50
Eleazar Falco Application Engineer [email protected] SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

SiC-MOSFET: Designing high-performance Gate Driver Systems

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SiC-MOSFET: Designing high-performance Gate Driver Systems

Eleazar Falco

Application Engineer

[email protected]

SiC-MOSFET: Designing high-performance Gate Driver

Systems with WE-AGDT Transformers

Page 2: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Agenda

2

Breve Repaso de tecnología Carburo de Silicio (SiC)

Consideraciones Importantes: Sistemas driver para SiC-MOSFET

Por qué un voltaje negativo para el ‘turn-off’?

CMTI: Un parámetro crítico !

La fuente de alimentación auxiliar aislada

La nueva serie de transformadores WE-AGDT

Diseños de referencia para la serie WE-AGDT

Applicaciones SiC: el presente y el futuro !!

Conclusión y Repaso de los puntos importantes

Page 3: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

3

Breve Repaso de tecnología Carburo de

Silicio (SiC)

Page 4: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Breve Repaso de tecnología Carburo de Silicio (SiC)

Tecnología SiC: Componentes Wide Band Gap (WBG)

4

1.1 eV 3.3 eV 3.5 eV > 8 eV

Banda de Conducción

Banda de Valencia

Conductores Semiconductor(Si)

Semiconductor(SiC)

Semiconductor(GaN)

Aisladores

Energía Bandgap

• Los electrones necesitan energía para ‘saltar’ a la banda de conducción en los semiconductores

• 1 eV (electron-volt) = 1.602×10exp(−19) joule

• Componentes SiC – De 2 a 3 veces más energía de banda prohibida que Silicio. Mejor conductividad térmica, velocidad de

saturación de electrones y mayor campo eléctrico de ruptura que Silicio.

Solapamiento

Page 5: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Breve Repaso de tecnología Carburo de Silicio (SiC)

Silicon Carbide versus Silicon-based Devices Performance

5

Más alto voltaje de ruptura (1700 V)

Temperatura de operación elevada. Hasta 200°C

(limitada por el encapsulado!)

Tamaño del dado más pequeño

Menor carga y capacitancia de puerta

Ron es menor y más estable con variaciones de

Temperatura

Comparado con transistores basados en Silicio

(Power MOSFET or IGBT): Ventajas para las aplicaciones:

Mayor voltaje y potencia.

Velocidad de conmutación mucho más

rápida (x10). Mayor Eficiencia.

Frequencia de conmutación más alta. Menor

tamaño y coste total del sistema.

Menos sensible a temperatura. Mayor

fiabilidad y robustez. Potencia por encima de

300 kW en algunas aplicaciones !

Page 6: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

6

Consideraciones Importantes: Sistemas

Gate driver para SiC-MOSFET

Page 7: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Sistema típico de controlador de puerta para SiC-MOSFET (simplificado)

7

• Ejemplo de un Sistema de controladorde puerta para SiC-MOSFET

• SiC-MOSFET – Muy alto dv/dtgenerado al conmutar: Consideracionesespeciales !

• Conexión Kelvin adicional en la fuentedel SiC-MOSFET. Mayor velocidad deconmutación con alto di/dt en drenador-surtidor.

Page 8: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Conmutación del SiC-MOSFET

8

SiC-MOSFET Conmutación

Encendido

SiC-MOSFET Conmutación

Apagado

Análisis más detenido del lazo de corriente de puerta durante la conmutación encendido/apagado

• Conmutación: Carga y descarga de lacapacitancia de puerta.

• Cg variable. Depende de lascondiciones de operación.

• Encendido: Capacitancia de salida delraíl de tensión positivo proporciona lacarga para Cg.

• Apagado: Cg se descarga a través dela capacitancia de salida del raíl detensión negativo.

• Inductancias parásitas del lazo (Lon yLoff) se deben minimizar para unmejor rendimiento.

