51
SiD Machine Detector Interface (MDI) Tom Markiewicz/SLAC U. Tokyo, Japan 3 September 2014

SiD Machine Detector Interface (MDI)

Embed Size (px)

DESCRIPTION

SiD Machine Detector Interface (MDI). Tom Markiewicz/SLAC U. Tokyo, Japan 3 September 2014. MDI Activities (I). Backgrounds and Detector Design Primary particles produced in the beam-beam interaction - PowerPoint PPT Presentation

Citation preview

Page 1: SiD Machine Detector Interface (MDI)

SiD Machine Detector Interface (MDI)

Tom Markiewicz/SLAC

U. Tokyo, Japan

3 September 2014

Page 2: SiD Machine Detector Interface (MDI)

MDI Activities (I)

• Backgrounds and Detector Design– Primary particles produced in the beam-beam interaction

• Disrupted e- or e+ beam (off energy, off angle), beamstrahlung photons, e+e- pairs, hadrons neutrons

– Muons from beam halo scraping in the collimation system– Synchrotron radiation (SR) photons, especially from the final doublet– Secondary particles in detector after primary particles strike something

• e+e- pairs striking BeamCal cause backgrounds in VXD, Tracker and Calorimeters• Neutrons streaming back from beam dumps

• Accelerator Design– Work closely with the BDS “Beam Delivery System” group

• Collimation system, Final Focus, Extraction Line

– Work with the LEP “Luminosity, Energy & Polarization” group– Work with those selecting IP spot parameters

• Detector Design– Beampipe and BeamCal in particular– Detector resident masks, apertures

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 2 of 51

Page 3: SiD Machine Detector Interface (MDI)

MDI Activities (II)

• Engineering– Work with the magnet designers: QD0 and QF1 especially– Work with mechanical engineers:

• Location, support & alignment of everything within r<30cm• Push-pull mechanical and cryogenic systems

– Work with civil engineers: underground IR Hall, above ground Assembly Hall

• Multidisciplinary:– Radiation protection: self-shielding, “PACMAN” design, etc.

• Shielding design and radiation calculations

– Vibration measurement & control, especially of QD0– Alignment, especially of QD0– Metrology

• Frequency Scanning Interferometer to re-establish alignment after a push-pull

– Cryo: • guaranteeing system, lines, interconnects consistent with detector design and push-pull operation

– Vacuum for z<200m– Feedback to stabilize/maximize Luminosity: “FONT” BPM and Kicker– Beam commissioning with or without detectors

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 3 of 51

Page 4: SiD Machine Detector Interface (MDI)

MDI People

• The Future– Everything that has been done to produce the LOI/DBD will need to be re-done in the

context of the Japanese site specific design• Many results used for the design are >6 years old• Details have changed yet not been incorporated into a self-consistent collection of results• Design changes: new L* desired by AD&I team• “Value Engineering” should be applied as ILC project comes on the mass shell

– A new team must learn how to use existing tools or develop better tools– Many projects have not begun or have been abandoned for lack of available

personnel

• Past contributors (partial list):– Takashi Maruyama & Lew Keller (backgrounds)– Mike Woods, Mike Hildreth(NDU), Eric Torrence (UO), Ken Moffeit (LEP Issues)– Mario Santana (FLUKA radiations calcs)– Wes Craddock (Solenoid & Yoke design; Cryo)– Marty Breidenbach, Phil Burrows(OU), Marco Oriunno, TWM (all)– Brett Parker, Andy Marone & Bill Sporre (BNL QD0)– Bill Cooper(FNAL), Mike Sullivan, Sasha Novokhatski (Beam Pipe, Vacuum, HOM

Heating)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 4 of 51

Page 5: SiD Machine Detector Interface (MDI)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10

SiD Schematic(before Support Tube adopted)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

