Sill Plate Anchor Bolt Testing 2009

Embed Size (px)

Citation preview

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    1/50

    StructuralEngineersAssociationofNorthernCalifornia

    20082009SpecialProjectsInitiative,(SPI).

    20082009SEAONCBoardofDirectors:

    ReinhardLudke(President),RafaelSabelli(VicePresident),KateStillwell (Treasurer),

    Bret

    Lizundia

    (Past

    Pres.),

    Greg

    Deierlein,

    Mark

    Ketchum,

    Karin

    Kuffel,

    John

    Osteraas.

    Reportonlaboratorytestingofanchorboltsconnectingwood

    sillplatestoconcretewithminimumedgedistances

    SEAONCSPIProjectTeam:

    ScientificConstructionLaboratories,Inc. (SCL)

    W.

    Andrew

    Fennell,

    CE,

    SECB,

    GC

    ThomasA.Voss,CE

    3397Mt.DiabloBlvd.,SuiteE

    Lafayette,California94549

    (T)925.284.3363(F)925.284.3360

    [email protected]

    [email protected]

    CERTUSConsulting,Inc.(CCI)

    KevinMoore,CE,SE,SECB

    405FourteenthStreet,Suite160

    Oakland,California94612

    (T)510.835.0705(F)510.835.0775

    [email protected]

    StructuralSolutions,Inc.(SSI)

    GaryMochizuki,CE,SE

    150N.Wiget,Suite102

    WalnutCreek,CA94598

    (T)925.938.3303(F)925.938.3522

    [email protected]

    TheProjectTeamgratefullyacknowledgesthefollowingfortheirinvaluableprojectsupport:

    (Additionalprojectacknowledgementsarelistedintheattachedreport)Simpson

    Strong

    Tie

    Company,

    Inc.

    (SSTC)

    StevePryor,CE,SE RicardoArevalo,CE,SE TimMurphy,CEAmericanForest&PaperAssociation(AF&PA)

    PhilLine,PE BradDouglas,PE ShaneCochran

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    2/50

    Reportonlaboratorytestingofanchorboltsconnecting

    woodsillplatestoconcretewithminimumedge

    distances

    W.AndrewFennell,CE,SECB,CPEng

    ScientificConstructionLaboratories,Inc.

    KevinS.Moore,CE,SE,SECB

    CertusConsulting,Inc.

    PhilipLine,PE

    AmericanWoodCouncil/AF&PA

    ThomasD.VanDorpe,CE,SE,CBO

    VanDorpe,ChouandAssociates,Inc.

    GaryL.Mochizuki,CE,SE

    StructuralSolutions,Inc.

    ThomasA.Voss,CE

    ScientificConstructionLaboratories,Inc.

    Abstract:

    The2006InternationalBuildingCode(IBC06)istheModelCodeforthe2007CaliforniaBuildingCode

    (CBC07). IBC06 references ACI 31805 Appendix D for the determination of anchor bolt capacity (in

    singleshear)when attachingwoodsillplates toconcrete foundations. Many practicingengineersand

    buildingofficialsarecurrentlymystifiedbythelowanchorboltcapacitiesobtainedfromtheapplication

    ofAppendixDequationsforwoodframedconstructioninseismicdesigncategoriesD,EandF.

    In the absence of available test data, members of the 20082009 Structural Engineers Association of

    California (SEAOC) Seismology Committee concluded that the development and support of a study to

    characterizetypicalfoundationanchorboltedtowoodsillplateconnectionswasnecessarytoestablish

    abasisforevaluatingdesigncapacitieswhilebetterunderstandingthebehaviorofthisbasicconnection.

    Results obtained through initial rudimentary experiments provided the authors and the SEAOC

    Seismology Committee with a basis for the development of the test setup and protocol contained

    herein.TheexperimentaltestscontainedhereinwereperformedattheTyrellGilbResearchLaboratory

    in Stockton California. All tests were singlebolt tests in wood sill plates connected to concrete with

    standard castinplace steel anchor Lbolts. A total of 28 tests were performed; twentyfour primarytestsandfourauxiliarytests.Theloadusedtotesttheconditionofinterestconsistedofaforceapplied

    paralleltothefreeedgeoftheconcrete.Inaddition,nondestructivetestingwasperformedconcurrently

    onconcretesurfacestodetectanyflawsanddelaminationsthatmayhaveformedduringtesting.

    Thetestprogramyieldedresultsindicatingthattheconnectionofwoodsillplatetoconcreteusingcast

    inplacesteelanchorboltsisductileandthatdesigncapacities(bothpastandpresent)areconservative.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    3/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page2

    Introduction:

    Seismic force resisting systems for wood framed buildings typically comprise wood structural panel

    shearwallswithanchorboltslocatedattheedgeoffoundations(SeeImage1).Theseconnectionsoften

    haveanedgedistanceof13/4fromtheboltcenterlinetothefaceoftheconcreteslaborfooting.

    Image1Viewofanasbuiltanchorboltinstallation(left),designdetailfortypicalanchorboltinstallation

    (right). Anchorshowninasbuiltconditionis5/8nominaldiameterwitha2x2platewasherperCBC2001.

    Engineers have historically anticipated the controlling failure of this connection to occur between the

    anchorboltandthewoodsillplate.However,designcapacitiesforbreakoutstrengthoftheanchorbolt

    inshear,determined inaccordancewithACI31805AppendixD,aregreatlyreducedandtypically less

    thanthedesigncapacityapplicabletothewoodtoconcreteconnectionwithsmalledgedistances.ACI

    31805providesanincreasetobreakoutdesigncapacitywhereconnectionsareductilebutapplication

    ofductileprovisionstothewoodtoconcreteconnectionisnotclearlydefinedwithinACI31805.

    Lacking specific test data to substantiate the reduced design capacities for anchors in concrete in a

    typical wood to concrete connection loaded parallel to the edge (per ACI 31805, Appendix D), the

    Structural Engineers Association of California (SEAOC) Seismology Committee supported the

    development of a study to characterize typical anchor bolted connections through a comprehensive

    experimentaltestingprogramwiththefollowinggoals:

    Establishtestdatafortheconnectioncapacitywhenloadedparalleltotheedge. Determinewhethertheconnectionexhibitsductilebehavior. Proposerationaldesigncapacitiesfortheconnectionbasedontestresults.

    Alltestsweresinglebolttestsinwoodsillplatesconnectedtoconcretewithstandardcastinplacesteel

    anchorbolts.Atotal of28testswere performed;24primarytests and fourauxiliarytests. Additionalnondestructive testing was performed concurrently on concrete surfaces to detect flaws and

    delaminationsifformedduringtesting.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    4/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page3

    TestSpecimens:

    Figure1depictsatypicalcrosssectionofthespecifiedtestspecimen.Materialpropertiesaredescribed

    below (Component descriptions) . Material properties for each test are included in Table1 (primary

    tests)andTable2(auxiliarytests).

    Figure1Typicalsection for2x4/3x4 testspecimens.Not toscale. (2x6/3x6tests;nominalspecifiededge

    distancechangedto23/4)

    Theanchorstested(paralleltotheconcreteface)werecastinplaceintworowsasdepictedinFigure1.

    Interactionbetweenthetwo rowsof anchors andanyassociated proximityeffectson test resultswas

    determined to be insignificant based on results of the initial experiments with similar test specimen

    design.

    Foralltests,nominalboltdiameterwas5/8andconcretecompressivestrengthwasbetween2500psi

    and3000psi.Allconcretespecimensweretestedascast,withouttheintentionalcreationofcracksin

    thetestspecimen.FurtherdiscussionbehindthisdecisioncanbefoundintheSEAOCBlueBookarticleonanchorbolts(availablefromwww.SEAOC.org/bluebook).

    Woodsillplateswere2x4,3x4,2x6and3x6Douglasfir,incisedandpreservativetreated. Anchorbolts

    werecenteredinthewidefaceof4nominalwidthand6nominalwidthmembersresulting intarget

    edgedistances(measuredfromcenterlineoftheanchortothefaceoftheconcretefoundation)of1

    3/4and23/4,respectively.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    5/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page4

    Componentdescriptionsfollow:

    Concrete a compressive strength (fc) of 2500psi to 3000psi was specified for the tests to represent

    typicallightframeconstruction.Compressivetestcylinderresultsrangedfrom2550psi(on11/12/08)to

    2710psi(on11/19/08).ModulusofElasticity(MOE)wasmeasuredfromaspecimencastfromthetest

    specimenconcreteon11/11/08atSCLas3.61x106psi.Asingle60ksi#4reinforcingbarwasruntopand

    bottomoftheconcretespecimenasshown inFigure1.Thereinforcementwasplaced3fromthetop

    and3fromthebottom,andlocatedcentrallyinthe12widetestspecimen.

    Wood sillplateswereofnominal2x4, 3x4,2x6 and3x6 sizes.All materialwaspressure preservative

    treated (PT). The following properties for each specimen are reported in Table 1; lumber species,

    lumbergrade,moisturecontentandpreservativetreatment.Sillplatestockwastestedinasreceived

    condition. The material procured was specified as PT, DF, #2 or better. Unless otherwise noted in

    Table 1, each test utilized a 11/16 diameter bored hole centered on the wide face of the wood sill

    plate.

