Simple Momentum Theory

Embed Size (px)

Citation preview

  • 8/12/2019 Simple Momentum Theory

    1/122

    University of Massachuses - Amherst

    ScholarWorks@UMass Amherst

    Wind Energy Center Reports UMass Wind Energy Center

    1976

    Discussion Of Momentum Teory For WindmillsForrest S. Stoddard

    Follow this and additional works at: hp://scholarworks.umass.edu/windenergy_report

    Tis Article is brought to you for free and open access by the UMass Wind Energy Center at ScholarWorks@UMass Amherst. It has been accepted for

    inclusion in Wind Energy Center Reports by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact

    [email protected].

    Stoddard, Forrest S., "Discussion Of Momentum Teory For Windmills" (1976). Wind Energy Center Reports. Paper 20.hp://scholarworks.umass.edu/windenergy_report/20

    http://scholarworks.umass.edu/?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]://scholarworks.umass.edu/windenergy_report/20?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPagesmailto:[email protected]://scholarworks.umass.edu/windenergy_report/20?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/windenergy_report?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPageshttp://scholarworks.umass.edu/?utm_source=scholarworks.umass.edu%2Fwindenergy_report%2F20&utm_medium=PDF&utm_campaign=PDFCoverPages
  • 8/12/2019 Simple Momentum Theory

    2/122

    U UZSrrV OF MASSACHUSETE/AMHUZSTENERGY ALTERNATIVES PROGRAM

    UNIVERSITY OF MASSACHUSETTSIAMHERSTENERGY ALTERNATIVES PROGRAM

    DISCUSSION OF MOMENTUM THEORY FOR WINDMILLS

    byFo rr es t S . S toddard

    U.Mass. Wind FurnaceEnergy A1 t e r n a t i ves ProgramU n i v e r s i t y o f M a s s a c h u s e t t sAmherst Massachusetts 01002

    TR/76/Appendix V

  • 8/12/2019 Simple Momentum Theory

    3/122

    DISCUSSION OF MOMEr4TUM THEORY FOR WINDM ILLS

    Molllenturn th e o r y h a s b ee n e x t e n s i v e l y u se d t o p r e d i c t t h e r e l a t i v e p e r -f or ma n ce o f 1i t i n g p r o p e l l e r s a n d . o t o rs . ' 2 y 3 y 4 ) The p e r fo r m a n c e e q u a t i o n sa r e a n a l y t i c a l l y a nd c o n c e p t u a l l y s im p le ; t h i s l e ad s t o q u i c k i d e a l p r e d i c t i o n sa nd c om p ar is on s. O f t e n a p h y s i c a l f e e l i n g o r u n d e r s t a n d in g o f t h e sy st em c anbe g a in e d by e x e r c i s i n g t h i s s i n i p le a p p ro a ch f i r s t , b e f o r e m o re c om ple x b l a d ee le m en t an d s t r i p t h e o r i e s a r e u se d.

    T h i s d i s c u s s io n co nc er ns t h e r a m i f i c a t i o n s and i n t e r p r e t a t i o n o f t h emomentum t h e o r y e x p r es s io n s f o r a t h r u s t i n g w i n d m i l l i n th e l i g h t o f o b se rv edw i n d m i l l b e h a v i o r . It s h ou ld be k e p t i n m in d t h a t t h e ( i d e a l i z e d ) a n a l y t i c a lf o r m u l a t i o n d ep en ds o n t h e f o l l o w i n g s t r i c t a ss um p ti on s :

    a ) d e f i n i t e s t r e a m l i n e s e x i s t i n t h e f l o w f i e l d ;b ) n o f r i c t i o n a l l os s e s a r e p r e se n t ;c ) t h e i n du ce d v e l o c i t y i m pa r te d t o t h e f r e e s tr ea m i s c o n s ta n t o v e r t h e

    a re a o f t h e i d e a l i z e d r o t o r , o r a c tu a t o r .The f o l l o w i n g w e l l- k n o w n e x p r e s s i o n s a r e t h u s d e v e lo p e d f o r t h e a c t u a t o r shown:

    T = t h r u s t = 2p A [Vo-v ]v ( 1P pow er = T ( V o - V ) = 211 A [ v 0 - v l v

    I n n on - d im e n s io n a l f o rm :t h r u s t Tc o e f f i c i e n t =T 1 2pAV0 2power

    p c o e f f i c i e n t = P 31 2 d V 0and a x i a la = i n t e r f e r e n c e =f a c t o r v o

    The f l o w f i e l d fo r t h e n orm al w i n d m i l l s t a t e i s :

    v p o s i t i v e i nt h e d i r e c t i o nshown

  • 8/12/2019 Simple Momentum Theory

    4/122

    where :A c t u a t o r _ V o = f r e e s t r e a m v e l o c i t y

    D i s c V = f a r wake v e l o c i t yuv = i n d u c e d v e l o c i t yT = t h r u s t dow n w i n d )P = power ou t o f sys tem)

    FIGURE 1T h i s i s a l s o c a l l e d th e w i nd m i l l b ra k e s t a t e f o r r o t o r s s in c e th e t h r u s t i s i nt h e same d i r e c t i o n as t h e f r e e stre am ; t hu s, t h i s s t a t e r e p re s e n ts a r o t o r i na u t o r o t a t i o n o r v e r t i c a l d es ce nt . I n w i n d m i l l t e r m i n o l o g y, as shown a bove ,t h r u s t c o e f f i c i e n t , CT, a n d p o w e r c o e f f i c i e n t , Cp, a r e p o s i t i v e , i n d i c a t i n gt h r u s t o r d r a g ) i n t h e d ownwind d i r e c t i o n an d power o u t o f t h e s ys te m.

    As shown b y W i l s o n L is sa man , R e fe re n c e 1 , t h e r e a re two o t h e r imp o r t a n tf l o w s t a t e s d e t er m in e d by t h e v a l u e o f i nd u ce d v e l o c i t y , v, w r i t t e n n on -d i n le n s io n a ll y a s a x i a l i n t e r f e r e n c e f a c t o r , a = v/Vo:

    v = O

    Norma l Work ing S ta teWindmi 11 Brake S ta te )- .:

  • 8/12/2019 Simple Momentum Theory

    5/122

    F o r a = 1 / 2, t h e de v el o pe d wake v e l o c i t y i s :f a r

    V = wake = V o l 2 a ) = 0v e l o c i t yT h i s c o n d i t i o n r e p r e se n t s a p o i n t a t w hi ch s t re a m l in e s no l o n g e r e x i s t .

    H ence, t h e momentum t h e o r y a s s u m p t i o n ha s be en v i o l a t e d , a nd t h i s s t a t e c a n n o te x i s t a s a momentum t h e o r y s o l u t i o n .