Ig_onIg_off

Page 9: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Requisito de corriente del gate driver IC. Ejemplo simplificado (turn-on)

9

• Aproximación de la corriente pico de puerta con Lon≈0:

I𝑝𝑘_𝑜𝑛 ≈∆𝑄𝑔

𝑡𝑠𝑤_𝑜𝑛

∆𝑄𝑔 de la hoja de datos

para ∆𝑉𝑔𝑠

Ejemplo para Vgs_on = +15V, Vgs_off = −4V

• Si 𝑡𝑠𝑤_𝑜𝑛 = 5ns, entonces: 𝐼𝑝𝑘_𝑜𝑛 = 1.86A

R𝑜𝑛_𝑚𝑎𝑥 =∆𝑉𝑔𝑠

𝐼𝑝𝑘_𝑜𝑛≈ 8.45 Ω

• Repetir el procedimiento para turn-off (apagado)

• Seleccionar Gate Driver IC

• Este es solo un punto de Inicio del diseño!

• Encontrar compromiso para Eficiencia, EMI,

rendimiento térmico, tamaño y coste.

• Ajustar experimentalmente.

• Tomar margen (e.g. 20%) para compensar por Lon≠0:

I𝑝𝑘_𝑜𝑛 = 1.86 ∙ 1.2 ≃ 𝟐. 𝟐𝟓 𝑨

• La resistencia de encendido total Ron está limitada a:

Este valor incluye ya las resistencias internas de los encapsulados!

C3M0280090D (Cree)

9.3 nC

* Requisito de provisión de corriente pico del Gate driver IC!

Page 10: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Rizado de resonancia del voltaje de puerta: EMI y Eficiencia

10

𝐋𝐨𝐟𝐟 𝐑𝐨𝐟𝐟 𝐃

𝐑𝐠𝐬

𝐂𝐠𝐬

𝐂𝐠𝐝

𝐂𝐝𝐬

𝐋𝐒 𝐒𝐰𝐢𝐭𝐜𝐡

Componentes parasíticos del lazo de apagado (turn-off)

𝐑𝐨𝐟𝐟 → Total Gate Resistance𝐋𝐨𝐟𝐟 → Parasitic Loop Inductance𝐂𝐠𝐬 → Gate − source parasitic Capacitance𝐂𝐠𝐝 → Miller Capacitance gate − drain

𝐂𝐝𝐬 → Drain − source Capacitance𝐑𝐠𝐬 → Gate − source pulldown resistor

SiC-MOSFET – Está aquí para conmutar rápido !! …

• Ron y Roff – Pequeñas para un pico de corriente alto

• Lon y Loff deben ser mínimizadas:

• Efecto: Circuito resonante serie RLC subamortiguado

(Lon or Loff, Cg)

• EMI (rizado resonante), picos de sobrevoltaje y

subvoltaje.

• Agravado con mayor dv/dt y di/dt al conmutar !!

• Primero, minimizar Inductancia parásita (Lon, Loff)

• Si es necesario, bajar la velocidad de conmutación

(Roff or Ferrite Bead) (ej. WE-CBF de Würth

Elektronik). Probar también con Cgs (pequeño).

RLC Series

Resonant Network

𝑽𝑳 = 𝑳 ∙𝒅𝒊

𝒅𝒕𝑳 ↓

𝒅𝒊

𝒅𝒕↑

Page 11: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Impacto de la Inductancia Parasítica (LTSpice)

11

Lp=50nH Lp=10nH

… es esencial el minimizar la inductancia parasitaria!

Synchronous Buck Converter

(500kHz, D=0.4) (Sync. Switch

Vgs con +15V,0V)

24V !!18V

Sin Rizado AFRizado AF

Page 12: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Consejos para minimizar la inductancia parásita del lazo de corriente de puerta

12

Cómo reducir la inductancia parasitaria?

Minimizar el área del lazo de corriente de puerta(ej. Con un pequeño plano bajo las pistas de puertaen la PCB para la corriente de retorno).

Coloca la fuente de alimentación auxiliar y suscondensadores de salida junto al Gate Driver IC yel SiC-MOSFET.

Utilizar pistas PCB cortas y anchas.

Utilizar components SMD con muy baja inductancia

parásita interna (e.g. MLCC (WCAP-CSGP de

Würth Elektronik)

El área de estos

lazos de

corriente debe

ser minimizado!!