    Anchor bolts were bare steel ASTM A307 Lbolts, 5/8 nominal diameter (0.559 actual) with rolled

    threads.Yieldstress(Fy),fortheboltswasdeterminedbytestas40ksi.Platewasherswereprefabricatedsquaresteelplates(0.229x3x3)withadiameterstandardhole. Anchorboltswereembedded7

    (held in place by bolt holders during casting). No reinforcement was placed coincident with the bolt

    locations. Anchorbolts weredesignedtobeplacedwithanedgedistanceof13/4(centerofboltto

    edgeofconcrete)for2x4and3x4tests.Fortestsof2x6and3x6sillplates,a23/4edgedistancewas

    specified. Actual clear cover measurements were determined with a pachometer. See Table 1 for

    specified(andactual)edgedistancesforeachtest.

    Anchor bolt nut condition All tests (except 1 auxiliary test) were run with the nut finger tight +

    turn. This condition is intended to represent a typical inservice condition where the sill plate has

    undergonesomedimensionalchangebecauseofchangesinmoisturecontent.

    Membrane an isolation membrane was installed on some tests as noted in Table 1. The membrane

    was comprised of two layers of 10mil polyethylene sheeting (0.010). Lithium grease was sprayed

    betweenthetwopliestoapproximateanidealizedfrictionlessplane.Testsutilizingthemembraneare

    designatednffornonfriction,(I.e.1D1nf).Theeffectoffrictionwasevaluatedfor2x4and3x4sill

    plateswherethespecifiededgedistancewas13/4.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    6/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page5

    Table1SummaryofPrimaryTests

    TestID's

    TestDate

    PlateTest.UON

    5/8"A/B(0.559")

    3"x3"x0.229"washer

    EdgeDistance:

    Nominal,

    Actual.

    LoadingProtocol MoistureContent,PT

    Lumberspecies&grade.

    1A1f289

    11/12/08

    2x4sillplate. 1.75"

    1.9"

    Monotonic

    250#/sec.

    9.1%to9.7%,Borate.

    DFStandard&Better.

    1A

    2f290

    11/12/082x4

    sill

    plate. 1.75"

    1.8"

    Monotonic250#/sec.

    8.4%,

    Borate.

    DFStandard&Better.

    2A1f293

    11/12/08

    2x4sillplate. 1.75"

    1.9"

    Cyclic

    SEAOC@50#/sec.

    7.9%to8.5%,Borate.

    DFStandard&Better.

    2A2f294

    11/12/08

    2x4sillplate. 1.75"

    1.7"

    Cyclic(0.2Hz)

    SEAOCModified.

    7.5%to8.1%,Borate.

    DFStandard&Better.

    1C1nf291

    11/12/08

    2x4sillplate. 1.75"

    1.9"

    Monotonic

    250#/sec.

    6.5%to8.1%,Borate.

    DFStandard&Better.

    1C2nf292

    11/12/08

    2x4sillplate. 1.75"

    1.9"

    Monotonic

    250#/sec.

    7.0%to8.3%,Boarate.

    DFStandard&Better.

    2C1nf295

    11/12/08

    2x4sillplate. 1.75"

    1.8"

    Cyclic(0.2Hz)

    SEAOCModified.

    9.1%to10.2%,Borate.

    DFStandard&Better.

    2C2nf296

    11/13/08

    2x4sillplate. 1.75"

    1.9"

    Cyclic(0.2Hz)

    SEAOCModified.

    7.5%to8.1%,Borate.

    DFStandard&Better.

    1B

    1f298

    11/13/08

    3x4sill

    plate. 1.75"

    1.9"

    Monotonic

    0.75"/min.

    12.1%

    to

    13.0

    %,

    Borate.

    DFStandard&Better.

    1B2f299

    11/13/08

    3x4sillplate. 1.75"

    1.8"

    Monotonic

    0.75"/min.

    12.5%,Boarate.

    DFStandard&Better.

    2B1f304

    11/14/08

    3x4sillplate. 1.75"

    2.0"

    Cyclic(0.2Hz)

    SEAOCModified.

    10.6%to12.3%,Borate.

    DFStandard&Better.

    2B2f305

    11/14/08

    3x4sillplate. 1.75"

    1.7"

    Cyclic(0.2Hz)

    SEAOCModified.

    10.7%to11.8%,Borate.

    DFStandard&Better.

    1D1nf300

    11/13/08

    3x4sillplate. 1.75"

    1.9"

    Monotonic

    0.75"/min.

    10.1%to12.4%,Borate.

    DFStandard&Better.

    1D2nf301

    11/13/08

    3x4sillplate. 1.75"

    1.8"

    Monotonic

    0.75"/min.

    11.2%,Boarate.

    DFStandard&Better.

    2D1nf306

    11/14/08

    3x4sillplate. 1.75"

    1.8"

    Cyclic(0.2Hz)

    SEAOCModified.

    10.9%to11.1%,Borate.

    DFStandard&Better.

    2D

    2nf

    307

    11/14/083x4

    sill

    plate. 1.75"

    1.9"

    Cyclic(0.2

    Hz)

    SEAOCModified.9.0

    %

    to

    9.1

    %,

    Borate.

    DFStandard&Better.

    4A1f310

    11/14/08

    2x6sillplate. 2.75"

    2.6"

    Monotonic

    0.75"/min.

    14.0%to17.4%,Borate.

    DF#2.

    4A2f311

    11/14/08

    2x6sillplate. 2.75"

    2.7"

    Monotonic

    0.75"/min.

    17.6%to18.2%,Borate.

    DF#1orBetter.

    4C1f314

    11/19/08

    2x6sillplate. 2.75"

    2.6"

    Cyclic(0.2Hz)

    SEAOCModified.

    14.0%to17.4%,Borate.

    DF#2.

    4C2f315

    11/19/08

    2x6sillplate. 2.75"

    2.4"

    Cyclic(0.2Hz)

    SEAOCModified.

    17%,Borate.

    DF#1orBetter.

    4B1f312

    11/14/08

    3x6sillplate. 2.75"

    2.7"

    Monotonic

    0.75"/min.

    14%,Borate.

    DF#1orBetter.

    4B2f313

    11/14/08

    3x6sillplate. 2.75"

    2.9"

    Monotonic

    0.75"/min.

    9.2%,ACQ.

    DF,GradeN/A.

    4D

    1f316

    11/19/083x6

    sill

    plate. 2.75"

    2.6"

    Cyclic(0.2

    Hz)

    SEAOCModified.10.1

    %,

    Borate.

    DF#1orBetter.

    4D2f317

    11/19/08

    3x6sillplate. 2.75"

    2.7"

    Cyclic(0.2Hz)

    SEAOCModified.

    11.6%,ACQ.

    DF,GradeN/A.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    7/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page6

    Table2SummaryofAuxiliaryTests.

    TestID's

    TestDate

    PlateTest.UON

    5/8"A/B(0.559")

    3"x3"x0.229" washer

    EdgeDistance:

    Nominal,

    Actual.

    LoadingProtoc ol Moi stureContent,PT

    Lumberspecies&grade.

    Spare1f308

    11/14/08

    3x4sillplate.

    Loosenut

    O/Shole

    =0.75"

    f

    1.75"

    1.9"

    Cyclic (0.2Hz)

    SEAOCModified.

    10.1%to11.8%,Borate.

    DFStandard&Better.

    Spare2f309

    11/14/08

    3x4sillplate. 1.75"

    1.7"

    Cyclic (0.2Hz).

    SPD(Dcontrol).

    In uterror.

    8.8% ,Borate.

    DFStandard&Better.

    SpareSPD1f302

    11/13/08

    (N)2x4sillplate.

    Usedsameanchor

    tested in2C2nf.

    1.75"

    1.9"

    Sameas2C2nf

    Cyclic (0.2Hz)

    SPD(Dcontrol).

    9.5%,Boarate.

    DFStandard&Better.

    SpareSPD2f303

    11/13/08

    2x4sillplate. 1.75"

    1.8"

    Cyclic (0.2Hz)

    SPD(Dcontrol).

    8.8% ,Borate.

    DFStandard&Better.

    TestSetUpandInstrumentation:

    AlltestswereconductedattheTyrellGilbResearchLaboratoryinStockton,California.Thelaboratoryis

    owned and operated by the Simpson StrongTie Company (SSTC) who generously agreed to donatematerialandtestingservicestothisproject.ThemajorityofthetestingoccurredbetweenNovember12

    14,2008(fourtestswerecompletedonNovember19,2008).Image2isannotatedtoshowthetypical

    setupforthesingleanchortests.