HCAL Door Yoke PACMAN

QD0 Cryostat QF1 Cryostat

QD0 L*=3.5m

QF1 L*=9.5m

QD0 Service Pipe

FB Kicker

FB BPM

BeamCal

PolyCarbonate

LumiCal

W MaskBeampipe

ECAL

Beampipe Spider

Support

Bellows & Flange

5 of 51

Page 6: SiD Machine Detector Interface (MDI)

SiD Schematic(Door Closed)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

HCAL Door Yoke PACMAN

QD0 Cryostat QF1 Cryostat

QD0 L*=3.5m

QF1 L*=9.5m

QD0 Service Pipe

FB Kicker

FB BPM

BeamCal

PolyCarbonate

LumiCal

W MaskBeampipe

ECAL

Movers

Beampipe Spider

Support

Bellows & Flange

6 of 51

Page 7: SiD Machine Detector Interface (MDI)

SiD Schematic(Door Open 2.8m)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

HCAL Door Yoke

QD0 Cryostat QF1 Cryostat

QD0 L*=3.5m

QF1 L*=9.5m

QD0 Service Pipe

FB Kicker

FB BPM

BeamCal

PolyCarbonate

LumiCal

W MaskBeampipe

ECAL

Beampipe Spider

Support

Bellows & Flange

Movers

7 of 51

Page 8: SiD Machine Detector Interface (MDI)

-8

-6

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10

SiD Schematic(Door Open 2.8m)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

HCAL

Door Yoke

QD0 L*=3.5m

QF1 L*=9.5m

QD0 Service Cryostat

FB Kicker

PACMAN

Barrel Yoke

Solenoid Cryostat

HCAL

Cryo Chiller

8 of 51

Page 9: SiD Machine Detector Interface (MDI)

MDI Projects

2011-12 for DBD:– Add real vacuum components to beamline to

make sure it is buildable– QD0 Support Tube and Magnet Mover System– Frequency Scanning Interferometer System– Vacuum and HOMs

Older:– Self Shielding Calculations (2010?)– PACMAN Engineering (2008?)– Beam-Beam Backgrounds, DID/antiDID,

Apertures (2006 and for “SB2009”)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 9 of 51

Page 10: SiD Machine Detector Interface (MDI)

Granada LCWS’11 Engineering ModelGo from PPT Engineering to COTS parts

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

G. Anzalone/SLAC

10 of 51

Page 11: SiD Machine Detector Interface (MDI)

More Aggressive Bellows Design

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Assume functionality of double multi-convolution

bellows provided by bellows outboard of the

VXD support

Need to ensure adequate clearance between

beampipe and all FCAL components

Suggested that this bellows “comes for free” if

back end of cone appropriately engineered

Handshake with QD0/FCAL Support Scheme Essential

Rejected Conservative Design2-multi & 1-single convolution

bellows to allow FCAL position & VXD angle adjust

22% Evts in LumiCal lost

11 of 51

Page 12: SiD Machine Detector Interface (MDI)

Vacuum: Still Assumes QD0 Cryo-Pump Only,But…..

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

(“Virtual”?) Single Convolution Bellow in front of BeamCAL

Recent suggestion to eliminate individual beampipes within BeamCal and the

Low-Z absorber for better conductance

Previous VersionImplication to reduced BeamCal acceptance

not yet considered

12 of 51

Page 13: SiD Machine Detector Interface (MDI)

Space Behind BeamCal Increased from 100mm→277mm to accommodate BPM

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

W-Mask to protect QD0 from Pairs

Common or Individual bellows

4-electrode 100mm stripline

1um resolution BPM

Increased separation to accommodate

bellows, BPM and flanges

13 of 51

Page 14: SiD Machine Detector Interface (MDI)

Transverse Space Behind BeamCal Tightly Constrained

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 14 of 51

•Electro-mechanical Design of BMP & Kicker by S. Smith/SLAC

Page 15: SiD Machine Detector Interface (MDI)