    W r i t i n g CT and Cp i n t erm s o f a:

    W i l so n L i ss a m an g et t h e f o l l o w i n g p l o t R e fe r en c e 1 ) :

    C~

    I

    1 .5a = v/V

    Momentum theoryd oe s n o t w or k

    I

    FIGURE 3

  • 8/12/2019 Simple Momentum Theory

    6/122

    F o r a -1 .0 , t h e f a r wake v e l o c i t y , . i s s t i l l n o t d e f i n ed by 11ionientu111h e o r y ;b u t t h i s s t a t e can a l s o be seen to be t he p r o p e l l e r a c t i n g a s a b ra k e . T h a t i spower i s b e i n g added t o t h e f l o w t o c r e a t e h i g h CT o r h i g h t h r u s t downw ind.Th i s wou ld be t h e ca se o f r e v e r s i n g p r o p e l l e r t h r u s t o n l a n d i n g .

    T he se f l o w s t a t e s r e p r e s e n t a s e r i e s o f g r a du a l c ha ng es w h ic h o cc u r ont h e r o t o r as i n du c ed v e l o c i t y i s c hanged u n i f o r m l y . U n f o r t u n a t e l y , b ec au se a

    >d e f i n i t e s l i p s t r e a m do es n o t e x i s t f o r a -1 12 , momentum t h e o r y c a n n o t be u se d t op r e d i c t t h e r o t o r p er fo rm a nc e i n t h i s r e g i o n . However, f r o m h e l i c o p t e r a u to -r o t a t i v e d a ta , e m p i r i c a l c u r v e s h av e b ee n dra wn, a nd t h e f l o w s t a t e s h av e b ee nd o c u me n te d . 2 9 6 9 7 ) E x pa n di ng t h e c u r v e f r o m t h e p r e c e d i n g p age, t h e r o t o rb e h a v i o r c an be d e s c r ib e d i n m ore d e t a i 1 :

    Windmil 1 B rake S t a t e

    Z e r o S l i p

    P ro pe l l e r S t a t e Turbu len t Wake S ta te

    FIGUR 4

  • 8/12/2019 Simple Momentum Theory

    7/122

    T h e e l l ~ p i r i c a ls t a t e b ou n da r i es a r e fo un d f r o m t y p i c a l h e l i c o p t e r d e sc e nta u t o r o t a t i v e ) p e r f o r l l l a n c e d t p l o t t e d a s f o l o w s . The a b s c i s s a i s no n-d im en -

    s i o n a l r a t e o f c l im b , To, and t h e o r d i n a t e i s n o n -d i m e ns i on a l i n d uc e d v e l o c i t y .v, as de f i n ed be low:w i t h vv = n 7 7 J r ; = J T / L ~ A[N ote : H ere t h e s i g n o f t h e f r e e s tr ea m v e l o c i t y , Vo i s o p p o s i t e t o t h a t used

    f o r w i ndm i 11 t h e o r y ]vD a t a f r o m I

    [Momentum \l;i \ , , \ + - 5t h e o r y d o e snot - - - - - -

    V o r t e x R i n g S t a t e R o t o r o r P r o p e l l e r S t a t e. .

    FIGURE 5

    ,i n d m i l l B r a ke S t a t e h e l i c o p t e r a s c e n d i n g )- J ~ 1 0 1 2T u r b u l e n t Wake S t a t e v o

  • 8/12/2019 Simple Momentum Theory

    8/122

    The niomentuni equations (shown h e r e i n s o l d 1 n e s ) f o r t h e he1 c o p t e rp e r f o r ~ i i a n c ecase a re : ( 2 8 )

    P r o p e l l e r o r R o t or S t a t e

    CJindmi 11 Bra ke S ta te :

    t i s a l s o s een t h a t any p o i n t o n t h e c u rv e r e p re s e n ts a v a l u e o f a :

    Thus, t h e T u r b u l e n t Wake S t a t e l i m i t i n g c as e o c c ur s a t :v 1 . 0 , ( - ) v o = 2 , = 1 / 2

    And t h e V o r t e x R i n g S t a t e :.( - ) \ 1.73, v = 1.3 , a -7 5 (Ref. 7 )V = 1 .75, a 1 .0 (Re f. 6 )

    The a c t u a l v a l u e s o f t h r u s t c a n n o t be f o un d fr o ni F i g u r e 5, s i n c e t h eo r i g i n a l d a t a w ere l o s t i n t h e n o n -d i m e n s i o n a l i z i n g p r oc e ss . How ever, t h ee x i s t i n g t e s t d a ta c o u l d b e used t o g e ne ra te T and p v s v/V o e m p i r i c a l p l o t st o a pp ea r i n F i g u r e 4 .

    The t e s t d a ta r e f e r r e d t o ap pea r i n two d i s t i n c t gr ou pin gs ; one i s a tVo = -1.75 and t h e o t h e r i s j u s t b e lo w h o ve r ( j u s t d e sc e n di n g) . T h e c l u s t e ra ro u nd h ov er i n d i c a t e s t h e p a r t- p ow e r d e s ce n t o f ( r o t a r y w i n g) l g h t v e h i c l es ;t h e l e f t c l u s t e r i s f r o m f r e e - w he e li n g r o t o r s ( i . . , p = 0 n eg le c t i n g p r o f i l ed r a g l o s s e s ) , a nd o c c u r s a t v/V o 1 .0 . T h i s v e r i f i e s t h e m omentum t h e o r yp r e d i c t i o n t h a t p = 0 a t v/Vo = 1 . 0 ( s e e F i g u r e 3 ) .

  • 8/12/2019 Simple Momentum Theory

    9/122

    I n t h e T u r b u l e n t Wake S t a t e , t h e s l i p s t r e a m e x pa n si on i s v e r y l a r g e , andc o n s i d e ra b l e t u rb u le n c e and r e c i r c u l a t i o n e x i s t R e fe re nc e 2 ) . I n f a c t , t h er o t o r a c t s as a l a r g e d i s c p e r p e n d i cu l a r t o t h e f l o w . Thus, t h e t h r u s tc o e f f i c i e n t i s synonymous w i t h t h e d ra g c o e f f i c i e n t o f a s o l i d d i s c :C, 1.5 - 2 0 As a r e s u l t we w ou ld e x p e c t t h e CT t o g o up s h a r p l y a sa = v/V s yn on ym ou s w i t h p o r o s i t y o f t h e d i s c ) i n c r e a s e s . H en ce , we w o u lde x p e c t h i g h e r v a lu e s o f C T t h a n t h o s e p r e d i c t e d b y m o m e n t u m t h e o r y .