    1. Singleanchortested(5/8) in7longsillplate2. Directionofload(monotonicorpseudocyclic)

    3. 25003000psiconcrete

    4. Displacementgauge

    (string

    pot)

    5. Loadinggripfromhydraulicramtowoodsill

    6. Previouslytestedanchor

    1

    6

    3

    5

    4

    SCL_80XX_111208_WAF_172

    Image2TypicalsetupforanchortestsatTyrellGilbResearchLaboratoryinStockton,CA.

    Monotonictestswererunasdisplacementcontrolledatarateof0.75/minute.Cyclictestswererunas

    displacementcontrolledatafrequencyof0.2Hz(1cycleevery5seconds). Eachanchorboltwastested

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    8/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page7

    asasingleelementconnectinga7footlongsillplatetothelargerconcretefoundationelement.Four

    loadinggripstransferredtheparallelforcefromthe loadingbeamtothesillplate(seeImage2).The

    gripswereattachedtothesillplatewithagroupof11/2longSDSSerieswoodscrews.Atotalof64

    screws,distributedamongstmultiple loadtransferassemblies(see Image2)wereusedtotransferthe

    appliedloadintoeachtestspecimen.Noverticalloadwasintroducedintothetestspecimen.

    Displacementwasmeasuredhorizontallyattwolocations;(1)attheloadingramand(2)atthesillplate

    adjacent to the anchor bolt. All loads and displacements were collected via a stateoftheart digital

    dataacquisitionsystem.Datawascollectedatarateof8readingspersecondformonotonictestsand

    32timespersecondforcyclictests.

    Specimen details were documented before and after each test. Realtime video was collected during

    eachtestfromtwocameraangles:(1)sideelevationtoobservethefaceofconcreteatthenearedge,

    and (2) from above to observe sill plate and anchor bolt behavior. The clear cover of each anchor

    locationwasdeterminedthroughtheuseofaProfometerrebarlocator(pachometer),manufacturedby

    ProceqInstruments. Duringeachtest,impactechotestingwasusedtosoundforinternalflaws.From

    earlierexperiments, itwasdeterminedthatconcretedelaminationcanformbeforeanythingisvisually

    apparentfromtheexteriorfaceoftheconcrete.

    TestPlanDevelopment:

    Priortestingofwoodsillplatesboltedtoconcrete(Reference1)usinganddiameteranchorbolts

    with13/4edgedistance,locatedapproximately8fromtheendsoftheconcretespecimenexhibited

    yieldingoftheboltaspredictedbytheNDSyieldlimitequationsassociatedwithModeIIIsandModeIV

    behavior. Observations from the monotonic tests included yielding of the bolt at the surface of the

    concrete followed by rotation of the bolt such that the washer below the nut was pressed into the

    wood sill plate. Concrete degradation was observed in the vicinity of the bolt after yielding. The

    reported testing however, did not evaluate a wood sill plate bolted to concrete subjected to cyclic

    loading.

    Comparative data on the capacities of and diameter bolted connections (woodtowood) using

    variousloadingprotocols(pseudocyclic,monotonic,andsequentialphaseddisplacement,Reference3)

    indicatedfastenerfatiguewasnotalikelyfailuremodeandthatultimatestrengthwasnotsignificantly

    influencedbyvariousloadingprotocols.

    Preliminary experiments conducted during summer 2008 (performed at Scientific Construction

    Laboratories (SCL), Inc.) provided basic information on connection behavior and testing variables.

    Specimen configuration (e.g. single 5/8 diameter anchors with 13/4 edge distance) was identical to

    thatspecifiedfortheStocktontests.Observationsfromthepreliminarytestsindicatedthefollowing:

    NDSYieldModeIIIsandIVwerethegoverningyieldmodeforwoodsillplateanchorsloadedparalleltotheconcreteedgefor2xand3xnominalthicknesswoodmembers,respectively

    Concrete side breakout occurs, but usually at relatively large loads and displacements whencomparedtocalculateddesigncapacities

    Initial nut tightness has an effect on connection performance as significant friction developsbetweentheconcreteandthewoodduringlateraltranslationwithaboltedconnection

    Earlystagesofconcretesidebreakoutarenotvisuallydetectableduringthetest

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    9/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page8

    Fromthepreliminaryexperiments,frictionbetweenthewoodsillplateandconcretewasconsideredto

    be significant. The amount of shear resisted by friction was not known and the amount of friction

    present in the test may not be present in real applications. The membrane tests (e.g. nf in Table1)

    were therefore recommended to simulate pure shear through the minimization of the effect of

    friction on connection behavior, and conservatively force the majority of lateral load into the anchor

    bolt.

    Peakloadsfrommonotonictestswereusedtoestablishthereferenceforceterm,Q0,whichestablishes

    abasevalueforthe loadsteps inthe pseudocyclictesting.Monotonictestswere runat asufficiently

    slowratesuchthatanyinternalflawsformingwithintheconcretecouldbedetectedusingimpactecho

    testing. The loading rate for the monotonic tests was deemed appropriate for establishing the

    reference force term (Q0) and to allow for careful monitoring of the test specimen and mechanism

    formation.

    The loading protocol adopted for the Stockton tests, identified as the SEAOC Modified Load Protocol

    (Table1),wasdevelopedbytheSEAOCSeismologyCommitteeandtheSEAOCLightFrameConstruction

    Subcommittee.The loadingprotocolwas initiallydesignedtobe forcecontrolled,however initial tests

    usingtheforcecontrolledprotocolcausedanendlessfeedback loop inthedigitalcontrolunit,causingthehydraulicequipmentto loadthespecimen inanuncontrolledfashion. Becausethe loadcouldnot

    be controlled, the testing lab (with the assistance and input of some of the authors) developed a

    substitute displacementcontrolled loading protocol that mimicked the forcecontrolled protocol in

    termsofappliedforcesand imposeddisplacements. Displacementsassociatedwithsmaller loadsteps

    (e.g.500lbf,1000lbf,1500lbf,2250lbf,3000lbfand5000lbf)wereusedtoestablishtheinitialcycles

    oftheSEAOCModifiedLoadProtocol(Table1).

    TheSEAOCModifiedLoadProtocolisbasedontheCUREEloadingprotocol(SeeReference2)withcycles

    addedatlowerforcelevels.AdditionalloadingprotocolsdescribedinFEMA461(SeeReference7)were

    also considered as part of the loading protocol development effort. Table 3 shows the CUREE cyclic

    protocol load steps (varying between 0.5Q0 and 1.0Q0). Image

    3 shows an example plot of the SEAOCModifiedLoadingProtocolasadisplacementbasedinputforthetestapparatus.

    The testingprogram designed4auxiliaryteststoprovideredundancy incase anyspecimens harbored

    abnormalities that create premature damage or cause errors in data acquisition. Three of the four

    auxiliary tests were run using Sequential Phase Displacement (SPD) load protocol (see Table 2). The

    fourth auxiliary test was run with the SEAOC Modified Load Protocol with a loose anchor nut and an

    oversizedholeinthewoodsillplate.Thedatafromthefourauxiliarytestshavenotbeenincorporated

    intheanalysisand/orfindingsexpressedinthisreport.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    10/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page9

    Table3 Inputsfordisplacementcontrolledcyclictests.See Image3belowforagraphicalexample

    plot.Monotonic

    Tests

    2x4f 2x4nf 3x4f 3x4nf 2x6f 3x6f Comment

    Monotonic1 1A1f( 28 9) 1C1f(291) 1B1f(2 98 ) 1D1f(3 00 ) 4A1f( 31 0) 4B1f(312)

    Monotonic2 1A2f( 29 0) 1C2f(292) 1B2f(2 99 ) 1D2f(3 01 ) 4A2f( 31 1) 4B2f(313)

    PseudoCyclic

    1 2

    A

    1f(293) 2

    C

    1

    f(2 95) 2

    B

    1

    f(3 04 ) 2

    D

    1

    f(3 06 ) 4

    C

    1

    f( 31 4) 4

    D

    1

    f(316)

    PseudoCyclic2 2A2f(294) 2C2f(29 6) 2B2f(3 05 ) 2D2f(3 07 ) 4C2f(3 15 ) 4D2f(317)

    Qo= 14000# 8000# 14000# 10000# 14000# 16000# Qodeterminedfrom2monotonictests.

    #ofcycles 2x4f 2x4nf 3x4f 3x4nf 2x6f 3x6f Comment

    at+/ ( In ch es) ( In ch es ) (Inches) (Inches) (Inches) (Inches)

    3 0.001 0.045 0.001 0.028 0.044 0.001 Average at500#from2monotonictests

    3 0.034 0.068 0.001 0.055 0.069 0.002 Average at1000#from2monotonictests

    3 0.057 0.078 0.014 0.078 0.086 0.036 Average at1500#from2monotonictests

    3 0.065 0.093 0.080 0.096 0.107 0.053 Average at2250#from2monotonictests

    3 0.076 0.108 0.104 0.117 0.131 0.065 Average at3000#from2monotonictests

    3 0.231 0.110 Extracycles.

