉

    m∑

    HLNV =V EL

    N

    1HL

    N − Egs + E0L1− =

    V1kVm kEL

    N (1k+) − Egs + E0k=1

    N

    ∑⎛

    ⎝ ⎜ ⎜

    ⎠ ⎟ ⎟

    m=1

    N

    ∑ Lm−

    ≡ gm−( )

    m=1

    N

    ∑ Lm−

    48Ca - revisited

    ≈ 3c+c− gm+ 〈Lm

    + dw−〉m∑

    MGT2v = 3〈σ τ +0 f

    1H − Egs + E0

    σ τ−0i〉

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Double EC Decay of 58Ni Suhonen, Civitarese, Phys.Rep. 300, 123 (1999) Table 30

    0.476 MeV −1 0.151 MeV −1

    Max m− scheme dimension :1.6 ×109€

    MGT2v ≈ 3c+c− gm

    − 〈dw + Lm− 〉

    m∑

    ≈ 3c+c− gm+ 〈Lm

    + dw−〉m∑

    gm± =

    V1k±Vm k

    ±

    ELN (1k

    +) − Egs + E0k=1

    N

    - factor of ~ 10,000 comparing with the sum on intermediate (exact) states - factor of 2-3 comparing with Caurier et al.

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Results

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    48Ca 82Se 128Te 130Te 130Ba 58Ni 64Zn

    M (

    MeV

    ^-1

    )

    Experiment

    Theory

    σ τ → 0.77σ τquenching

    pf/GXPF1A: 48Ca(2nββ), 58Ni(2nECEC), 64Zn(2nECEC)

    pf5/2g9/2/new int: 82Se(2nββ)

    g7/2sdh11/2/PRC 71: 128Te(2nββ), 130Te(2nββ), 130Ba(2nECEC)

    PRC 71, 044317 (2005) (0g7/2 1d5/2 )N-t(1d3/22s1/20h11/2 )t

    t M Max Dim

    0 0.282 3,466,564" 2 0.107 760,338,824" 4 0.103 16,668,221,492" 14 ? 220,000,635,778"

    130Ba(2nECEC)

    9,332,053,548

    data for A > 48 suggestsστ →0.5στ quenching

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Neutrinoless Double Beta Decay

    T1/ 2−1 (0v) =G0v (Qββ ) M

    0v (0+)[ ] 2< mββ >me

    ⎝ ⎜

    ⎠ ⎟

    2

    i. Contributions from heavy neutrinos neglected

    ii. Only contribution from Qββ considered - eliminate majorons contributions

    Effective νββ Mass

    RMP08

    mββ = mkUek2

    k∑

  • The Effect of the Energy Resolution

    EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    76Ge -> 76Se

    F.T. Avignone et al, New J. Phys. 7, 6 (2005)

    (2004)

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Planned Experiments

    Source: RMP 80, 481(2008)

    Homestake

    Japan

  • CANDLES Projects: Japan

    EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    T. Kishimoto, DBD07

    48Ca natural abundance: 0.187% !!!

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Neutrinoless Double Beta Decay

    T1/ 2−1 (0v) =G0v (Qββ ) M

    0v (0+)[ ] 2< mββ >me

    ⎝ ⎜

    ⎠ ⎟

    2

    Barea & Iachello, PRC 79 044301 (2009)

    Menendez et al arXiv:0906.0179

    mββ = mkUek2

    k∑

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    The Anatomy of the M0v

    MS0v = Γ( ) 0 f

    + ap+a ʹ′ p

    +( )J

    ˜ a ʹ′ n ˜ a n( )J⎡

    ⎣ ⎢ ⎤ ⎦ ⎥

    0

    0i+ p ʹ′ p ;J ˆ S

    h(q) jκ (qr)GFS2 fSRC

    2

    q q+ < E >( )τ1−τ2−

    ⎣ ⎢

    ⎦ ⎥ n ʹ′ n ;J

    a

    − closure∑€

    M 0v = MGT0v( ) − gVgA

    ⎝ ⎜

    ⎠ ⎟

    2

    MF0v + MT

    0v

    p ʹ′ p ;J [ ] n ʹ′ n ;J = ...( )lp 1/2 j pl ʹ′ p 1/2 j ʹ′ p λ s J

    ⎨ ⎪

    ⎩ ⎪

    ⎬ ⎪

    ⎭ ⎪ sλ

    ∑ln 1/2 j pl ʹ′ n 1/2 j ʹ′ n λ s J

    ⎨ ⎪

    ⎩ ⎪

    ⎬ ⎪

    ⎭ ⎪

    s || ˆ S || s ×

    ml NL | nplp n ʹ′ p l ʹ′ p λ ʹ′ m l NL | nnln n ʹ′ n l ʹ′ n λm ʹ′ m l NL∑ m l h(q) jκ (qr)GFS

    2 fSRC2

    q q+ < E >( ) ʹ′ m l

    ˆ S = σ 1⋅ σ 2 GT

    ˆ 1 F

    ⎧ ⎨ ⎩

    T1/ 2−1 (0v) =G0v (Qββ ) M

    0v (0+)[ ] 2< mββ >me

    ⎝ ⎜

    ⎠ ⎟

    2

    - Closure approximation

    - Includes higher order corrections in the nucleon currents

    ml h(q) jκ (qr)GFS2 (q) fSRC

    2

    q q+ < E >( ) ʹ′ m l = drdq jκ (qr)( )∫∫

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Short Range Correlations I

    Vv (r)→ fSRC (r)Vv (r) fSRC (r)

    fSRC (r) =1− c e−a r 2 (1− br2)