    The V o r t e x R i n g S t a t e b o un da ry i s n o t w e l l e s t a b l i s h e d , b u t ha s beeno b s e r v e d f o r a num ber o f d i f f e r e n t NACA r o t o r s s e e R e f e r e n c e 6 ) a nd e a r l e rt e s t s s e e R e fe re n ce 7 ) . T h i s b ou nd ar y a l s o m ar ks t h e c ha ng e fr o m p o s i t i v et o n e g a t i v e power; t h a t i s , t h e v o r t e x r i n g s t a t e r ep re s en ts h e l i c o p t e r r o t o r si n pow ered a u t o r o t a t i o n f o r w h ic h s i g n i f i c a n t t e s t d ata e x i s t ) as w e l l asr e v e r s e t h r u s t i n g p r op e l 1e r s t h e same f l o w f i e l d ) . Momentum theory cannot beb e l i e v e d i n t h e r an ge , 1 /2 < a 1 .0 , b u t t h e po wer e q u a t i o n E q u a t i o n 5 doesp r e d i c t t h e change i n Cp s e e F i g u r e 3 ) .

  • 8/12/2019 Simple Momentum Theory

    10/122

    References

    1. Wilson &Lissaman Applied Aerodynamics of Wind Power Machines, OregonState University, July 1974.2. Gessow Myers, Aerodynamics of the Helicopter, Frederick Ungar Publishing,1952.3. Prandtl Tietjens, Applied Hydro Aeromechanics, Dover Publications, 1934.4. Glauert, Elements of Aerofoil Airscrew Theory, Cambridge University Press,1959.5. Glauert, Windmills and Fans, Aerodynamic Theory, Vol IV Durand, ed.,Dover Pub1 ications, 1963, pp. 324-332.6. Gessow, Flight Investigation of Effects of Rotor Blade Twist on HelicopterPerformance in the High Speed and Vertical-Autorotative Decsent Conditions,NACA T 1666 1948.7. Lock, Bateman, Townend, An Extension of the Vortex Theory of Airscrewswith Applications to Airscrews of Small Pitch and Includivg ExperimentalResults, British Aeronautical Research Comm. Reports Memoranda, No. 10141924.8. Ham, V/STOL Vehicle Aerodynamics and Dynamics, Course 16.50 class notes,MIT, 1963.

  • 8/12/2019 Simple Momentum Theory

    11/122

    UNIVERSITY OF MASSACHUSETTS AMHERSTENERGY ALTERNATIVES PROGRAM

    UNIVERSITY OF MASSACHUSETTS/AMHERSTENERGY ALTERNATIVES PROGRAM

    AN APPROACH TO PRELIMINARY SYSTEMS OPTIMIZATIONOF THE NEW ENGLAND WIND FURNACE

    F o r r e s t S. S t o d d a r d

    U.Mass. Wind Fu rn ac eE n er g y A l t e r n a t i v e s P ro gr amU n i v e r s i t y o f M a s s a c h u s e t t sA m h er s t M a s s a c h u s e t t s 0 1 0 02

    T R/76 /3A p p e n d i x

  • 8/12/2019 Simple Momentum Theory

    12/122

    AN APPROACH TO-,PR_F-~_T_M ~lA~YvS_Y;T_E_M_S-O_PTJfl ZA_TT_ION- _O _ T 1.r r\rLw. JNGLAND. dI gn 11 N c r1. Genera 1 Appro ach

    T he W ind F u rn a c e s y stem i s r e p re s e n te d i n F ig u re 1 . The d ia g ra mi l l u s t r a t e s t h e t h r e e ind epe nd en t c o n t r o l v a r i a b l e s : p i t c h ( ) i e l de x c i t a t i o n ( Pe Xc ), a nd l o a d r e s i s t a n c e ( R L ). T h a t is, f o r e ach s e t o fi n p u t c o n d i t i o n s (Vo,B,,Pex, R ) t h e r e w i l l be a n o u t p u t e ne rg y , 1 ; ~ ~ .The o p t i m i z a t i o n t as k c o n s i s t s o f f i n d i n g t h e r i g h t c om b in at io ns of t he sev a r i a b l e s w h ic h y i e l d t h e h i g h e s t o u t p u t f o r g i v e n w in d speed, Vo. L a t e r ,t h e a n a l y s i s c an b e r e f i n e d t o g i v e dyn am ic a nd s t a b i l i t y im prov em en tsg i v e n V o ( t ) ( s u b j e c t t o t h e q u a s i - s t a t i c a ss um p ti on s used i n d e r i v i n gt h e a n a l y t i c a l mo de ls f o r t h e p r o p e l l e r and g e n e r a t o r) . T r a n s i e n t b e h a v i o ro f t h e s y st em may be a t t e m p te d f o r c e r t a i n e q u i l i b r i u m c a se s, a s i s donew i t h s t a b i l i t y d e r i v a t i v e s f o r f l i g h t systems.

    P r e l i m i n a r y , o r " s t a t i c , " s ys te ms o p t i m i z a t i o n u se s a n a l y t i c a n d/ ors e m i -e mp i r i c a l p e rf o rma n c e c h a r a c te r i s t i c s o f t h e tw o s ub sy stems , a n ds i m p l y m atch es o p e r a t i n g p o i n t s t o d e t er m i ne e q u i l i b r i u m c o n d i t i o n s .P a r a m e t ri c t or q ue - sp e e d p l o t s w i l l be u se d i n t h i s a n a l y s i s ; hence t h ei n t e r p r e t a t i o n of " ma tc hi ng t h e c h a r a c t e r i s t i c s , " i s t o eq ua te t h e o u tp u tt o r qu e o f t h e m echanical ( w i n d m i l l ) s h af t, t o t h e i n p u t t o r q u e o f t h e g e n e ra t or .

    T he p a ra m e t r i c p e r fo rma nc e o f t h e g e n e ra to r h as be en me as ured i nl a b o r a t o r y t e ~ t s ( ~ ) ( ~ i g u r e) . F o r ea ch p o i n t on t h i s p l o t an o u t p u t l o a d

    2c u r r e n t , cyi l l d e t e r m i n e t h e o u t p u t pow er, I o R L Work i s c o n t i n u i n g , t od e v e l op a n a n a l y t i c a l m odel f o r t h e g e n e r a t o r an d f o r o t h e r t y p e s o fg e n e r a t o r s . t i s un de rs to od t h a t l a b o r a t o r y t e s t s a r e i m p o r ta n t f o r t h ec om pr eh en si on a nd v e r i f i c a t i o n o f t h e g e n e r al a n a l y t i c a l t h e o r y .