    Average at5000#from2monotonictests

    5 0.206 0.139 0.311 0.219 0.367 0.326 0.5Qo5 0.442 0.231 0.793 0.551 0.662 0.806 0.7Qo

    1 0.614 0.319 1.016 0.941 0.815 0.913 0.8Qo

    2 0.294 0.174 0.518 0.322 0.485 0.571 0.6Qo

    1 0.834 0.456 1.139 1.732 0.991 1.184 0.9Qo

    2 0.395 0.212 0.724 0.301 0.626 0.756 0.675Qo

    1 1.500 0.704 1.368 2.053 1.204 1.437 1Qo

    2 0.532 0.251 0.886 0.761 0.739 0.913 0.75Qo

    Tests289292runasforcecontrol(250#/s).

    Allothermonotonicsrunasdisplacementcontrol

    Test293

    run

    as

    force

    control

    (50#/s).

    Thesecyclictestsrunasdisplacementcontrol

    Image3Graphicalexampleplotofinputsfordisplacementcontrolledcyclictests

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    11/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page10

    ExperimentalPerformanceofTestSpecimens:

    The primary test results are plotted on Charts 16. Each chart contains four plots; two identical

    monotonic tests and two identical cyclic tests. The load and displacement axis values are maintained

    constant between each chart, resulting in minor data clipping in some charts. In addition to the data

    plottedinCharts16,AppendixTableAcontainsdetailedobservationsofeachtestconducted.

    Chart1depictsCyclicTests(293,294)vs.MonotonicTests(289,290). Thesetestspecimenswere2x4

    sillplateswith13/4specifiededgedistance,loadedparalleltotheconcreteedge.Frictionwasallowed

    todevelopbelowthesillplate.

    Chart2depictsCyclicTests(295,296)vs.MonotonicTests(291,292).Thesetestspecimenswere2x4sill

    plateswith13/4specifiededgedistance,loadedparalleltotheconcreteedge.Anisolationmembrane

    wasusedbetweenthewoodsillplateandconcretetominimizefriction.

    Chart3depictsCyclicTests(304,305)vs.MonotonicTests(298,299).Thesetestspecimenswere3x4sill

    plateswith13/4specifiededgedistance,loadedparalleltotheconcreteedge.Frictionwasallowedto

    developbelowthesillplate.

    Chart4depictsCyclicTests(306,307)vs.MonotonicTests(300,301).Thesetestspecimenswere3x4sill

    plateswith13/4specifiededgedistance,loadedparalleltotheconcreteedge.Anisolationmembrane

    wasusedbetweenthewoodsillplateandconcretetominimizefriction.

    Chart5depictsCyclicTests(314,315)vs.MonotonicTests(310,311).Thesetestspecimenswere2x6sill

    plateswith23/4specifiededgedistance,loadedparalleltotheconcreteedge.Frictionwasallowedto

    developbelowthesillplate.

    Chart6depictsCyclicTests(316,317)vs.MonotonicTests(312,313).Thesetestspecimenswere3x6sill

    plateswith23/4specifiededgedistance,loadedparalleltotheconcreteedge.Frictionwasallowedtodevelopbelowthesillplate.

    Image4andImage5showexamplesofpretestandposttestdocumentation.

    Plotsforthefourauxiliarytestsarenotincludedintheanalysisorconclusionsofthereport,norarethey

    included inthefollowingcharts. Chart8 isasingularexceptionprovidedtoprovidetheresultsoftwo

    testswithdifferentpseudocyclictestloadingprotocolsforcomparison.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    12/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page11

    Chart1CyclicTests(293,294)vsMonotonicTests(289,290)

    Chart2 CyclicTests(295,296)vsMonotonicTests(291,292)

    NonSEAOCNonSEAOC

    NonSEAOC

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    13/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page12

    Chart3 CyclicTests(304,305)vsMonotonicTests(298,299)

    Chart4 CyclicTests(306,307)vsMonotonicTests(300,301)

    NonSEAOC

    NonSEAOC

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    14/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page13

    Chart5 CyclicTests(314,315)vsMonotonicTests(310,311)

    Chart6 CyclicTests(316,317)vsMonotonicTests(312,313)

    NonSEAOC

    NonSEAOC

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    15/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page14

    Image4Pretestdocumentation(typical).

    Image5Posttestdocumentation(typical).Impactechotestingshowninlowerrightofimage.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    16/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page15

    ExperimentalPerformanceofTestSpecimens:(continued)

    Thefollowingplotsandimageshighlightspecificobservationsregardingtheeffectofthemembraneon

    monotonic test results and typical concrete failure for the test case with 13/4 edge distance. See

    AppendixTableAforadditionaldetailedobservationsofeachtestconducted.

    Effectoffriction Chart7Thischartprovidescomparativeresultsofmonotonictestsconductedwith

    and without the membrane. The membrane was provided to create a significantly smooth interface

    between the wood sill plate and the surface of the concrete (friction is significantly reduced from the

    typical constructed condition). As shown in Chart 7, the friction effect is negligible at small

    displacementsandsmallforces(intherangeofallowabledesigncapacities). However,thepresenceof

    the membrane has an obvious effect at relatively large loads and displacements. The effect of the

    membrane on response in cyclic tests appears to be significantly less than the effect observed in

    monotonictests.

    Preliminary

    2monotonictests:

    Membranepresent to

    preventfriction.

    2monotonictests:

    Nomembranepresent

    toallowfriction.

    RangeofASD

    designcapacities.

    Chart7Comparativeplotofmonotonictestswith(291,292)&without(289,290)membrane.

    2monotonictests:Nomembrane

    2monotonictests:

    Membranepresentto

    minimizefriction.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    17/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page16

    Concrete side breakout (if it occurred) was detected during the tests using impactecho non

    destructive test methods (see Reference 8). The approximate load and displacement associated with

    concretestrengthdegradation(as detected for each specimen) is tabulated in the Appendix,TableA.

    Concrete delamination was not detected at force levels below 6000 pounds. The first stage of

    delamination is typified by a series of cracks that form within the concrete propagating from the

    centerlineoftheanchorbolt,anglingtowardstheouter/freefaceoftheconcrete(Images6).Thecracks

    ultimatelyreachtheouterface,creatingashallowspall.Earlystagesofconcretedelaminationarenot

    always visually apparent. Strong correlation between the peak envelope values with the onset of

    concrete side breakout was observed. In all tests, bolts yielded and started to deform the concrete,

    whilethetipoftheanchorremainedfirmlyencasedinconcrete.

    SCL_80XX_060408_WAF_119 SCL_80XX_111208_TAV_069

    SCL_80XX_111208_TAV_027 SCL_80XX_111208_AAG _050 (c rop ped ) Image6Examplesimagesdepictingdevelopmentofconcretesidebreakout.Note:imagesshownarenotfrom

    thesametest.

    Cyclic test 296 was stopped at approximately 0.60 displacement; the sill plate was unbolted and

    documented. The specimen conditions documented after the completion of test 296 are shown in

    Image 7. The concrete remained undamaged (confirmed visually and via impactecho nondestructive

    testing).Thesameanchorwasthenretested(Test302).Anewpieceofsillplatewasbolteddownand

    subjected to the SPD pseudocyclic loading protocol. The resulting loaddisplacement plots for both

    Tests296and302areshown(Chart8).

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    18/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page17

    Image7Compositeimageryofstoppedtest(Test296).Seetextfordescription.

    Chart8CompositeplotofTests296and302.

    NonSEAOC

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    19/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page18

    AnalyticalStudies:

    DefinitionofPeakandUltimateValues

    Allcyclictest datawasanalyzed inaccordancewithASTME 212608StandardTestMethodsforCyclic(Reversed)LoadTestforShearResistanceofWallsforBuildings(Reference6). Thepositiveandnegativeenvelop curves for each specimen were combined to produce an average envelope curve used to

    establish peak load, displacement at peak load, ultimate load, and displacement at ultimate load as

    summarized in Table 4. Graphs of data are provided in Appendix B. Example load displacement

    hysteresiscurvesareshown inCharts1through6.Anexampleaverageenvelopecurve isprovidedas

    Figure2.

    Figure2 Averageenvelopecurvefromcyclictests(Specimen294shown).

    ThesawtoothpatterndepictedinFigure2wasobservedfortestsusingtheSEAOCModifiedTesting

    Protocol. For purposes of this study, Peak load was assigned to the highest load reached prior to a

    drop in load level of at least5%,which isadeparturefromASTM E2126 wherepeak is definedasthe

    maximum load. The revised definition of Peak used in this report intends to address first signs of

    noticeablestrengthlosscorrespondingtotheonsetofconcretesidebreakout. Ultimateload,asused

    inthisstudy,isthelastdatapointwithavaluegreaterthan0.8*Peak.TheUltimateload,aspresented

    inthisreport, isthe loadatmaximumdisplacementpriortostoppingthetest.However, ifthe loadat

    maximum displacement is smaller than 0.8*Peak load then 0.8*Peak load, and the corresponding

    displacement,isreportedasUltimate.

    Averageenvelopecurvesfor13/4edgedistancetestsaredepictedinChart9.

    Averageenvelopecurvesfor23/4edgedistancetestsaredepictedinChart10.