    F. Simkovic et al, PRC 79, 055501 (2009)

    a b c

    Spencer-Miller 1.10 0.68 1.0 CCM/AV18 1.59 1.45 0.92 CCM/CD-Bonn 1.52 1.88 0.46

    M 0v = dr12C(r12)0

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Short Range Correlations II Engel & Hagen, PRC 79, 064317 (2009)

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    48Ca: M0v vs and ΛA

    Conclusion: about 5-8% variation

    GΛV ,A (q) =ΛV ,A2

    q2 +ΛV ,A2

    ⎝ ⎜

    ⎠ ⎟

    2

    ΛV = 850 MeVΛA = 1085 MeV⎧ ⎨ ⎩

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    48Ca: M0v vs the Effective Interaction

    M 0v

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    GXPF1 GXPF1A KB3 KB3G FPD6

    No SRC M-S SRC CD-Bonn SRC AV18 SRC

    M. Horoi, S. Stoica, arXiv:0911.3807, accepted at Phys. Rev. C

    Prediction : M 0v = 0.85 ± 0.15 T1/2 (0v )≥1026 y⎯ → ⎯ ⎯ ⎯ ⎯ mββ ≤ 0.230± 0.045eV

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    100Mo - QRPA

    Dependence on gpp (overall multiplication factor of the pn effective interaction)

    F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    The Contribution of Intermediate J- States with Closure Approximation

    MS0v = Γ( ) 0 f

    + ap+a ʹ′ p

    +( )J

    ˜ a ʹ′ n ˜ a n( )J⎡

    ⎣ ⎢ ⎤ ⎦ ⎥

    0

    0i+ p ʹ′ p ;J ˆ S

    h(q) jκ (qr)GFS2 fSRC

    2

    q q+ < E >( )τ1−τ2−

    ⎣ ⎢

    ⎦ ⎥ n ʹ′ n ;J

    a

    − closure∑

    Closure & 0hω approximation for 48Ca and 48Ti => no contribution from 1hω states in 48Sc

    pf

    sd

    48Ca

    48Sc

    48Ti

    1ω (J −)

    ???

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    76Ge and 82Se

    jj4b: f5/2 p3/2 p1/2 g9/2

    M 0v

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    76Ge-A 76Ge-H 82Se-A

    No SRC

    Spencer-Miller

    CD-Bonn SRC

    AV18 SRC

    A - Brown and Horoi (similar to JUN45 – Honma) H - K. Kaneko, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 70, 051301(R) (2004). E – Experimental data: PRL 100, 112501 (2008), PRC 79, 021301 (2009)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    76Ge N H

    76Ge N E

    76Se N H

    76Se N E

    76Ge P H

    76Ge P E

    76Se P H

    76Se P E

    0f5/2

    1p

    0g9/2

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    76Ge N A

    76Ge N E

    76Se N A

    76Se N E

    76Ge P A

    76Ge P E

    76Se P A

    76Se P E

    0f5/2

    1p

    0g9/2

    Occupation probabilities

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Neutrinoless Double Beta Decay

    T1/ 2−1 (0v) =G0v (Qββ ) M

    0v (0+)[ ] 2< mββ >me

    ⎝ ⎜

    ⎠ ⎟

    2

    Barea & Iachello, PRC 79 044301 (2009) Menendez et al arXiv:0906.0179 Present work

    Prediction for 76Ge : M 0v = 3 T1/2 (0v )≥1026 y⎯ → ⎯ ⎯ ⎯ ⎯ mββ ≤ 0.220eV

    mββ = mkUek2

    k∑

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Short Range Correlations II

    Engel & Hagen, PRC 79, 064317 (2009)

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Two 0vββ decay cases - 76Ge -> 76Se"- fp-g9/2 valence space"

    -  p,n: 0f7/2 0f5/2 1p3/2 1p1/2 0g9/2"

    -  76Ge: dim 1,296,156,991,047"-  76Se: dim 18,333,463,355,503"

    - 150Nd -> 150Sm"- p: 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2"

    -  n: 1f7/2 1f5/2 0h9/2 2p3/2 2p1/2 0i13/2"

    -  150Nd: dim 222,314,413,121,622"-  150Sm: dim 32,199,157,066,956"

    150Nd 150Sm

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Summary and Outlook

    •  48Ca case suggests that 2ν double-beta decay can be reasonably well described within the shell model, provided that all spin partners are included and the quenching factor is well determined from experiment.

    •  Efforts must be done to study these effects for the heavier systems.

    •  Shell model 0νββ matrix elements seems being not very sensitive to the effective interaction used, at least for 48Ca.

    •  The effects of the quenching and the missing spin partners could be important, and they should be further investigated.

    •  Prediction for 48Ca: •  Prediction for 76Ge:

    M 0v = 0.85 ± 0.15 T1/2 (0v )≥1026 y⎯ → ⎯ ⎯ ⎯ ⎯ mββ ≤ 0.230± 0.045eV

    M 0v = 3 T1/2 (0v )≥1026 y⎯ → ⎯ ⎯ ⎯ ⎯ mββ ≤ 0.220eV

  • EFES-NSCL February 6, 2010

    Mihai Horoi CMU

    Collaborators •  B. A. Brown - MSU/NSCL •  S. Stoica - Bucharest •  A. Neacsu - Bucharest •  Z. Gao - CMU/Beijing