  • 8/12/2019 Simple Momentum Theory

    13/122

    eatnergy

    genera to r

    FIGURE 1

    e x c i t a t i o n

    N RPFIGURE 2

  • 8/12/2019 Simple Momentum Theory

    14/122

    Uo chang ing

    Input TorqueWindmill)

    Torque

    N RPM of wi ndmi 1

    FIGURE

    R PMFIGURE 4

    input windmill)

    R PMFIGURE 5

  • 8/12/2019 Simple Momentum Theory

    15/122

    The t a s k r e m ai n in g i s t o d e r i v e a r e p r e s e n t a t i o n o f t h e p r o p e l l e rt o rq u e /s p ee d c h a r a c t e r i s t i c f o r v a r i o u s w in d s pe eds (v,) and p i t c h a ll q le s I:,)( F i g u r e 3 ) . T he c h a r a c t e r i s t i c s ca n th e n b e s up e rp o se d , e Lj l s h f tT and i n t e r s e c t i o n p o i n t s w i l l d e t e rm i n e t h e p a r a m e t r i c o p e r a t i n gg e n e r a t o r 'p o i n t s o f t h e sy ste m. [ A ot e t h a t t h e s h a f t to r qu e , T ~ ~ ~ ~u st i n c l u d e ap e n a l t y d ue t o m e c h an i ca l l o s s e s i n t h e s t e p u p g e a r i n g and b e a r i n g s ,t y p i c a l l y 2 5 % . ]

    The system per fo rmance com puta t ion w i l l e s t a b l i s h o u t p u t p ow er ( o re n er gy ) f o r v a r i o u s p o i n t s a l on g t h e i n t e r s e c t i o n l o cu s o f t he se t o r q u ec h a r a c t e r i s t i c s . T h i s w i l l y i e l d t h e c o m bi n at io n o f v a r i a b l e s w h i ch g i v e sh i g h e s t o u t p u t ; e .g . w h i c h c o m b i n a t i o n o f RL Pexc and ro gives (I,RL)maximum. T he se ( q u a s i s t a t i c ) s o l u t i o n s a r e f o r e q u i l i b r i u m c o n d i t i o n s andf o r c o n s t a n t w i nd s p ee d. t i s u n d e rs t o o d t h a t d yn am ic f a c t o r s s uc h a sg u s t a m p l it u d e and fr eq u en cy may d i c t a t e o t h e r o p e r a t i n g c o n d i t i o n s t h a nt h e h i g h e s t o u t p u t d e te r mi n ed by t h i s s i l ~ ~ p l eode l .

    I S t a b i l i t y C o n s i d e r a t i o n sThe super imposed curves w i l l g i v e a q u a l i t a t i v e i n d i c a t i o n o f t he

    f i r s t o r de r t i g h tn e s s o r s e n s i t i v i t y o f t h e system t o s ma l l p e r t u r b a t i o n sf ro m e q u i l i b r i u m . As an e xa mp le c o n s i d e r t h e p l o t i n F i g u r e 4.

    F o r t h i s exam ple assume t h e g e n er a to r t o r q u e c h a r a c t e r i s t i c i s f l a t( i n s e n s i t i v e t o R W ) . If h e o p e r a t i n g e q u i 1i r i u m p o i n t ( i n t e r s e c t i o n w i t hg e n er at o r c h a r a c t e r i s t i c ) o c c u rs a t @ , i t c a n be se en t h a t o u t p u t w i 11 bei n s e n s i t i v e t o a w ide v a r i a t i o n i n RPM. T h a t i s , t h e f i r s t o r d e r systemi s n e u t r a l l y s ta b le , and w i l l e s t a b l i s h e q u i l i b r i u m f o r any RPM s e t t i n gi n t h e f l a t ran ge . A ~ Qs w i n d m i l l RPM d e cr ea se s ( du e t o o v e r l o a d i n g o r

  • 8/12/2019 Simple Momentum Theory

    16/122

    g u s t s ) t h e g e n e ra t o r c h a r a c t e r i s t i c m us t be ch ange d t o k eep fr o m s t a l l i n gth e s ys te m; l i k e w i s e , a n i n c re a s e i n i n p u t RPM w i l l c a u s e t h e s y s t e m t od i ve r g e. T h is c o n d i t i o n i s s t a t i c a l l y u n st ab le . I n r e gi on @ t h e syste mi s s t a t i c a l l y s t a b le , s i nc e a p e r t u r b a t i o n i n w i n d m i l l RPM w i l l cause ano p p o s i t e c ha ng e i n e xc e ss t o r q u e . The sl o pe of t h e c h a r a c t e r i s t i c i sa na lo go us t o s p r i n g r a t e , and i f o th e r d y n a m i c ( h i g h e r o r d e r ) i n f l u e n c e sa r e i m p o r t an t , t h e s l o p e w i l l be an al og ou s t o t h e n a t u r a l f re q ue n cy o fv i b r a t i o n i n t h a t mode.

    Now r e ex a m in e t h e a s su m p t io n of f l a t g e n e r a t o r t o r q u e ; c o n s i d e r F i g u r e5 We have e s ta b l i sh e d t h a t c o n d i t i o n a i s s t ab le ; i f i n p u t RPM decreasest h e t o r q u e i n c r e m e n t T i s p o s i t i v e , and r e a c ce l e r a t e s t h e sy ste m t oe q u i l i b r i u m . t i s e v i d e n t t h a t t h i s t o r q u e i nc r em e n t a l s o depends ont he s lo pe of t h e g en er at or c h a r a c t e r i s t i c : v i z . , f o r l i n e a t h e T i sl a r g e r a nd t h e s ys te m t h a t much t i g h t e r ; and f o r l i n e @ t h e T hasd ec re as ed t o a s m a ll r e s t o r a t i v e q u a n t i t y . Thus, f o r l i n e 4, t h e s y s te mi s s t a t i c a l l y u n sta ble ; i . e . t h e s l o pe o f t h e o u tp u t c h a r a c t e r i s t i c i sl a r g e r t ha n t h e s l op e of t h e i n p u t c h a r a c t e r i s t i c .

    111 . A pp ro ac h t o P r o p e l l e r S o l u t i o nThe ap pr oa ch f o r s o l u t i o n s o f t h e p r o p e l l e r p r ob le m i s t o d ev e lo p po we r-

    s pe ed a nd t o rq u e- s pe e d c h a r a c t e r i s t i c s u s i n g n on d im e n si on a l q u a n t i t i e s t o r q u eand p ow er c o e f f i c i e n t s a nd t i p sp eed r a t i o ; t h i s e l i m i n a t e s t h e depe ndenc eon V o o r on RPM. The n o n d im e n s io n a l p l o t c a n t h e n be u se d t o d e v e l o p an yd e s ir e d c r o s s - p l o t a t a ny d e s i r ed V o t o be u se d i n ma tc h i n g t h e s y s te m.

    One o f t h e e x i s t i n g c o m p u ta t io n al r e s u l t s i s a p l o t of t h e p owerc o e f f i c i e n t maxima, f o r v a r i o u s t i p speed r a t i o s , f o r t h e m achine, see F i g u r e6. T h i s c u r v e r e p r e s e n t s t h e l o c u s o f a l l maxima o f i n d i v i d u a l C c u r v e s

  • 8/12/2019 Simple Momentum Theory

    17/122

  • 8/12/2019 Simple Momentum Theory

    18/122

    f o r v a r i ou s va lu es o f ro, as shown. F or a f i x e d p i t c h a ac hi ne , t h ep e rf o rm a n ce c h a r a c t e r i s t i c w o ul d be a s shown on t h e d o t t e d l i n e . F o r

    synchronous co ns ta n t speed) w i n d m i l l system s, t h e power c o a f f c i e n t v a r i a t i o nw i t h i n c r e a s i n g win d s peed i s d et er m in ed f r o m t h i s p l o t 2 ) .