Evolution of QD0-QF1 region

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

•Valve/Pump Out/RGA assemblies near QF1 end•QD0 Service Line to 2K chiller extended maximally to rear•Support tube behind QD0 extends to allow 2.8m door opening transitioning to a half-cylinder for access

Door plates Door Ring5683mm

QD0 Service Line

Wedge Alignment System in Pockets in Door Ring

Back end of QD06933mm

Back end of Support Tube

Valve Assembly550mm FB Kicker8090mm from IP

FB BPMG. Anzalone/SLAC

Front QD03283mm

Front QD09236mm

15 of 51

Page 16: SiD Machine Detector Interface (MDI)

Plan & Elevation Views of Disconnect & Pumpout Valves

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

1-1/2” Gate Valves

Formed Bellows & Disconnect

Flanges

Angle Valve for Roughout Pump

G. Anzalone/SLAC

Ion Pumps

All Vacuum Parts from MDC Catalog

16 of 51

Page 17: SiD Machine Detector Interface (MDI)

Elevation View at 2.8m Door Opening

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Semicircular plate and strut at end of support tube

Kicker with Electrodes

Support tube cut to semi-cylinder at rear

Alignment Wedge

G. Anzalone/SLAC17 of 51

Page 18: SiD Machine Detector Interface (MDI)

QD0 Cutaway

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Andy Marone/BNL

18 of 51

Page 19: SiD Machine Detector Interface (MDI)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Detailed Cryo-engineering Based on Similar Magnets Built for HERA

Back End of QD0

B. Parker et al, BNL

2250mm

200mm

760mm diameter

Overall service cryostat dimensions

Local “Service Cryostat”

19 of 51

Page 20: SiD Machine Detector Interface (MDI)

Integration of the QD0 cryoline

Hilman Rollers

QD0 service cryostat

He2 cryoline

Ancillary platform

T. Markiewicz/SLAC2014.09.03 SiD MDI U. Tokyo 20 of 51

Page 21: SiD Machine Detector Interface (MDI)

BNL Design of QD0 Support and Alignment System

• ANSYS analysis of QD0 outer can in either original 0.25” or suggested 1” thickness shows unacceptable deformation of cold mass support structure

• BNL designed an external support tube and a compact mover system

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Bill Sporre/BNL

Bolt Hole Rotation Pt.

21 of 51

Page 22: SiD Machine Detector Interface (MDI)

Support Tube/QD0 Radial Clearances

6.00

R211.00

*

R216.00

Tracker inner radius NEEDS TO BE increased from 200mm 216mm so it can slide over support tube to allow access to VXD

QD0 OD reduced from 390mm (4.5m L* design) by 2 x 0.007 x 1m = 14mm

Cryostat Thickness = ¼”

R216mm Hole in Ø620mm Fe Cylinder at center of Endcap Doors

2014.09.03 SiD MDI U. Tokyo

Page 23: SiD Machine Detector Interface (MDI)

QD0

Lumi(220 kg)

Mask (507 kg)

LowZee&Beamcal(136 kg)

Support Clam-shell

10mm steel

1616 mm 392

QD0

Lumi(220 kg)

Mask (507 kg)

LowZee&Beamcal(136 kg)

Support Clam-shell

10mm steel

1616 mm 392

LOI Concept: FCAL supported by clam-shell bolted to QD0 Cryostat

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Marco Oriunno/SLAC

23 of 51

Page 24: SiD Machine Detector Interface (MDI)

Support Tube Analysis Weight Distribution When LumiCal & BeamCal Supported on Extension of QD0 Cryostat

Support Tube 980 kg

QD0908 kg

M. Oriunno/SLAC2014.09.03 SiD MDI U. Tokyo

Page 25: SiD Machine Detector Interface (MDI)

Displacements (mm)VM Stresses (Kgf/mm2)

Door Closed: 100um deflection

Supports

M. Oriunno/SLAC

2014.09.03 SiD MDI U. Tokyo 25 of 51

Page 26: SiD Machine Detector Interface (MDI)