𝐋𝐩 ∝ 𝐀𝐫𝐞𝐚𝐥𝒂𝒛𝒐

Page 13: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Sistemas Gate driver para SiC-MOSFET

Gate Driver IC con opción conexión de puerta única y doble

13

Conexión de puerta única

(diode for different Ron and Roff)Doble conexión de puerta (on/off)

• Tiempos de conmutación de

encendido y apagado afectan de

manera distinta el rendimiento

(EMI, Eficiencia, etc)

• Diferentes resistencias para

encendido y apagado.

• Anti-parallel diode.

• Rgs pull-down resistor - Mantiene

SiC-MOSFET apagado cuando no

hay señal de control.

• Una pequeña Cgs (e.g. WCAP-

CSGP) puede ayudar con rizado

AF y efecto Miller turn-on.

Page 14: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

14

Por qué un voltaje negativo para el

‘turn-off’?

Page 15: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Por qué un voltaje negativo para el ‘turn-off’?

SiC base Configuration: Half-bridge building block

15

SiC-MOSFET Bloque Half-bridge

Básico en convertidores DC-DC síncronos, inversores, etcEsquemático de Inversor DC-AC trifásico simplificado

Muy alto dv/dt !!

Page 16: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Por qué un voltaje negativo para el ‘turn-off’?

Miller-Effect Turn-on Event: Cuidado !!

16

Half-bridge Conmutación con

Voltaje unipolar

(Low-Side Switch example)

El turn-on for efecto Miller consiste en el encendido de un MOSFET a causa de la corriente de

desplazamiento en la capacitancia Miller (Cgd)

SW Node

Requerimiento: Zgs << Zgd, de lo contrario Vgs glitch puede

exceder umbral y encender el SiC-MOSFET – Miller Effect !!

SW NodeVsw

Aproximación: Zgs ≈ (ZCgs//Rgs)//(ZLoff+Roff)

Recordar Fourier

Análisis !

Vgs𝐈𝐦𝐢𝐥

Page 17: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Por qué un voltaje negativo para el ‘turn-off’?

Miller-Effect Turn-on. Ejemplo Half-bridge low-side (Unipolar Vdrive)

17

Half-bridge Conmutación con Voltaje Unipolar

(ejemplo low-side SiC-MOSFET)Consecuencias: Menor Eficiencia, Peor fiabilidad y

robustez. Fallo prematuro del SiC-MOSFET!!

<

Miller turn-on!

High-side turn-on!

Dead-time

VgsVg_ls

Vg_hs

Low-side turn-off!

Shoot-through Current!Ids

Page 18: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Por qué un voltaje negativo para el ‘turn-off’?

Miller-Effect Turn-on. Ejemplo Half-bridge Low-side (Bipolar Vdrive))

18

Half-bridge Conmutación con Voltaje Bipolar

(ejemplo low-side SiC-MOSFET)

Al aplicar un voltaje negativo para apagado del SiC-MOSFET, el turn-

off es más robusto y fiable incluso con un alto dv/dt !!

-4 V Negative Rail output capacitance

<

No Miller turn-on!VgsVg_ls

Vg_hs

No shoot-through!Ids

Page 19: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Por qué un voltaje negativo para el ‘turn-off’?

Active Miller Clamp: Más fiabilidad de turn-off con un alto dv/dt

19

Active Miller Clamp Technique

• Durante la conmutación de apagado, el clamping

transistor es encendido.

• Conduce la corriente Miller a través de un camino de

muy baja impedancia (mucho menor que Zgs).

• Ayuda a reducir rizado AF y picos de voltaje negativos.

• Un voltaje unipolar (e.g. +18V, 0V) podría ser utilizado

incluso con un dv/dt moderadamente alto.

Ejemplo IC Gate Driver con active Miller Clamp:

• EiceDRIVER™ 1EDC20I12MH from Infineon

Technologies AG

Voltaje Unipolar con muy alto dv/dt en nodo SW. Puede ser necesario utilizar Active Miller Clamp !!

Ejemplo previo fue para el LS Switch, pero lo mismo sucede al HS switch en su conmutación turn-off !!!

𝐈𝐦𝐢𝐥𝐥𝐞𝐫

Page 20: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

20

CMTI: Un parámetro crítico !