    Failure

    Peak

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load(

    lbs.)

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    20/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page19

    Table4TestValues

    ca1 Peak Ultimate

    TestID Sillplate,Load In.

    Load,

    lbf

    Displacement,

    in.

    Load,

    lbf

    Displacement,

    in.

    1A1f289 2x4,Mono. 1.9 12755 0.84 13519 1.62

    1A2f290 2x4,Mono. 1.8 14367 1.24 14373 2.692A1f293 2x4,Cyclic 1.9

    2A2f294 2x4,Cyclic 1.7 7331 0.36 9751 1.39

    1C1nf291 2x4,Mono. 1.9 8328 0.96 8465 1.59

    1C2nf292 2x4,Mono. 1.9 7841 0.69 7909 1.30

    2C1nf295 2x4,Cyclic 1.8 6126 0.34 6022 0.58

    2C2nf296 2x4,Cyclic 1.9 6672 0.61 6672 0.61

    1B1f298 3x4,Mono. 1.9 15278 1.59 15380 1.92

    1B2f299 3x4,Mono. 1.8 12950 1.14 11751 1.28

    2B1f304 3x4,Cyclic 2.0 8083 0.71 9064 1.26

    2B2f305 3x4,Cyclic 1.7 7556 0.71 7418 1.28

    1D1nf300 3x4,Mono. 1.9 8416 1.20 9666 2.951D2nf301 3x4,Mono. 1.8 8008 0.94 12468 2.88

    2D1nf306 3x4,Cyclic 1.8 7518 0.65 6729 1.25

    2D2nf307 3x4,Cyclic 1.9 7128 0.45 7693 2.00

    4A1f310 2x6,Mono. 2.6 16342 1.55 13073 2.53

    4A2f311 2x6,Mono. 2.7 13967 1.34 11173 2.23

    4C1f314 2x6,Cyclic 2.6 7657 0.57 6126 0.68

    4C1f315 2x6,Cyclic 2.4 8696 0.56 6957 0.68

    4B1f312 3x6,Mono. 2.7 18791 2.36 18708 2.86

    4B2f313 3x6,Mono. 2.9 15746 1.53 15746 1.53

    4D1f316 3x6,Cyclic 2.6 8835 0.69 7764 1.07

    4D2f317 3x6,Cyclic 2.7 9926 0.69 8529 1.08

    Average2x4and3x4,Cyclic,n=7: 1.8 7202 0.5 7621 1.2

    Average2x6and3x6,Cyclic,n=4: 2.6 8779 0.6 7344 0.9

    Average2x4and3x4,Mono,n=8: 1.9 10993 1.1 11691 2.0

    Average2x6and3x6,Mono,n=4: 2.7 16211 1.7 14675 2.3

    In Figure2, the drop in strength and stiffness immediately following Peak load coincides with initial

    detectionofconcretedegradation. Thisdegradationisassumedtoreduceconcretebearingsupportfor

    the anchor bolt, leading to both increased anchor bending stresses and loss of stiffness within the

    assembly. Asdisplacementincreases,theanchortranslationresultsinatensionforce(whichoccursin

    addition to bending and shear applied directly to the bolt through the sill plate). Tension forces are

    resisted by the embedded portion of the anchor and wood bearing under the plate washer. This

    behavior results in the assembly producing a clamping force between the wood member and the

    concrete foundation. Increased load resistance, beyond that associated with Peak load, was

    commonlyobservedatincreasingdisplacementandcanbeattributedtothetensileresistanceprovided

    bytheanchor.TheseincreasedloadsanddeflectionsareassociatedwithUltimateloaddatainTable4

    (seeAppendixB).

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    21/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page20

    Thefollowingobservationsaretabulatedabove(Table4):

    Peakloadsanddisplacementsrecordedfrompseudocyclictestsweregenerallylower thanthoserecordedfrommonotonictests

    Peakloadsfrompseudocyclictestswerenotsubstantiallyaffectedbythepresenceofthemembrane(reductioninfrictionbetweenthesillplateandconcretefoundation)

    NDSallowabledesignvalue

    TheNDSallowabledesignvalue,Z,forthetestedconnectionsareprovidedinTable5. Thesecalculated

    valuesarebasedonthefollowingassumptionsappliedtotheNDSyieldlimitequations(alsoreferredto

    theastheEYMequations seeReferences4and5): D=0.559;Fyb=45000psi;Fes=5600psiforG=0.5

    Douglas Fir; and Fem= 7890 psi (taken as 3x average fc = 2630 psi). Yield Mode IIIs (see Image8) was

    found to be the controlling yield mode for 2x nominal wood sill plates and anchor embedment in

    concreteofatleast8diametersinaccordancewiththefollowing:

    d

    es

    em

    ems

    RF

    F

    FDk

    Z

    2

    3

    Eq.1

    YieldmodeIV(seeImage8)wasfoundtobethecontrollingyieldmodefor3xnominalwoodsillplates

    andanchorembedmentinconcreteofatleast8diametersinaccordancewiththefollowing:

    es

    em

    ybem

    d

    F

    F

    FF

    R

    DZ

    13

    22

    Eq.2

    where,

    2

    2

    3

    3

    2212

    1

    sem

    es

    emyb

    es

    em

    es

    em

    F

    DF

    FF

    F

    F

    F

    F

    k

    Eq.3

    Rd =3.2 (3.2isthereductiontermforYieldModeIIIsandIV)

    ls = 1.5 inch for 2x nominal and 2.5 inch for 3x nominal (side member dowel bearing length,

    inches)

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    22/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page21

    ModeI(woodbearingdeformationinsidemember)

    ModeIIIs(woodbearingdeformationinsidememberanddowel

    bendinginconcrete)

    ModeIV(woodbearingdeformationinsidememberanddowel

    bendinginwoodmemberandconcrete)

    Image8NDSYieldModesI,IIIs,andIVforananchorbolt.

    Woodtoconcreteanchorboltdesignvalues(Table5)havebeenadjustedforshorttermseismicloading

    by multiplying the design value by the 1.6 load duration factor. The ratio of average Peak cyclic

    strengthstoNDSallowabledesignvaluesrangesfrom4.6to5.9fortestswithdesignededgedistanceof

    13/4.

    TheNDSyieldvalue(5%offsetyield)forthetestedconnectionareprovidedinTable5.Thesevaluesare

    calculatedfromEq.1withRd=1.0andarecomparabletoanchorcapacitiesexpressedintabulatedtest

    results. TheratioofaveragePeakcyclicstrengths toNDSyieldvaluesrangesfrom2.3to2.9fortests

    with designed edge distance of 13/4. NDS yield limit equations do not describe ultimate connection

    failure. Rather, they estimate the load associated with the onset of inelastic connection behavior (i.e.

    "yieldpoint"associatedwithplastichingeformation inthefasteneranddeformationofwoodfibersinbearingagainstthefastener).

    Publishedconnectioncapacities(Z)aredeterminedthroughthecalculationofaconnectionyieldpoint,

    including the application of reduction factors. The theoretical yield point for the connection between

    thewoodsillandtheconcretefoundation,throughtheanchorbolt, isdeterminedbysetting Rd=1.0.

    Connections exhibiting fastener yielding modes (e.g. Mode IIIs and Mode IV) often exhibit greater

    ultimatestrengththanestimatedbytheyieldlimitequations.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    23/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page22

    Table5 Anchorboltconnectiondesignvalues,NDS

    ca1 NDS Peaka/ Peaka/ Maxb/

    TestID Sillpate,

    Load

    In. Allowable,

    lbf

    Yield,lbf NDSAllowable NDSYield NDSYield

    1A1f289 2x4,Mono. 1.9 1247 2493 10.8 5.4 5.4

    1A

    2

    f290

    2x4,

    Mono.

    1.8

    1247 2493 11.5 5.85.82A1f293 2x4,Cyclic 1.9 1247 2493

    2A2f294 2x4,Cyclic 1.7 1247 2493 5.9 2.9 3.9

    1C1nf291 2x4,Mono. 1.9 1247 2493 6.7 3.3 3.4

    1C2nf292 2x4,Mono. 1.9 1247 2493 6.3 3.1 3.2

    2C1nf295 2x4,Cyclic 1.8 1247 2493 4.9 2.5 2.5

    2C2nf296 2x4,Cyclic 1.9 1247 2493 5.4 2.7 2.7

    1B1f298 3x4,Mono. 1.9 1549 3097 9.9 4.9 5.0

    1B2f299 3x4,Mono. 1.8 1549 3097 8.4 4.2 4.2

    2B1f304 3x4,Cyclic 2.0 1549 3097 5.2 2.6 2.9

    2B2f305 3x4,Cyclic 1.7 1549 3097 4.9 2.4 2.4

    1D1nf300 3x4,Mono. 1.9 1549 3097 5.4 2.7 3.11D2nf301 3x4,Mono. 1.8 1549 3097 5.2 2.6 4.0

    2D1nf306 3x4,Cyclic 1.8 1549 3097 4.9 2.4 2.4

    2D2nf307 3x4,Cyclic 1.9 1549 3097 4.6 2.3 2.5

    4A1f310 2x6,Mono. 2.6 1247 2493 13.1 6.6 6.6

    4A2f311 2x6,Mono. 2.7 1247 2493 11.2 5.6 5.6

    4C1f314 2x6,Cyclic 2.6 1247 2493 6.1 3.1 3.1

    4C2f315 2x6,Cyclic 2.4 1247 2493 7.0 3.5 3.5

    4B1f312 3x6,Mono. 2.7 1549 3097 12.1 6.1 6.1

    4B2f313 3x6,Mono. 2.9 1549 3097 10.2 5.1 5.1

    4D1f316 3x6,Cyclic 2.6 1549 3097 5.7 2.9 2.9

    4D2f317 3x6,Cyclic 2.7 1549 3097 6.4 3.2 3.2

    Average2x4and3x4,Cyclic,n=7: 5.1 2.6 2.8

    Average2x6and3x6,Cyclic,n=4: 6.3 3.2 3.2aPeakisthePeakloadrecordedfromtests,SeeTable4.bMaxrepresentsthemaximumofthetestedPeakloadandtestedUltimateload.