2 m

Displacements (mm)VM Stresses (Kgf/mm2)

Door Open 2m: 2.2mm deflection

VXD Tracker Supports

M. Oriunno/SLAC

2014.09.03 SiD MDI U. Tokyo 26 of 51

Page 27: SiD Machine Detector Interface (MDI)

Displacements (mm)VM Stresses (Kgf/mm2)

2.8 m

Door Open 2.8m: 6mm deflection

VXD Tracker Supports

M. Oriunno/SLAC

2014.09.03 SiD MDI U. Tokyo 27 of 51

Page 28: SiD Machine Detector Interface (MDI)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

QD0 Ø390 mm

Support Tube I.D. Ø420 mmO.D. Ø470.8 mm

Support Tube I.D. Ø390 mmO.D. Ø470.8 mm

50 mm

1490 mm

Support Tube I.D. Ø420 mmO.D. Ø470.8 mm

1374 mm

Bolt Hole Rotation Pt.

Bill Sporre/BNL

28 of 51

Page 29: SiD Machine Detector Interface (MDI)

29/51

Support Tube Analysis SetupDoor Open 2m

Wedge Support Points

Rear Support Point

Wedge Support Points

Rear Support Point

5.7mm

3.6mm

2014.09.03 SiD MDI U. Tokyo

Bill Sporre/BNL

Page 30: SiD Machine Detector Interface (MDI)

QD0 Wedge Design Concept

Total Pad Travel as is = .475in

Height of pad and distance of displacement will be changed pending analysis on sagging of beam line.

Conceptual design only at this point

Motor & Drive Rod system not yet done

Limit SwitchesPotentiometer

Bill Sporre/BNL

2014.09.03 SiD MDI U. Tokyo

Pads located in cutouts in iron ring

to which door plates are welded

216<r<620mm

Page 31: SiD Machine Detector Interface (MDI)

QD0 Wedge Design Concept

Bill Sporre/BNL

2014.09.03 SiD MDI U. Tokyo

Page 32: SiD Machine Detector Interface (MDI)

Frequency Scanning Interferometry

• Pioneered by Armin Reichold et al at Oxford for ATLAS– Oxford has commercialized a system bought by LCLS to

monitor adjustable gap undulator: many heads

• In SiD context, R&D program by Keith Riles et al at U. Michigan 2003-2007 (for SiD tracker) & 2011-2012 (for QD0)

– Established an 8-channel optical table in Michigan lab

– Verified 1-D, 2-D displacement measurements with sub-micron precision – Available equipment limits 3-D displacement test to few-micron precision, but should be fine– Developing corner cubes and customized beam launchers – Currently compact and light enough for MDI application, but not for SiD tracker

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 32 of 51

Page 33: SiD Machine Detector Interface (MDI)

FSI Grid for Monitoring QD0

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Keith Riles, Hai-Jun Yang/U. Michigan

QD0 QF1

33 of 51

Page 34: SiD Machine Detector Interface (MDI)

IP Vacuum

• VACCALC: “ A Method for Calculating Pressure Profiles in Vacuum Pipes”, SLAC-PEP-II-APNOTE-6-94– The outgassing rate is taken to be 0.1 nTorr•l/s/cm2.

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

If cryo-pump only 136 nTorr• If add 10 l/s pump 69 nTorr• If add 20 l/s pump 46 nTorr

M. Sullivan/SLAC

34 of 51

Page 35: SiD Machine Detector Interface (MDI)

Vacuum Between QD0 and QF1No Problem!

Assume the cryostat beam pipes have a total pumping of 500 l/s per cryostat

One 100 l/s ion pump for each pipe between the cryostats as drawn

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

M. Sullivan/SLAC

Incoming Beam Pipe Outgoing Beam Pipe

35 of 51

Page 36: SiD Machine Detector Interface (MDI)

Vacuum Upstream of FF QuadsNeeds a Design!