    The t o r q u e c an b e d e r i v e d f r o m t h i s c u r v e u s i n g t h e f o l l o w i n g a pp ro ac h.The d e f i n i t i o n s a r e :

    power - Pp = c o e f f i c i e n t 1 3?PA ,

    p = d e n s i ty o f a i rs e a l e v e lA = p r o p e l l e r d i s c a r e a

    Vo = wind speedt o r q u e r

    = c o e f f i c i e n t = 1 2p A V ow i t h :

    t i p speed szRr a t i o 0n = r o t a t i o n a l s p e e dR = r a d iu s o f p r o p e l l e r

    A1 so :

    Thus t h e t o r q u e c o e f f i c i e n t ca n be found d i r e c t l y f r om t h e s i m u l a t i o nPr e s u l t s . T h e T dependence on p i t c h w i l l l i k e w i s e be shown F i g u r e 7 )

    When t h i s r e l a t i o n s h i p i s found, a map of p o i n t s p a r a m e t r i c p l o t )w i l l be c a l c u l a t e d f o r e ac h w in d speed o f i n t e r e s t , and a c t u a l t o r q u e vs . RPMc u rv e s ca n b e g e n e ra te d s e e F i g u re 8 ) . There w i l l b e re g io n s o n t h e s ep l o t s w hi ch w i l l i n d ic a te ae rodynamic n on - - l in ea r phenomena , and w i l l p r o b a b l yn o t be i m p o r t a n t e q u i l i b r i u m c o n d i t i o n s :

    s t a l l - o c c u r s w he re a n g l e o f a t t a c k i s h i g h e r t h a n t h e maximuma )v a lu e f o r m a i n ta i n i n g s t r e am l in e s f o r t h e p a r t i c u l a r a i r f o i l o f

  • 8/12/2019 Simple Momentum Theory

    19/122

    = t o r q u e

    ocu s of axnlulr~v u s

    F I G U R E 7

    N RPMF I G U R E 8

  • 8/12/2019 Simple Momentum Theory

    20/122

    i n t e r e s t ; p e rf o rm a n ce i s s h a r p l y de gr ad ed .b ) r e v e r s e f l o w - w here l o c a l v e l o c i t y o ve r bl ad e i s from t h e

    t r a i l i n g edge fo r wa r d; t hu s w i l l p r o b a b l y n o t occl;r e x c e p t i ns m a ll p o r t i o n s o f t h e b la d e and f o r un us ua l c o n d i t io n s ; t h i sc o n d i t i o n w i l l n o t show up e x c e p t as a r a p i d d e cr e as e i n C w i t h 11P

    c ) n e g a t i v e l i t- - t h e w i n d m i l l a c t s a s a p r o p e l l e r as an g le s o fa t t a c k , 1 f t and tor que , become ne ga t iv e.

    I V . R e s u lt s o f P r o p e l l e r S i m u l a t io nThe co m p u t at io n a l r e s u l t s o f t h e p e rf or m a nc e ( s t r i p ) t h e o r y a r e s hown

    i n F i g u r e s 9 and 10. I n F ig u re 9 c an b e see n t h e c o n s t a n t p i t c h c u r v e su se d t o g en e r a te t h e l o c u s o f C maxima shown i n F i gu re 6 . As p i t c h a n g l eP(B,) i s d e c rea s e d (e .g . a n g l e o f a t t a c k o f b l a d e e l e me n ts i n c re a s e d a s show ni n t h e i n s e t ) , t h e r o t o r i s lo a d e d m or e a nd m o re . As t h e a n g l e ch an ge s,t h e t i p s peed r a t i o f o r h i g h e s t power i n c re a s e s t o a bo ut 9 (B eo = -2 )and t h e n de cr ea se s t o t h e d e s i gn t i p s peed r a t i o o f 7 . T he d e c rea s e i npower w i t h i n cr e a s ed p i t c h a n g le r e p r e s e n t s t h e c o n t r o l p h i lo s o p h y a dva nc edfor r a t e d ( 2 6 . 1 MPH); t h a t i s , s h a f t spee d i s k e p t c o n s t a n t an d C Pd ec re as es w i t h i n c r e a s i n g f re e s tr ea m v e l o c i t y . T h i s p h il o so p h y i s a l s od i s c u s s e d b y utter, ) ~ o l d i n g , ( ' ) ~ o h r b a c k , ' ~ ) nd ~ e u t s c h , ' ~ ) mong o th e rs .A s i m i l a r c u r v e i n t e rms o f p ow er ( w a t t s ) v s . RPM, i s shown i 1 1 F i g u re 1 1 .T he se re s u l t s w ere o b ta i n e d f r o m w in d t u n n e l t e s t s of a f i x e d p i t c h , c o n s ta n tchord b lade (Re fe rence 7 . The c o rr e s po n d in g power c o e f f i c i e n t c h a r a c t e r i s t i ci s i nc lu de d i n F i gu re 9 .

    I n F ig u re 9, a s p i t c h a n g le i s de cr ea se d, t h e p ower c h a r a c t e r i s t i cbecomes more and more sens i t i ve . The l e f t m a r gi n o f ea ch c l l rv e i s a s t a l lb ou nd ary ; a phenomenon w h ic h oc c u rs f i r s t a t t h e t i p o f t h e b l ad e , s i n c e t h eNEWF d e s i g n i s c l o s e t o o p tirn um t w i s t a n d t a p e r . The i n d uc e d v e l o c i t y

  • 8/12/2019 Simple Momentum Theory

    21/122

  • 8/12/2019 Simple Momentum Theory

    22/122

  • 8/12/2019 Simple Momentum Theory

    23/122

    0 30i 4 U 500 OO 00 800 900 1000 R I .I FT IIRF 1 1 \

  • 8/12/2019 Simple Momentum Theory

    24/122

    (do wn wa sh ) d i s t r i b u t i o n a lo n g t h e b l ad e i s c h a r a c t e r i s t i c o f o ptim umdes ign s (see F i gu re 12). Un tw i s ted , and co ns ta n t cho rd , b l ades show a muchl e s s s e n s i t i v e s t a l l t h a t s t a r t s a t th e r o o t a t much sr l ia ller p i t c h a ng le s

    (5,6).t hu s , t h e pow er c h a r a c t e r i s t i c o f an o f f - d e s i q n b la d e w i l l be f l a t t e r a ndh a v e s m a l l e r C t h a n t h e NEWF b l a d e ( s e e F i g u r e s 9 and 1 1 ) . T h i s p o i n t sPo u t t h e n eed f o r t h or o ug h s t a b i l i t y a n a l y s i s o f t h e op tim um momentumexchanger sys tem ph i1o so ph y a do p te d f o r t h e NEWF d e s i g n .