    ACI31808nominalconcretebreakoutstrength,Vcb||

    The following equations are pertinent to the determination of nominal concrete breakout strength

    (attributabletoresistanceinpureshear)ofasingleanchorwiththeappliedshearforceactingparallelto

    theedge(Vcb||). Vcb||istakenastwicethatofVcbforshearforceactingperpendiculartotheedgewith

    ed,V=1.0. Equation4andEquation5areexcerptedfromACI31808,AppendixD:

    Vcb||=2(AVc/AVc0) ed,V c,V h,VVb Eq.4Vb=7(le/da)

    0.2(da)

    0.5(f'c)0.5(ca1)

    1.5 Eq.5

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    24/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page23

    Where,

    (AVc/AVc0)=1.0(projectedconcretefailureareanotinfluencedbyproximitytocorner,fastenerspacing,

    ormemberthickness)

    ed,V =1.0(valuesetequalto1.0perACI318AppendixDforshearparalleltoedge)

    c,V =1.4(uncrackedcondition)

    h,V =1.0(thicknessofmemberintestsgreaterthan1.5ca1)

    Vb =basicconcretebreakoutstrengthinshearofasingleanchorincrackedconcrete,lbf

    le =4.5in.(loadbearinglengthofanchorforshearnottoexceed8da,in.)

    da =0.559in.(outsidediameterofanchor,in.) =1.0(standardweightconcrete)

    f'c =2630psi(averagecompressivestrengthofconcrete,seepage3)

    ca1 =seeTable6foractualdistancefromthecenterofananchortotheedgeofconcrete,in.

    ValuesofVcb||fortestspecimensaresummarizedinTable6.Designstrengthsareprovidedforanchors

    consideredductileandforanchorsconsiderednonductileasfollows:

    Nonductile: 0.75()Vcb||x0.5x0.7 Eq.6

    Ductile:0.75()Vcb||x0.7 Eq.7

    Where,

    0.75 isaconstantusedtoaccountforseismicloadingeffectsonstrength

    =0.7(strengthreductionfactorforshearloadsgovernedbyconcretebreakout,conditionB)0.5isaconstantusedtoaccountfornonductilefailureperACI31808 (Note:thisconstantistakenas

    0.4inACI31805).

    0.7isaconstantusedtoadjustfromLRFD(strengthdesign)toASD(allowablestressdesign).

    Nominal breakout design strength Vcb||, determined in accordance with ACI 31808 Appendix D

    equations,approximatesthe5%fractile ofconcretebreakoutstrength. Tofacilitate comparisonwith

    meantestvaluesdevelopedinthisstudy,valuesofVcb||areadjusted(increased)to therepresentative

    meanusinganominaltomeanratioof0.75(seeReference9). Thismeanbreakoutdesignstrength,

    associated withVcb||, is denoted asVcb||Avg in Table6. The ratio of the peak cyclic strength toVcb||Avg

    ranges from 1.7 to 3.9 for the designed 13/4 edge distance indicating conservatism in the ACI 318

    breakoutdesignstrengthpredictions.

    ValuesofVcb//andVcb||Avgfor13/4edgedistancetestsareprovidedinTable6anddepictedinChart9.

    ValuesofVcb//andVcb||Avg for23/4edgedistancetestsareprovided inTable6anddepictednChart

    10. It should be noted that an assumed nominal to mean ratio equal to 0.75 is associated with a

    Coefficient of Variation (COV) equal to 0.15. Making an assumption that concrete breakout design

    strengthCOVdiffersfrom0.15,differentestimatesofthemeanbreakoutstrengthassociatedwithVcb||willbecalculated. Forexample,ifCOVisassumedas0.30,anominaltomeanratioof0.5isappliedwithall corresponding reductions in the level of conservatism for the ACI 318 breakout design strength

    predictionsrelativetotestedpeakstrengths.

    The term Max used in Table 6 represents the maximum ratio of the tested Peak load and tested

    Ultimateloadtoaccountforcaseswherethetestspecimenexhibitedandincreaseinstrengthbeyond

    initialonsetofconcretedamage.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    25/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page24

    Table6 Concretebreakoutvalues(ASD),ComparisonoftestresultswithACI31808calculatedvalues

    ca1 ACI318Allowable ACI318Breakoutc Peaka/ Peaka/ Maxb/

    TestID Sillpate,Load In. Nonductile Ductile Vcb// Vcb//Avg Vcb// Vcb//Avg Vcb//Avg

    1A1f289 2x4,Mono. 1.9 548 1096 2983 3978 4.5 3.4 3.41A2f290 2x4,Mono. 1.8 505 1011 2751 3668 5.2 3.9 3.9

    2A1f293 2x4,Cyclic 1.9 548 1096 2983 3978 2A2f294 2x4,Cyclic 1.7 464 928 2525 3367 2.9 2.2 2.9

    1C1nf291 2x4,Mono. 1.9 548 1096 2983 3978 2.8 2.1 2.1

    1C2nf292 2x4,Mono. 1.9 505 1011 2751 3668 2.9 2.1 2.2

    2C1nf295 2x4,Cyclic 1.8 505 1011 2751 3668 2.2 1.7 1.7

    2C2nf296 2x4,Cyclic 1.9 548 1096 2983 3978 2.2 1.7 1.7

    1B1f298 3x4,Mono. 1.9 548 1096 2983 3978 5.1 3.8 3.9

    1B2f299 3x4,Mono. 1.8 505 1011 2751 3668 4.7 3.5 3.5

    2B1f304 3x4,Cyclic 2.0 592 1184 3222 4296 2.5 1.9 2.1

    2B2f305 3x4,Cyclic 1.7 464 928 2525 3367 3.0 2.2 2.2

    1D1nf300 3x4,Mono. 1.9 548 1096 2983 3978 2.8 2.1 2.4

    1D2nf301 3x4,Mono. 1.8 464 928 2525 3367 3.2 2.4 3.72D1nf306 3x4,Cyclic 1.8 505 1011 2751 3668 2.7 2.0 2.0

    2D2nf307 3x4,Cyclic 1.9 548 1096 2983 3978 2.4 1.8 1.9

    4A1f310 2x6,Mono. 2.6 877 1755 4775 6368 3.4 2.6 2.6

    4A2f311 2x6,Mono. 2.7 929 1857 5054 6739 2.8 2.1 2.1

    4C1f314 2x6,Cyclic 2.6 877 1755 4775 6368 1.6 1.2 1.2

    4C2f315 2x6,Cyclic 2.4 778 1556 4235 5647 2.1 1.5 1.5

    4B1f312 3x6,Mono. 2.7 929 1857 5054 6739 3.7 2.8 2.8

    4B2f313 3x6,Mono. 2.9 1034 2067 5625 7501 2.8 2.1 2.1

    4D1f316 3x6,Cyclic 2.6 877 1755 4775 6368 1.9 1.4 1.4

    4D2f317 3x6,Cyclic 2.7 929 1857 5054 6739 2.0 1.5 1.5

    Average2x4and3x4,Cyclic,n=7: 2.6 1.9 2.1 Average2x6and3x6,Cyclic,n=4: 1.9 1.4 1.4

    aPeakisthepeakloadfromtests,SeeTable4.bMaxrepresentsthemaximumofthetestedPeakloadandtestedUltimateload.

    cVcb//andVcb||Avgaretheconcretebreakoutstrengthforshearparalleltotheedgecorrespondingtothe

    5%fractileestimateandmeanvalueestimate.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    26/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page25

    Average Envelope Curve from Cyclic Tests

    (2x4 and 3x4 sill plate, 1-3/4" edge distance)

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.0 0.5 1.0 1.5

    Deflection (in.)