Page 21: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

CMTI: Un parámetro crítico !

Qué es CMTI y cómo afecta el sistema: Distorsión de señales de control

21

High-side Device: Nodo Surtidor conectadodirectamente al nodo SW (muy alto dv/dt)

Corriente de desplazamiento de modo comúnfluye al lado primario de la fuente dealimentación y del controlador, a través de lascapacitancias parásitas de ambos.

Resultado: Distorsión de señales de control !!

CMTI: Common-Mode Transient Immunity

Menor capacitancia parasitaria – CMTI más alto!!

Mayor robusez del sistema con alto dv/dt!

Medido en V/ns or kV/us

Máximo dv/dt tolerable a través de la barrera de aislamiento

galvánico antes de perder control del sistema !!

SW Node

Cdrv

Cpsu

Displacement Currents

across Isolation Barrier

ISOLATION

BARRIER

Isolated Auxiliary Supply

Gate Driver IC

Digital Isolator

High dv/dt across Isolation Barrier

Page 22: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

CMTI: Un parámetro crítico !

Qué es CMTI y cómo afecta el sistema: EMI (Interferencia Electromagnética)

22

Envolvente del espectro de emisión depende del

tiempo de subida de dv/dt !!

Cpt: Total Isolation Barrier Capacitance (Gdrv + PSU)

Lcm: Common-mode Choke

Cy: Y-capacitor to Chassis/Earth

Menor Cpt, Mayor Impedancia CM, menor

corriente CM, menor rizado de voltaje en Cy !!

Ejemplo simplificado de acoplamiento de las corrientes de

modo común:

• Emisiones Conducidas

• Emisiones Radiadas

Minimizar Cpt para mejor rendimiento EMI y menor

requerimiento del filtro EMI de entrada !!

Square-waveform envelope

Freq

A(dB)

Page 23: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

23

La fuente de alimentación auxiliar aislada

Page 24: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La fuente de alimentación auxiliar aislada

Cuánta Potencia de Salida es necesaria?

24

Cuánta potencia?

Tanta como la potencia disipada en la resistencia total del lazo de corriente de puerta durante las

conmutaciones de encendido y apagado del SiC-MOSFET.

𝐏 = 𝐐𝐠 ∙ 𝐟𝐬𝐰 ∙ ∆𝐕𝐠𝐬

𝑸𝒈 = Carga de puerta para delta Vgs aplicado (hoja de datos)

𝒇𝒔𝒘 = Frequencia de conmutación

𝚫𝑽𝒈𝒔 = Puerta-surtidor delta de voltaje (Vgs_on − Vgs_off)

Eon =1

2∙ Qg ∙ ΔVgs

Eoff =1

2∙ Qg ∙ ΔVgs

ET = Eon + Eoff = Qg ∙ ΔVgs → P = ET ∙ fsw

No depende del valor de la resistencia del lazo

puerta!!

Recordar: Carga/Descarga de la capacitancia

total de puerta Cg. Energía en Condensador!

Energía

Encendido

Energía

Apagado

Page 25: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La fuente de alimentación auxiliar aislada

Mayor requerimiento de potencia de salida

25

Mayor potencia se necesitará en los siguientes casos …

Frequencia de conmutación más alta (menor tamaño y

coste)

Módulos SiC customizados de muy alta potencia, con

alta capacitancia de puerta (e.g. inversores en

vehículos de tracción eléctrica)

Uso de SiC-MOSFETs en paralelo (corriente

compartida).

Fuente de alimentación compartida de los SiC-

MOSFETs del lado inferior en inversores multifásicos.

Ejemplo medio-puente SiC-MOSFETs en paralelo

Ga

te C

urr

ent L

oo

p Im

ped

an

ce m

ust

be s

am

e !!