    A l s o , f r o m F i g u r e 9, t h e pow er c h a r a c t e r i s t i c i s seen t o becomeh i g h er o r de r as s t a l l i s ap pro ach ed ; t h a t i s , a t p i t c h a n gl es l e s s t ha n0 t h e d ro p i n power w i t h i n c re a s in g t i p speed r a t i o ( o r RPCl f o r c o n s ta n t

    i s much m ore s ev er e. T h i s i s a l s o b e l i e v e d t o be a f u n c t i o n o fb l a d e d e si gn , c h a r a c t e r i z e d b y i n cr e a s e d d r a g and h i g h l y t w i s t e d s e c t i o n sbecoming nega t i ve l i f t

    I n F i g u r e l o i s p l o t t e d t h e c o rr es po nd in g t o r qu e c h a r a c t e r i s t i c ,d is cu s se d e a r l i e r . The n o n - l i n e a r b e h a v io r a t p i t c h a n g le s l e s s t h a n 0i s a l s o seen. B ut t h e s t r i k i n g c h a r a c t e r i s t i c i s t h e l i n e a r i t y o f t het o r q ue c u rv es o v e r t h e u n s t a l l e d r e g i o n . T h i s r e p r e s e n t s s y s t e m s t a t i cs t a b i l i t y f o r each c on s t an t p i t c h s e t t i n q ( i n t h e 1 n e a r r a n g e ) .

    Near maximum to rque , th e cu rves a re ve r y peaky, and may c o n s t i t u t e ac a t a s t r o p h i c s t a l l f o r s ma ll RPM p e r t u r b a t i o n s . T y p i c a l l y , t h es e RPMv a r i a t i o n s w i l l be c au se d b y g u s t s ; a n i n c r e a s e i n w i n d s pe ed m o m e n ta r i l yd e c r e a s i n g t i p sp ee d r a t i o , a nd v i c e - v e r s a . However, when ~ i s d ec re as ed f a renough t o p ush t h e p r o p e l l e r i n t o s t a l l , t h e r e i s a l s o a b a la n c i n g e f f e c tc au se d by t h e i n c r e a s e i n t o r q u e a v a i l a b l ~ n t h e f r e e s t re am ( e .g . due t oi n c r e a s e d w i n d v e l o c i t y ) . T h e re f or e , t h e d yn am ic b e h a v i o r i s i m p o r t a n t , andm ust be c on sid ere d f o r a r e a l i s t i c s t a b i l i t y and ~ o n t r o l o l u t i o n .

  • 8/12/2019 Simple Momentum Theory

    25/122

  • 8/12/2019 Simple Momentum Theory

    26/122

    M ore a n a l y t i c a l and e x p e ri m e n t a l d a t a a r e needed t o e s t a b l i s h thcs lo p es o f t h e t o r q u e c u rv e s a t t h e ab s ci s sa i n t e r s e c t i o n ( e .g . r o t o r u n lo a d edT h i s i s t h e c o n d i t i o n wh ic h w ou ld be re ac he d i n t h e e v e nt o f a s h a f t o rg en er a t or f a i l u r e . The w ind genera to r w i l l speed u p t o t h e p o i n t a t w hic hs h a f t t o r q ue i n p u t j u s t ba la nc es f r i c t i o n t or qu e, and c l a s s i c a l w i n d m i l l i n gi s a ch ie ve d. ( 7 ) [ T h i s i s n o t t h e same as f e a t h e r i n g , w h ic h i s r e p r es e n t e db y t h e o r i g i n , o r z e ro RPM.]V R o t o r F l o w S t a t e s

    The v a r io u s r o t o r f l o w s t a t e s can be i d e n t i f i e d on t h i s c h a r a c t e r i s t i c . ( 5T he Z e r o S l i p Case i s r e p r e s e n t e d b y T 0 j u s t d is c us se d ; and t h e P r o p e l l e rS t a t e i s b el ow t h e a b s c i s sa , w he re T i s n e g a t i v e ( po we r goes i n t o t h e s y st e mAs t h e c o n s t a n t p i t c h p r o p e l l e r i s l o a d e d m o re an d m ore , t h e o u t p u t po we r ( ant h r u s t ) i n c r ea s e s t o t h e p o i n t whe re ( t o r q u e x RPM) = power i s a maximum( t o r q u e a l o n e i s n o t a m axim um). T h i s p o i n t o c c u r s , a c c o r d i n g t o momentumt h e o ry , w he re t h e av er ag e i n f l o w i s 1 /3 ; and t h e i d e a l = . 5 9 2 6 . (2 ) fl o a d in g i s i n c re a se d beyond t h i s , t h e i n f l o w i n c re a s e s on t h e b l a d e u n t i l t h ea i r f o i l s t a l l s ; power f a l l s o ff and t h r u s t ( n o t shown) i nc re a se s, a s v e r i f i e dby h e1 c o p t e r a u t o r o t a t i v e t e s t s . ( 6 ) T h i s i s c a l l e d t h e T u r b u l e n t Wake S t a tea nd i s c h a r a c t e r i z e d b y t h e a bs en ce o f s t r e a m l i n e s , s e v er e b u f f e t i n g , and t h eq u i c k f a l l - o f f i n d ev e lo p ed pow er. The t a s k o f t h e c o n t r o l s y st em w i 11 be t op r e v en t e n tr a nc e i n t o t h i s o p e r a t i n g s t a te , eve n f o r t r a n s i e n t c o n d i t i o n s .s h o u l d be u n d e r st o o d t h a t f o r h i g h v a l u e s o f ro ( e .g . 12O) t h e a n g le s o fa t t a c k a r e s m al l t o b e g i n w i t h , and t i s u n l i k e l y t h a t a s i g n i f i c a n t p o r t i o no f t h e ( h i g h l y t w i s t e d ) b l a d e c o u l d e v e r be s t a l l e d . And t h e b la d e may n ev er e a l l y e n t e r T u r b u l e n t Wake S t a t e . Hence a p o s i t i v e o u t p u t t o r q u e c o u l d b eexpec ted fo r ex t rem e ly lo w RPM (o r u . However, o u r d i s c u s s i o n w i l l f o c u s