    Load(

    lbf)

    294 (2x)

    295nf (2x)

    296nf (2x)

    304 (3x)

    305 (3x)

    306nf (3x)

    307nf (3x)

    ACI 318 Vcb|| (uncracked)

    Vcb||_Avg (uncracked)

    ACI 318, Vcb|| (uncracked)

    Mean concrete break-out strength, Vcb||_Avg (uncracked)

    Chart9Averageenvelopecurvesfor2x4&3x4cyclictests

    Average Envelope Curve from Cyclic Tests

    (2x6 and 3x6 sill plate, 2-3/4" edge distance)

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.0 0.5 1.0 1.5

    Deflection (in.)

    Load

    (lbf)

    314 (2x)

    315 (2x)

    316 (3x)

    317 (3x)

    ACI 318 Vcb || (uncracked)

    Vcb||_Avg (uncracked)

    ACI 318, Vcb|| (uncracked)

    Mean concrete break-out strength,

    Vcb||_Avg (uncracked)

    Chart10Averageenvelopecurvesfor2x6and3x6cyclictests.

    AllowableDesignCapacity Range

    AllowableDesignCapacity Range

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    27/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page26

    Comparisonofcalculatedboltcapacities:

    Design capacities calculated using methods promulgated by various versions of historic design codes

    (Table 7) are based on nominal dimensions and properties (e.g. D=0.625, fc=2500 psi, 13/4 edge

    distance,uncrackedconcrete).Theloaddurationfactor(CD)istheonlyadjustmentfactorincludedin

    thecalculatedvalues. DesigncapacitiescalculatedusingequationspromulgatedinACI31808,assumed

    as non ductile, are approximately 1/3 of most calculated allowable stress design values (per various

    historicdesigncodes)usedinthedesignofsillplatetofoundationconnections.

    Table7 Comparisonofallowabledesigncapacitiesbasedontypicalnominalinputstoaveragepeak

    valuesfromcyclictests.

    5/8dia.bolt

    Code(s)

    AASSDDDDeessiiggnnCCaappaacciittyy((##))

    22xx44DFL(seasoned)

    (includingCD)

    AASSDDDDeessiiggnnCCaappaacciittyy((##))

    33xx44DFL(seasoned)

    (includingCD)

    Comment

    1991UBC

    (NDS86)

    1306#

    CD=1.33

    1326#

    CD=1.33

    2510(b),T25F

    1994UBC

    (NDS91)

    1173#

    CD=1.33

    1,492#

    CD=1.33

    2336.2.3,T23IIIJ

    NDSallowsCD=1.6.

    1997UBC

    (NDS91)

    1408#

    CD=1.60

    1790#

    CD=1.60

    2316,T23IIIB1

    IBC2003

    (NDS01)

    1,424#

    CD=1.60

    1,824#

    CD=1.60

    NDS01Table11E

    IBC2006

    (NDS05)

    1,488#

    CD=1.60

    1,888#

    CD=1.60

    NDS05Table11E

    ACI31808App.D,

    fc=2500psi.

    Nonductile:500#

    Ductile:1000#

    Nonductile:500#

    Ductile:1000#

    0.5factorusedfor

    nonductilebehavior.

    Valuesassumeuncrackedconcrete.

    ACI31805App.D,

    fc=2500psi.

    Nonductile:400#

    Ductile:1000#

    Nonductile:400#

    Ductile:1000#

    0.4factorusedfor

    nonductilebehavior.

    Valuesassume

    uncrackedconcrete.

    Peakvaluesfrom

    averageofCyclictests

    AvgfromtestIDs:294,

    295NF,296NF:

    6710#@0.44

    AvgfromtestIDs;304,

    305,306NF&307NF:

    7572#@0.63

    Peakcyclictestvalues

    areatleast4times

    historicNDSwood

    designvalues.

    Thecyclictestsshowthatfor2x4and3x4plates,theaveragepeakloadsresistedbytheanchorboltareat least 4 times greater than historic allowable capacities (calculated with the inclusion of CD values

    appropriateforloaddurationof10minutesorless).

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    28/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page27

    Findings&Conclusions:

    Thistestprogramwasdesignedtoachievethefollowingprimarygoals:

    1. Determinewhetherthewoodcontrolstheconnectioncapacitywhenloadedparalleltotheedge.

    Itappearsthatwoodyieldrepresentsthefirstmateriallimitstate.ThePeakvaluesderivedfrom

    theaverage valuesextractedfromaveragecyclicenvelope curvescorrelatestronglywithconcrete

    degradation(whendetectedinthistestingprogram).

    Theconnectionassemblyappearedtoexhibitthefollowingbehaviorphasesdescribedqualitatively

    as:

    initialtakeupanddisplacement(connectionassemblygetsseated) elasticboltbendingcombinedwithwoodcrushing(dowelbearing) plastic bolt bending combined with wood crushing and some bolt elongation (as the bolt

    deflectsandgoesintotension;aclampingforcealsodevelops)

    plastic bolt bending combined with wood crushing and shallow concrete delamination(clamping forces continue to develop at as the bolt resists increasing tension forces). See

    Image6.

    plasticboltbendingcombinedwithwoodcrushingandshallowspallingofconcreteadjacenttoanchorbolt.Again,seeImage6.

    sill plate splitting (if developed during testing; occurs during the last 2 phases describedabove).

    2. Determinewhethertheconnectionexhibitsductilebehavior.

    Theconnectionbehaviorisclearlyductile(Chart9andChart10).Foradditionaldiscussion,referto

    theSEAOCSeismologyCommitteesBlueBookarticleonanchorboltandwoodsillplateconnections

    (http://www.SEAOC.org/bluebook).

    3. Proposedesigncapacitiesfortheconnectionbasedonthistesting.

    Thisprogramdevelopeddatathatsupportsthedevelopmentofdesigncapacitiesforshearparallel

    to free edge in pounds (ASD). These design capacities are recommended for use in the design of

    similarconnectionsintendedtoresistseismicloadinginSeismicDesignCategoriesCthroughF,(SDC

    CF).

    Thetestdatafor2x4and3x4platesindicatethattheaveragepeakstrengthswere:

    morethan6timeshigherthanductiledesignstrengthsobtainedfromACI31805(and 08)AppendixD,and

    morethan4timeshigherthantheallowablecapacityobtainedfromIBC2006(NDS05)

    The actual development of design capacities is deferred to the full SEAOC Seismology Committee.

    Their development and recommendation of appropriate design capacity for these connections is

    presentedinaBlueBookarticleonthissubject(availablefromhttp://www.SEAOC.org/bluebook).It

    should be noted that load values from these tests should be considered to be 10minute values

    (includingCD=1.6).

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    29/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page28

    Inadditiontoprimarygoals,thetestresultsindicatesupportofthefollowingfindings:

    Frictiondevelopedbetweenthe bottomofthe woodsillplate in resistance toshear loading isrealandsubstantial(Chart7).Thisreportdoesnotattempttoquantifythiseffect.Futuretesting

    shouldconsiderincorporatingafrictionreducingmembraneintotestingprotocolstomaintaina

    certainlevelofconservatismrelatedtothecapacityofsuchanassemblywithareducedlevelof

    friction. It is possible that the friction reducing membrane may replicate actual asbuilt

    assembliessuchasasillplateinstalledinconjunctionwithasheetmetaltermiteshield.

    Concretedegradation(i.e.delaminationsand/ortheformationsofflawswithintheconcrete)isoften detectable during testing if the impactecho nondestructive testing method is correctly

    applied. Since visuallyapparent spalls often formed some time after initial flaw detection;

    impactechonondestructivetestingisrecommendedforfuturetestingprograms.

    Damagefollowingcyclic loadingwasnotreadilyapparentwhenviewedfromabove,evenwiththe nut and plate washer removed. The tested specimens exhibited limited plate splitting and

    bolt hole elongation at the upper surface of the sill plate. Wood crushing and subsequent

    concrete degradation are only visible when a section of sill plate is removed or when theaffectedfaceofconcreteisexposed/testable.

    In conclusion, the tests indicate that 5/8 inch diameter L anchor bolts in 2x4 and 3x4 wood sill plates

    attached at the edge of a concrete foundation exhibit ductile behavior and attain peak loads much

    higherthandesignstrengthsobtainedusingACI31808(andACI31805),AppendixDandIBC2006.The

    testdatasupportsthedesignofthisconnectionusingNDSboltshearcapacityvalues.

    Acknowledgements:

    TheSimpsonStrongTieCompany(SSTC)generouslydonatedthetestingservicestoloadandinstrument

    thesamples.SSTCalsodonatedtheprocurementandconstructionofthespecimenstested. SpecialthankstothefollowingSSTCengineers:StevePryor,RicardoAreveloandTimMurphy

    TheAmericanForestandPaperAssociation(AF&PA)providedanalyticalsupportthroughout.

    Specialthankstothefollowing:ShaneCochran,BradDouglasandPhilLine

    TheStructuralEngineersAssociationofNorthernCalifornia(SEAONC)provideda$10,000grantthrough

    their2008SpecialProjectsInitiative.

