29
Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GS GT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity Large v/c ~8.5% Normal kinematics v/c=2.2% Inverse kinematics 4/21-26/2014

Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Embed Size (px)

Citation preview

Page 1: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Shootout experiment GSFMA315 at a glance

122Sn(40Ar[170MeV],4n)158Er

12C(84Kr[394MeV],4n)92Mo

GS GT

1:Mo,Tu

2:Tu,We,Th3:Th,Fr

4:Sa

Highmultiplicity

Large v/c ~8.5%

Normalkinematicsv/c=2.2%

Inversekinematics

4/21-26/2014

Page 2: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

First look 92Mo case, just ‘quality’Normalize on the high energy tail

Tracked GTSpectra FOM<0.8

Look closer

Page 3: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

92Mo case: energy resolution in GT is much better at 2 MeV

FWHM inGT at 2 MeVis ~7.8 keV

Simple GS root sort GS sort using side channels

Double gated spectra (GT not full statistics)

Page 4: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

92Mo case in GT: tracked, CCsum using mode 2 information and CCsum using just center of crystal position

Page 5: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

GT resolution for the 2065 keV line in 92Mo

GTFWHM8.7 keV

or 0.42%

Page 7: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity
Page 8: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

EXTRA EXTRA EXTRA EXTRA.....

Page 9: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Using60Co

source dataafterrun

Preliminary!!(normalization

problems)

Page 10: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Normalize to 1 hour of beam time;158Er case, ‘standard setup’

for93 GS detectors28 GT crystals

GS coverage ~80%GT coverage ~22%

GS norm needs to be redone

Page 11: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Normalize to 1 hour of beam time;92Mo case, ‘standard setup’

for93 GS detectors28 GT crystals

GS coverage ~80%GT coverage ~22%

Not resolved

GS norm needs to be redone

Page 12: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Re-normalize GT to have the same coverage as GS (~80%) from its current coverage of ~22%This scaling is not proper as more GT modules

makes the tracking (much) better

Gretina spectra are lower limits

Page 13: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Normalize to the currents

84Kr beam charge state is 19+

40Ar beam charge state is 9+

GT, 92Mo, run 75, 0.1 pna

GS, 92Mo, run 21 _000, 15-16 ena/19 = 0.8 pna (X8 faster)

GT, 158Er, run 148, 5 ena/9 = 0.55 pna

GS, 158Er, run 22 _000, 25ena/9 = 2.7pna (X4.9 faster)

:: The DAQ limits the current we can handle in GT

Page 14: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

If we just scaled to the beam current GS can handle then we would see

:: With a faster DAQ, GT could compete with GS with only 22% coverage vs the GS coverage of 80%

Page 15: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Sum of gates in GS and GT for 158Er, normalized to high energy tail. Single interactions are included in the tracking, FOM<0.8

Page 16: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Peak to background issues158Er case: Find the background spectrum (blue) for the sum of

gated spectra for GS and GT

GT sum of gatesspectrum

Page 17: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Then produce sum of gates divided by the smooth background == “a peak/background” measure

GAMMASPHERE

GRETINA

Gammasphere

GRETINAStandard decomp

GRETINASingle fit per segment decomp

Page 18: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Still having problems with the decomposition: Check the ‘radius’ spectrum. 60Co data taken at MSU (blue) and ANL after the shootout run (red). The ANL spectrum looks better, the new basis puts more points between boundaries and less localized points near boundaries

MSU

ANL

Same decompfunction! Butnew basis at ANL

New basis is better!!

Page 19: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

We have the option to replay the mode3 data we took!Re-decomposed 158Er data, FOM<0.8red=oldblue=new

Slightly better; but the FOM distribution can be different so...

We restrict decompositionfits to only have one interaction

per segment

Page 20: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Re-decomposed 158Er data, FOM spectrumNon trivial FOM seems to improve a little!but counts in 0 (single hits) are also different (4.3x10^7 vs 1.1x10^7)

Old New

Max at 3.1Max at 0.27

Page 21: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

‘Radius plot’, for all interaction points. (this is a plot of the distance from the target

for all interaction points the decomposition found)

Old New

What is actually better?New spike

Page 22: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Radius spectrum for first interaction points according to tracking program

newold

Page 23: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Gamma ray multiplicity distributions

Old New

Page 24: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

The fifth leg: the 166Ho source

Lew Riley added stationary source to UCGRETINA! Need 18 levels to simulate

We can compare some real data to the GEANT4 simulated data that we took a few months ago

We only had 6 detectors at that time, and there was no target chamber

We send real data and GEANT4 simulated data through the same tracking; the G4 data after realistic packing of

interaction points and smearing of positions and energy

Preliminary analysis:

Page 25: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Higher energies

The continuum is really well reproduced!Does this mean that there is a future forcontinuum spectroscopy using GT or AGATA?

Page 26: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Low energy region, ICC added to G4 spectra by hand

The 184 keV is much better; but the 81 keV lineIs cut by some thresholds in GT. The extra lines in the G4 spectrum gets stronger at low energiesfor some reason

Page 27: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

First look at 158Er, just ‘quality’::normalize on the high energy tail

Tracked GTSpectra FOM<0.8

Page 28: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

Shootout experiment; gsfma315 4/21-26/2014

The PROPOSAL was: We propose to firmly establish the performance of the decomposition and gamma--ray tracking algorithms by comparing the GRETINA to

the Gammasphere gamma--ray detector array, under the same conditions, using the following two reactions

The two reactions are complementary. Indeed, the first reaction will allow us to extract the performance of the decomposition and tracking

algorithms at high gamma--ray multiplicity at a moderate recoil velocity. The second reaction will allow us to evaluate the Doppler reconstruction capability, based on tracking, in the case of high recoil velocities, but at a

moderate multiplicity of gamma rays. The experimental results will be compared to GEANT4 Monte Carlo simulations.

122Sn(40Ar[170MeV],4n)158Er

12C(84Kr[394MeV],4n)92Mo

Page 29: Shootout experiment GSFMA315 at a glance 122 Sn( 40 Ar[170MeV],4n) 158 Er 12 C( 84 Kr[394MeV],4n) 92 Mo GSGT 1:Mo,Tu 2:Tu,We,Th 3:Th,Fr 4:Sa High multiplicity

GT resolution for the 2065 keV line in 92Mo