Page 26: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La fuente de alimentación auxiliar aislada

Ejemplo: Cálculo de la potencia requerida

26

SiC-Module: CAS120M12BM2 (Wolfspeed)

Frecuencia de conmutación: 150 kHz

Von = +15𝑉Voff = −4𝑉

ΔVgs = 19𝑉

P = Qg ∙ fsw ∙ ∆Vgs

Qg: datasheet

Si se utiliza un ΔVgs distinto (e.g. +15V/-4V en este caso)

P = 280nC ∙ 150kHz ∙ 19V = 𝟏. 𝟔𝟐𝐖

Para el ΔVgs usado en el test:

𝟐𝟖𝟎 𝐧𝐂• Qg depende de condiciones de operación

• Punto inicial del diseño!! Validar experimentalmente

Test Conditions !

Page 27: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La fuente de alimentación auxiliar aislada

Qué topología DC-DC? Varias opciones …

27

Convertidor Push-pull aislado Convertidor de medio-puente aislado

• Transformador muy pequeño

• Voltaje de entrada y ciclo de trabajo (D) fijos

• Voltaje de salida no regulado (lazo control abierto)

• Etapa de regulación de voltaje adicional

• Control más complejo (HS Switch)

• Transformador muy pequeño (e.g. MID-PPTI, MID-

PPMAX, MID-PPLT)

• Voltaje de entrada y ciclo de trabajo (D) fijos

• Voltaje de salida no regulado (lazo control abierto)

• Etapa de regulación de voltaje adicional (LDO, Zener, etc)

Page 28: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La fuente de alimentación auxiliar aislada

Qué topología DC-DC? Varias opciones …

28

Isolated Primary-side-regulated

Flyback Converter (Dual-Output)

• Amplio rango de voltaje de entrada

• Voltaje de salida regulado

• Ningún bobinado adicional en el transformador

• Solución de pequeño tamaño y coste

Ejemplo de controladores PSR Flyback:

• LM5180 de Texas Instruments Inc

• LT83xx Series de Analog Devices / LT

… y los nuevos transformadores WE-AGDT

de Wurth Elektronik

Page 29: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

29

La nueva serie de transformadores

WE-AGDT

Page 30: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La nueva serie de transformadores WE-AGDT

Características principales de la serie WE-AGDT

30

Extremadamente compacto EP-7 (11x11x12 mm)

Capacitancia de interbobinado muy baja 6.8 pF

CMTI muy alto sobre 100 V/ns

4 kV Aislamiento dieléctrico

SMD Pick & Place

IEC62368-1 / IEC615582-16 Standards

AEC-Q200 Qualification (ongoing)

Para topología PSR Flyback hasta 6W

Voltajes de salida Unipolar and Bipolar

Optimizado para SiC-MOSFETs, pero…

…también excepcional para IGBT y Si Power MOSFET Gate Drivers

AEC-Q200

Page 31: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La nueva serie de transformadores WE-AGDT

WE-AGDT: Voltaje de salida bipolar

31

Ejemplo dispositivos/módulos SiCBipolar Output

15 V

4 VNTBG/NVHL/NVBG/NTHL

Series (OnSemi)

(+15V/-5V)

C3M and E3M Series

(Cree)

(+15V/-4V)

XM3/WAB Power Modules

(Cree)

(+15V/-4V)

FFx Series Power

(Infineon)

(+15V/-4V)

Ima

ge

s C

ourte

sy o

f ON

Se

mic

on

du

cto

r, Cre

e-

Wo

lfsp

ee

d a

nd

Infin

eo

n A

G

WE-AGDT

Part N

Diseños de Referencia

Vin Vout (+/-) Pmax Controller IC

750317894 9-18V +15V/-4V 3 W LM5180 (TI)

750318208 18-36V +15V/-4V 5 W LM5180 (TI)

750318131 9-18V +15V/-4V 6 W LT8302 (ADI)

VIN

Page 32: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La nueva serie de transformadores WE-AGDT

WE-AGDT: Voltaje de salida unipolar

32

Unipolar Output

IMW/IMZ Series

(Infineon)

(+15-18V/0V)

Image Courtesy of Infineon Technologies AG

Ejemplo dispositivos/módulos SiC

WE-AGDT

Part N

Diseños de Referencia

Vin Vout (+/-) Pmax Controller IC

75031789 9-18V 15-20V/0V 3 W LM5180 (TI)

750318207 18-36V 15-20V/0V 5 W LM5180 (TI)

750318114 9-18V 15-20V/0V 6 W LT8302 (ADI)

Los diseños de Referencia se pueden editar fácilmente para

ajustar el voltaje de salida deseado entre +15V y +20V

15 V to 20 VVIN

Page 33: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

La nueva serie de transformadores WE-AGDT

WE-AGDT – Nuevos Diseños de Referencia

33

Más Diseños de Referencia con distintos voltajes

de salida !!