    Special thanks to the 2008 SEAONC Board of Directors: Reinhard Ludke (President), Rafael Sabelli(VicePresident), Kate Stillwell (Treasurer), Bret Lizundia (PastPresident), Greg Deierlein, Mark

    Ketchum,KarinKuffel,andJohnOsteraas

    TheStructuralEngineersAssociationofCalifornia(SEAOC)providedtechnicaloversightthroughvarious

    technicalcommittees,specificallytowardthedevelopmentofthetestingprogramandthedevelopment

    ofthetestingprotocolandreportpreparation.

    Thanks to the 20082009 Seismology and Structural Standards Committee: Kevin Moore (Chair),MehranPourzanjani(ViceChair),JohnDiebold(pastChair),GeoffBomba,AndyFennell,TomHale,

    ChrisKamp,RyanKersting,JamesLai,DougMagee,NicRodrigues,andTomVanDorpe

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    30/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page29

    Thanks to the 20082009 LightFrame Construction Subcommittee; Gary Mochizuki (Chair), AndyFennell,ChrisKamp,NormScheelandTomVanDorpe

    The following individuals also provided valuable technical support: Mark Moore, Robert Kent, Achim

    Groess,KellyCobeen,PhilSoma,MaxFennell&NedFennell.

    SelectedReferences:

    1. CanadianJournalofCivilEngineering,2003 Lateralresistanceofboltedwoodtoconcreteconnectionsloadedparallelorperpendiculartograin.Mohammad,M.;Karacabeyli,E.;and

    Quenneville,J.H.P.

    2. CUREEPublicationW02Developmentofatestingprotocolforwoodframestructures.https://secure.curee.org/catalog/index.php?main_page=product_info&products_id=4

    3. VPIResearchReportNo.TE1994003 Determinationofshorttermdurationofloadperformanceofnailedandboltedconnectionsusingsequentialphaseddisplacementtests.

    VirginiaPolytechnicInstituteandStateUniversity,Blacksburg,VA.Dolan,J.D.;GutshallS.T.;andMcLainT.E.1996b.http://swst.metapress.com/content/xl785t72261h52jr/

    4. 1991InternationalTimberEngineeringConference,London UnitedStatesadaptationofEuropeanYieldModeltolargediameterdowelfastenersspecifications.Soltis,L.A.;Wilkinson,

    T.L.http://www.fpl.fs.fed.us/documnts/pdf1991/solti91a.pdf

    5. ASTMStandardD5764 97a,2007 StandardTestMethodforevaluatingdowelbearingstrengthofwoodandwoodbasedproducts.ASTMInternational,WestConshohocken,PA.

    http://www.astm.org/Standards/D5764.htm

    6. ASTMStandardE2126,2008 StandardTestMethodsforcyclic(reversed)loadtestforshearresistanceofverticalelementsofthelateralforceresistingsystemsforbuildings.ASTMInternational,WestConshohocken,PA.http://www.astm.org/Standards/E2126.htm

    7. FEMA461 IntProtocolsfordeterminingseismicperformancecharacteristicsofstructuralandnonstructuralcomponentsthroughlaboratorytesting.May2007.

    http://www.atcouncil.org/pdfs/FEMA461.pdf

    8. ASTMStandardC1383,2004 StandardTestMethodsformeasuringthePWavespeedandthethicknessofconcreteplatesusingtheimpactechomethod.ASTMInternational,West

    Conshohocken,PA.http://www.astm.org/Standards/C1383.htm

    9. Fuchs,W.,Eligehausen,R.,andBreen,J.E.,ConcreteCapacityDesign(CCD)ApproachforFasteningtoConcrete,ACIStructuralJournal,V.92,No.1,JanuaryFebruary1995,pp.7394.

    10.AmericanForest&PaperAssociation(AF&PA).2005NationalDesignSpecification(NDS)forWoodConstruction.Washington,DC20036.

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    31/50

    Reportonlaboratorytestingofanchorboltsconnectingwoodsillplatestoconcretewithminimumedgedistances

    March29,2009

    Page30

    11.AmericanConcreteInstitute(ACI),BuildingCodeRequirementsforStructuralConcrete(ACI31805)andCommentary,FarmingtonHills,MI48333.

    12.AmericanConcreteInstitute(ACI),BuildingCodeRequirementsforStructuralConcrete(ACI31808)andCommentary,FarmingtonHills,MI48333.

    13.InternationalCodeCouncil(ICC),2006.InternationalBuildingCode(IBC),FallsChurch,VA22041.14.CaliforniaBuildingCode(CBC),2007.15.SummaryPresentationofSCLexperimentsaspresentedtotheSEAOCSeismology&Structural

    StandsCommittee.September23,2008.SEAOCConvention,Hawaii.

    16.TestingSpecificationsandLoadingProtocolsforthePreliminaryPhaseofAnchorBoltTesting.ApprovedbySEAOCSeismology&StructuralStandsCommittee.October15,2008.

    Attachments:

    AppendixTableASummaryoftestdataandobservations,(2pages).

    AppendixBGraphsofpeakandultimatedataastabulatedinreport(Table4),(17pages)

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    32/50

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    33/50

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    34/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page1of17withminimumedgedistances

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Deflection (in.)

    Load (lbs.)

    TestID:1A1f289,2x4Monotonic

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Deflection (in.)

    Load (lbs.)

    TestID:1A2f290,2x4Monotonic

    PeakUltimate

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    35/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page2of17withminimumedgedistances

    Average Envelope

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2A2f294,2x4Cyclic

    Hysteresis and Envelope

    -10000

    -5000

    0

    5000

    10000

    15000

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2A2f294,2x4Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    36/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page3of17withminimumedgedistances

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:1C1nf291,2x4Monotonic

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:1C2nf292,2x4Monotonic

    Peak

    Ultimate

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    37/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page4of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2C1nf295,2x4Cyclic

    Hysteresis and Envelope

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:2C1nf295,2x4Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    38/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page5of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2C2nf296,2x4Cyclic

    Hysteresis and Envelope

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:2C2nf296,2x4Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    39/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page6of17withminimumedgedistances

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0Deflection (in.)

    Load (lbs.)

    TestID:1B1f298,3x4Monotonic

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:1B2f299,3x4Monotonic

    Peak

    Ultimate

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    40/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page7of17withminimumedgedistances

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Deflection (in.)

    Load (lbs.)

    TestID:1D1nf300,3x4Monotonic

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Deflection (in.)

    Load (lbs.)

    TestID:1D2nf301,3x4Monotonic

    Peak

    Ultimate

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    41/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page8of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2B1f304,3x4Cyclic

    Hysteresis and Envelope

    -10000

    -5000

    0

    5000

    10000

    15000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:2B1f304,3x4Cyclic

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    42/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page9of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2B2f305,3x4Cyclic

    Hysteresis and Envelope

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:2B2f305,3x4Cyclic

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    43/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page10of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:2D1nf306,3x4Cyclic

    Hysteresis and Envelope

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:2D1nf306,3x4Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    44/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page11of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Deflection (in.)

    Load (lbs.)

    TestID:2D2nf307,3x4Cyclic

    Hysteresis and Envelope

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -2.5

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    Deflection (in.)

    Load (lbs.)

    TestID:2D2nf307,3x4Cyclic

    Peak Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    45/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page12of17withminimumedgedistances

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Deflection (in.)

    Load (lbs.)

    TestID:4A1f310,2x6Monotonic

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Deflection (in.)

    Load (lbs.)

    TestID:4A2f311,2x6Monotonic

    Peak

    Ultimate

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    46/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page13of17withminimumedgedistances

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    20000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

    Deflection (in.)

    Load (lbs.)

    TestID:4B1f312,3x6Monotonic

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    18000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Deflection (in.)

    Load (lbs.)

    TestID:4B2f313,3x6Monotonic

    Peak

    Ultimate

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    47/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page14of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0.0 0.5 1.0

    Deflection (in.)

    Load (lbs.)

    TestID:4C1f314,2x6Cyclic

    Hysteresis and Envelope

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:4C1f314,2x6Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    48/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page15of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    10000

    0.0 0.5 1.0

    Deflection (in.)

    Load (lbs.)

    TestID:4C2f315,2x6Cyclic

    Hysteresis and Envelope

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:4C2f315,2x6Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    49/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page16of17withminimumedgedistances

    Average Envelope

    0

    1000

    2000

    3000

    4000

    5000

    6000

    70008000

    9000

    10000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:4D1f316,3x6Cyclic

    Hysteresis and Envelope

    -12000

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:4D1f316,3x6Cyclic

    Peak

    Ultimate

  • 8/2/2019 Sill Plate Anchor Bolt Testing 2009

    50/50

    Reportonlaboratorytestingofanchorbolts AppendixB

    connectingwoodsillplatestoconcrete Page17of17withminimumedgedistances

    Average Envelope

    0

    2000

    4000

    6000

    8000

    10000

    12000

    0.0 0.5 1.0 1.5 2.0

    Deflection (in.)

    Load (lbs.)

    TestID:4D2f317,3x6Cyclic

    Hysteresis and Envelope

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    1.5

    Deflection (in.)

    Load (lbs.)

    TestID:4D2f317,3x6Cyclic

    Peak

    Ultimate