Assume a 50 l/s ion pump every 2 m

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

20mm diameter beampipe <p> ~ 23 nTorr

And/or: Larger diameter beampipes, heater tapes to lower outgassing rates, etc.

Add distributed pumpingAntechamber, pumpscreen, NEG, …

M. Sullivan/SLAC36 of 51

Page 37: SiD Machine Detector Interface (MDI)

Beam-Beampipe Interactionat the IP and in QD0

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Sasha Novokhatski/SLAC

Wakefields and Bunch field as beam passes BEAMCAL and LUMICAL

Beam-induced wakefields result in power loss due to trapped higher order modes and resistive wall heatingThese have been calculated by A. Novokhatski for the current IR geometry using MAFIA and NOVO codes:See: http://ilcagenda.linearcollider.org/materialDisplay.py?contribId=2&materialId=slides&confId=5596

Effects are very dependent on exact geometries, materials, shielding schemes and contact resistance

37 of 51

Page 38: SiD Machine Detector Interface (MDI)

Summary of HOM Heating at IP

• Average power of the wake fields excited in IR is around 30 W for nominal parameters (6 kW pulsed)– 90% from modes excited in pipe (geometry (R/Q) & frequency

dependent)

– 10% from resistive wall heating

• In the QD0 region there is an additional ~4W from resistive losses in the pipes and wakefields, excited by pipe diameter changes, due to the shielded bellows– Flange edge size, contact resistance, coatings important

• Heating from BPMs and kickers must be added

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Full 3D LOI Beam Pipe(no bellows, flanges, or pump ports included)

Sasha Novokhatski/SLAC 38 of 51

Page 39: SiD Machine Detector Interface (MDI)

Self-Shielding and PACMAN

• PACMAN shields IR Area between the detector and the beam tunnel• Current Concept has a SiD-mounted piece and a ILC/SiD common

piece to accommodate different detector sizes and QD0 support schemes

• Figures of merit are “Total Dose” and “Dose Rate”– Relevant Japanese authorities need to be educated about the nature

of ILC pulsed beams

– Dose Rate limits (which seem artificially low given the short time scale of an “accident” (1ms)”) need to be re-evaluated

• Handling of PACMAN sub-pieces will likely determine underground crane requirements

• Design of UG IR Hall, tunnel lip that holds QF1, interface with platform motion system, QD0 support and push-pull all argue for active work in this area

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 39 of 51

Page 40: SiD Machine Detector Interface (MDI)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC

Electrical motor, low friction hinges

Current SiD “PacMan” Rotating Hinged Design

M. Oriunno, SLAC 40 of 51

Page 41: SiD Machine Detector Interface (MDI)

T. Markiewicz/SLAC

Geometry: pacman and SiDB-B’

SiD elevation at beam plane Small PACMAN

SiD elevation at beam plane Large PACMAN

SiD elevation at beam plane Large PACMAN

50 cm steel +

170 cm concrete

120 cm steel +

250 cm concrete

M. Santana, SLAC, LCWS 20102014.09.03 SiD MDI U. Tokyo 41/51

Page 42: SiD Machine Detector Interface (MDI)

MSL - SLAC 42

20 R.L. Cu target in IP-9 m. Small pacman.

9 MW9 MW

BEAM PLANE PENETRATION PLANE

9 MW9 MW

µSv/event- 1000 µSv/event- 18000 mSv/h

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 42/51M. Santana, SLAC - 2010 LCWS Beijing

Page 43: SiD Machine Detector Interface (MDI)

MSL - SLAC 43

20 R.L. Cu target in IP @ 9 m. Large pacman.

9 MW9 MW

BEAM PLANE PENETRATION PLANE

9 MW9 MW

µSv/event- 10 µSv/event- 180 mSv/h

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 43/51M. Santana, SLAC - 2010 LCWS Beijing

Page 44: SiD Machine Detector Interface (MDI)

Provisional conclusions

• Small pacman and pacman-cavern interface are sufficient in terms of dose per event.