Page 34: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

34

Diseños de referencia para WE-AGDT

Page 35: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Fuente de alimentación bipolar compacta de 6W para SiC e IGBT

35

Vin = 9-18V

Vout= +15V/-4V (Bipolar)

Pout = upto 6W

Eficiencia = 86% (pico), 83% (a 6W)

Muy compacta (14x14x27 mm)

Ligera (3.5g) (Automotive)

BoM Opciones: Standard y AEC-Q.

Dos Opciones para el PCB Layout:

2-layer Componentes en cara Top solo

4-layer Componentes en caras Top y Bottom

(versión mostrada en la imagen)

WE-AGDT - 750318131 1 Euro Coin

Page 36: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Fuente de alimentación bipolar compacta de 6W para SiC e IGBT

36

Page 37: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Fuente de alimentación bipolar compacta de 6W para SiC e IGBT

37

Page 38: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Fuente de alimentación bipolar compacta de 6W para SiC e IGBT

38

Page 39: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Fuente de alimentación bipolar compacta de 6W para SiC e IGBT

39

• PCB Layout Files Altium Designer disponibles

• PCB Fabrication Files

• Documentación detallada del Diseño de Referencia

• Application Note ANP082

Page 40: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

40

Page 41: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

41

High-side

Gate Driver

(for 2-paralleled

SiC-MOSFET)

Low-side

Gate Driver

(for 2-paralleled

SiC-MOSFET)

Page 42: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

42

Bipolar Isolated

Auxiliary Supply

Reference Design

with WE-AGDT

750318131

(2-layer version)

Page 43: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

43

Isolation Barrier

Page 44: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

44

Digital Isolator

Page 45: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Diseños de referencia para WE-AGDT

Ejemplo: Integración en sistema de controlador de puerta para SiC-MOSFET

45

HS Gate Driver IC

LS Gate Driver IC

ON and OFF

gate resistors

Page 46: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

46

Applicaciones SiC: El Presente y el Futuro!

Page 47: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Applicaciones SiC: El Presente y el Futuro!

Ejemplo de las aplicaciones principales al momento

47

E-mobility On-board & Off-board ChargersSolar Inverters

Industrial Drives Datacenter PowerSwitch-mode Power Supplies and

Power Factor Correction

Page 48: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

48

Repaso de los puntos importantes

Page 49: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

Repaso de los puntos importantes

49

• SiC-MOSFET posee superiores características y rendimiento que los dispositivos de Silicio.

• SiC-MOSFET conmuta más rápido: eficiencia más alta, pequeño tamaño y coste total del sistema

• Diseño sistema Gate Driver: Minimizar inductancia parásita y ajustar la resistencia de puerta.

• Un voltaje puerta-surtidor negativo ayuda a un apagado robusto y fiable del SiC-MOSFET

• Reducir Capacitancia parásita de la barrera de aislamiento para más alto CMTI y mejor EMI.

• Nuevos transformadores WE-AGDT de Wurth Elektronik para aplicaciones SiC e IGBT

• Capacitancia parásita muy pequeña para un alto CMTI (100V/ns) y potencia hasta 6W.

• Diseños de Referencia disponibles, fáciles de integrar en su sistema gate driver !

Page 50: SiC-MOSFET: Designing high-performance Gate Driver Systems

Würth Elektronik Group | 2020 | Public | SiC-MOSFET: Designing high-performance Gate Driver Systems with WE-AGDT Transformers

© All rights reserved by Wurth Electronik Group, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us. www.we-online.com

MUCHAS GRACIAS POR SU ATENCIÓN!!

EN ESTAREMOS ENCANTADOS DE

AYUDARLE!

NO DUDE EN ENVIAR SUS PREGUNTAS…