  • 8/12/2019 Simple Momentum Theory

    27/122

  • 8/12/2019 Simple Momentum Theory

    28/122

  • 8/12/2019 Simple Momentum Theory

    29/122

    v i b r a t i o n and b u f f e t t i n g can o cc u r , a s w i t h h e l i c o p t e r r o t o r s .t i s i n t e r e s t i n g t o a l s o c o ns id e r t h e l ow RPM b e ha v io r o f h i g h

    s o l i d i t y p r o p e l l e r s , s uc h a s t h e A me ric an f a n n i i l l . A s RPM i s d ec re as e d,t h e c o r r e s p o n d i n g c h an g e i n downwash an d a n g l e o f a t t a c k i s much s m a l l e rf o r t h e se m ach ine s; hence, l a r g e p o s i t i v e to r q u e i s s t i 11 p r od u c ed a tv e r y l o w RPM and t h e ma ch in es ca n 1 t e r a l l y n e ve r be s t a l l e d b yc o n v e n t i o n a l l o a d s. A l s o , i t p o i n t s o u t t h e n o n -n e c es s it y o f v a r i a b l e p i t c h ont h e s e m a ch in es ( s t a t i c t o r q u e i s a l r e a d y h i g h ) . H ow ev er, t h e s e m a ch in e sa r e g e ne ra l l y n o t i m po r t a nt f o r e l e c t r i c i t y g e n e r a t io n s i n ce t h e o v e r a l lp ow er c o e f f i c i e n t s a r e s m a ll , and o ptim um t i p s peed r a t i o s a r e c l o s e t ou n i t y . ( 2 )

    A r o u g h i d e a of t h e T u r b u l e n t Wake S t a t e b ou n da ry ( f o r l o w s o l i d i t y ,h i g h sp ee d w i nd g e n e r a t o r p r o p e l l e r s ) c a n be g a in e d f ro m s i m p l e t h e o r y .

    From b la d e e le me nt t h e o ry ( n e g le c t in g s l p s t r ea m r o t a t i o n ) t h e t i ps e c t i o n i s :

    where4 = b l a d e e l e m e n t a n g l e

    The T u r b u l e n t Wake S t a t e b o u n da ry i s t h e p o i n t a t w h i c h s tr ea m 1 n e s a r e n ol o n g e r w e l l -d e f i ne d ; t h i s o cc u rs a t v a l u es o f a v /V o = 1 / 2 . ( ~ ~ ~ ) ence:

    V ( 1 - a )-1 0t a n -1 1-a1 = t a n [ I = t a n 1 140 nR u [ IT u r b u l e n tWake StateBoundary

    Thus, t h e b l ad e e le me nt a n g l e ( o r i n f l o w an g le ) a t t h e t i p f o r T u rb u l e ntWake S t a t e t o o c c u r de pe nd s on t i p s pe ed r a t i o :

  • 8/12/2019 Simple Momentum Theory

    30/122

    Tip Speed Ra t io T u rb ul en t Wake BoundaryR V o $o a t b la de t i p

    TABLE 1Most a i r f o i l s ap pr oa ch s t a l l a t a n g l e s of a t t a c k ab o u t 1 2 . T h us , thea pp r ox im a te p i t c h a n g l e t o p ro du ce t u r b u l e n t wake s t a t e i s s im p ly :

    O m o a t a l lT ur bu le nt TWSWake Sta tewhere I is g i v e n i n T a b l e 1 a b o v e , a nd a s t a l l 1 2 .-rws

  • 8/12/2019 Simple Momentum Theory

    31/122

    R e f e r e n c e s1 . H u t t e r , O p e r a t i n g E x p e r i e n c e O b t a i n e d w i t h a 100-kW W ind P ow erP la n t, NASA TTF-15, 063, Au gus t 1973 .2. G o l d i n g , T he G e n e r a t i o n. f E l e c t r i c i t y .y Wind Power,.. P h i l o s o p h i c a lL i b r a r y , 1 9 5 5 .3 . Rohrback and Worobel , P e rf or m an c e C h a r a c t e r i s i c s o f A er od yn am ic al l yO ptim um T u r b i n e s f o r W in d E n e r g y G e n e r a t o r s , 3 1 s t A n n u al N a t i o n a lFo rum , A m e r ic a n H e l i c o p t e r s o c i e t y , May 19 75 .4 . Deu tsch , L . Grunlman Ae rospace Co rpo ra t i on , pe rson a l comnuni ca t i on ,19 March 1976.5. i so n and L issn lan , Ap p l i e d Aerodynamics o f Wind Power Mach ines ,O re go n S t a t e U n i v e r s i t y , J u l y 1 97 4.6. Gessow and Myers , Aerod ynam ics~ -- o f t h e H e l i c o p t e r ,. F r e d e r i c k U ng arP u b l i s h e r s , 1 9 5 2 .7 . S todd a rd , Edds , F in a l Re po r t on Wind Tunne l Te s t Program o f Mode lB l a de s o n a 2 00 w a t t , 1 2 v o l t W ind G e n e ra t or , U n i v e r s i t y o f M a s s a c h u s et t sC i v i l E n g i n e e r i n g D e p a r tm e n t In - H ou s e R e p o r t , May 19 74 .8. S t od d ar d, D i s c u s s i o n o f Monientum T h e or y f o r W i n d m i l l s , ( t h i s r e p o r t ) .9. Edds, M. O p t i m i z a t i o n of O u t p u t Power o f an AC Synchronous Mach ineby V a r y i n g E x c i t a t i o n a nd L oa d, M.S . O cean E n g i n e e r i n g T h e s i s , t o b epub l i shed , June 1976 .

    10. B l a c k w e l l , T h e V e r t i c a l A x i s W ind T u r b i n e ; How i t Works, SandiaLa bo ra to r i e s , A lbuqu e rque , New Mex ic o , SLA-74-0160 , A p r i l 1974.

  • 8/12/2019 Simple Momentum Theory

    32/122

    UN TTY OF MASSACi 3SElTWAhllHERSTENERGY ALTERNATIVES PROGRAM A

    UNIVERSITY OF MASSACHUSETTS/AMHERSTENERGY ALTERNATIVES PROGRAM

    P r e l ~ n ia r y R e p o r t o nOPTIMIZING THE WINDMILL ROTOR

    P a u l L e f e b v r eand

    Duane E Cromack

    U.Mass Wind FurnaceEnergy A 1 t e r n a t i v es P ro gr amU n i v e r s i t y o f M a ss ac hu se tt sAmhers t Massachuse t t s 01002

    TR/76/4Append ix V I

  • 8/12/2019 Simple Momentum Theory

    33/122

    OPTIMIZING THE WINDMILL ROTOR

    a b s t r a c tT we lv e h o r i z o n t a l a x i s w i n d r o t o r sy st em s a r e a n a l y z e d b y means o f c o m pu t er

    s i m u l a t i o n . The p u rp os e o f t h i s a n a l y s i s i s t o d e v e lo p a m eth od o f d e s i g n i n go p t i m iz e d b la de s o f d i f f e r e n t r o t o r c o n f i g u r a t i o n s . The r e s u l t s o f t h e s i m u la -t i o n a r e t h e n com pa red w i t h w i n d t u n n e l t e s t r e s u l t s .