– Beam aborted after 1 Train• However, the dose rates for the small pacman are very high:

– Proven mechanisms should be installed to:• avoid these accidents to occur• shut off beam after 1 train (200 mS)

– Possible Debates• The large pacman complies with all criteria.• The penetrations in the pacman don’t require local shielding.• The shielding of the detector may be insufficient to comply

with dose rate limit. Exclusion area?• More studies ongoing (mis-steering…)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 44/51M. Santana, SLAC

Page 45: SiD Machine Detector Interface (MDI)

Backgrounds & Forward Calorimetry

• All studies done by T. Maruyama in GEANT3 (pairs, SR) and FLUKA (Neutrons from Dump, Dose Rates)

• Last looked at for “SB 2009” IP Parameters and presented early 2011

• Have not kept up with changes to nominal beam parameters, beam energy variations, or changes to FCAL

• Questions of DID/anti-DID implementation, “bent solenoid”, new L*, beampipe variants, etc. should be investigated

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 45 of 51

Page 46: SiD Machine Detector Interface (MDI)

SiD Forward RegionLumiCal20 layers of 2.5 mm W +10 layers of 5.0 mm W

BeamCal50 layers of 2.5 mm W

3cm-thick Tungsten Mask13cm-thick BoratedPoly

Centered on the outgoing beam line

EC

AL

Beampipe+/- 94 mrad (detector)+101 mrad, -87mrad (ext. line)

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLACT. Maruyama SLAC 46/51

Page 47: SiD Machine Detector Interface (MDI)

Pair edge and Beam pipe design

Pt=0.032 Pz0.43

Pt

(GeV

/c)

Pz (GeV/c)

• Pairs develop a sharp edge and the beam pipe must be placed outside the edge.

• Find an analytical function of the edge in Pt vs. Pz space.• Taking into account the crossing angle and solenoid field,

draw helices in R vs. Z space. SB2009 500 GeV TF

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 47/51T. Maruyama SLAC

Page 48: SiD Machine Detector Interface (MDI)

SiD beam pipe and pairs edgeMessage: Aggressive Beampipe

500 GeV RDR Nominal 500 GeV RDR Low P

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLACT. Maruyama SLAC 48/51

Page 49: SiD Machine Detector Interface (MDI)

Detector-Integrated-Dipole

• Total pair energy into BeamCal is half.– 10 TeV/BX vs. 20 TeV/BX with NO-DID.

• Pair distribution is symmetric and more confined.• No. photons backscattering to the tracker is half.

We want Anti-DID. DID

SiD Solenoid

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLACT. Maruyama SLAC 49/51

Page 50: SiD Machine Detector Interface (MDI)

VXD hit density / train

0.1

1

10

100

Hits

/mm

2/tr

ain

54321

VXD Layer

1000 GeV TF 1000 GeV NoTF 500 GeV RDR 500 GeV TF 500 GeV NoTF 350 GeV TF 350 GeV NoTF 250 GeV TF 250 GeV NoTF

100 hits/mm2

6 hits/mm2

• Detector tolerance

• Use generic 1% pixel occupancy

• Dependent on sensor technology and readout sensitive window.

– Standard CCD 20m x 20m

• 2500 pixels/mm2

• 6 hits/mm2/sw (assuming 1 hit 4 pixels)

– Fine pixel CCD 5m x 5m

• 40000 pixels/mm2

• 100 hits/mm2/sw (assuming 1 hit 4 pixels)

T. Maruyama SLAC

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 50/51

Page 51: SiD Machine Detector Interface (MDI)

Summary

Every area mentioned would benefit from increased collaboration and fresh ideas

2014.09.03 SiD MDI U. Tokyo T. Markiewicz/SLAC 51/51