    i n t r o d u c t i o nOne o f t h e p r i n c i p a l omponents o f a n y w i n d m i l l i s t h e m omentum e xc ha n ge

    d e vi ce , o r r o t o r . T h i s de v i c e c o n v e r t s t h e k i n e t i c en er gy o f a m ov in g a i rs t r e am t o a more us a b le fo r m o f p owe r. T h er e a r e two b a s i c c l a s s i f i c a t i o n sf o r w i n d m i l l s : v e r t i c a l a x i s m ac hin es a nd h o r i z o n t a l a x i s m ach in es . T h i sr e p o r t d e a ls o n l y w i t h h o r i z o n t a l a x i s r o t o r s . W i t h i n t h i s c a te g o r y a l l r o t o r st a k e t h e f o rm o f a n a i r s c re w w i t h t h e d i f f e r e n c e b etw e en d es ig n s b e i ng i n t h ec h o r d a nd t w i s t d i s t r i b u t i o n o f e ac h bl a d e , a nd t h e n um ber o f b l a d e s er r~ pl oy edf o r a ny g i v e n r o t o r . The fu n c t i o n a l r e l a t i o n s h i p o f t he s e v a r i a b l e s d e te r mi n eshow e f f i c i e n t l y a r o t o r p e r f o r n ~ s . F ou r d i f f e r e n t r o t o r s ys tems a r e s t u d i e da nd t h e i r p e r fo rm a nc e c a p a b i l i t i e s o p t im i z e d. The r o t o r t yp e s c o n s id e r e d a r e :

    1 ) c o n s t a n t c ho rd , z e r o t w i s t CCZT); 2 ) l i n e a r t a p e r e d c h or d , z e r o t w i s tLCZT); 3 ) l i n e a r t ap e re d c h or d , l i n e a r t w i s t LCLT); a nd 4 ) a e r o d y n a m i c a l l y

    o p t im u m c h o r d an d t a p e r O P T) . The op tim um b l a de i s t a k en t o be t h a t a i rs c re w c o n f i g u r a t i o n w h i c h w i l l e x t r a c t t h e h i g h e s t p e rc en ta g e o f t h e p ow era v a i l a b l e . t h a s b ee n shown t h a t t h e maximum p ow er c o e f f i c i e n t o b t a i n a b l ei s .5926 and i n p r a c t i c e w i l l i n v a r i a b l y be l e s s t h a n t h i s v a lu e . ToP

  • 8/12/2019 Simple Momentum Theory

    34/122

    d e t e r m in e t h e m os t a dv an ta ge ou s c h o r d a nd t w i s t d i s t r i b u t i o n , t i s n e ce s sa r y2t o comb ine momentum and an nu lu s th eo ry . The f o l l o w i n g e q u a t i m s a r e o b t a in e d

    a n d t h e o p ti mu m b l a d e c a n be d e s i g n e d a c c o r d i n g l y .X = s i n + (2 c os - 1 ) / ( ( 1 + 2 c o s + ) ( l -c o s + ) )BcCL ~ / 2 n o=4 s i n ( 2c o s - 1 ) /( 1 + 2 c os )

    A s im p l e co mp ute r pro gra m was w r i t t e n t o f a c i l i t a t e t h i s d e s ig n s p e c i f i c a t i o np ro ce ss and i s l i s t e d i n A pp en dix A. The p ro gra m i s w r i t t e n i n F o r t r a n f o r u seo n t h e K ro no s t i m e s h a r i n g s y st em i n us e a t t h e U n i v e r s i t y o f M as sa c hu se t ts ,and s h o u l d be r e a d i l y a d a p ta b l e t o a ny o t h e r syste m. The i n p u t i s l i m i t e d t of i v e l i n e s c o n t a i n i n g t h e r o t o r r a d i u s , t h e number o f b la de s, t h e t i p speedr a t i o a nd t h e CL and t h a t c o rr e sp o n d t o CL /CD maximum f o r t h e a i r f o i l d a t ab e i n g u se d . Th e f o r m a t i n e a ch c a se i s F7 .3 .

    The p e rf or ma nc e c h a r a c t e r i s t i c s o f e ac h o f t h e se f o u r a i r s c r e w c o n f i g u r a -t i o n s a r e d e t e r m i n e d f o r t w o , t h r e e , a n d f o u r b l a d e d s ys te m s. T he p ow erc o e f f i c i e n t s c i t e d w ere o b t a i n e d u s i n g a NACA 441 5 s t a n d a r d r ou gh ne ss a i r f o i lp r o f i l e a nd a d e s ig n t i p s peed r a t i o of 7. Each v a lu e r e p r e s e n t s t h e maximumpower o b t a i n a b l e f o r t h a t g i v e n r o t o r t yp e u n de r t he s e co n d i t i o n s .

    C om pu te r S i m u l a t i o n : The c o mp u te r m od el us ed t o p r e d i c t p e rf or m an c e c a p a b i l i t i e si s o ne d e ve l op e d b y W i l s o n a nd L i s s a m a n Y 3 a nd m o d i f i e d f o r o u r p u r po s e s. T h i smodel uses b l ad e e le me nt t h e o ry t o c a l c u l a t e t h e o p e r a t i n g c h a r a c r e r i s t i c s a te ach r a d i a l s t a t i o n . These c h a r a c t e r i s t i c s a r e t h e n n u m e r i c a l l y i n t e g r a t e da l o ng t h e b l ad e t o o o b t a i n t h e c a l c u l a t e d r o t o r p e rfo rm an ce . R e f er in g t oF i g u r e 1, t h e f o l l o w i n g e q u a t i o n s may be o b t a i n e d :

  • 8/12/2019 Simple Momentum Theory

    35/122

    LY = - I)t a n = ( 1 a ) ( V o / ( ( l + a l ) ; r )Cy=CL cos @ +CD s i n 4c X = cL s i n + cD C O S ~ 6

    From a er od yn am ic s t r i p t h e o ry , t h e t h r u s t an d t o r q u e o n a d i f f e r e n t i a l b l a d ee le m e nt a r e g i v e n a s

    dT, = .5Bc p v r 2 C y d r

    F rom momentum th eo ry , t h e t h r u s t and t o rq ue become

    dTm = ( 2 n r d r ) , ~ ~ ( V o - u ~ ) ( 9 )

    D e f i n i n g t h e d ow ns t re am a x i a l i n t e r f e r e n c e fa c t o r , aw, a s t w i c e t h e a x i a l i n t e r -f e r en c e f a c t o r a t t h e r o t o r , e q u a t i o n s ( 7 ) and ( 9 ) may t h e n b e e q ua te d t o y i e l da r e l a t i o n b etw ee n a a nd o t h e r known r o t o r p a r a m e te r s su ch t h a t

    a = ( ~ c ~ ~ / ~ n r ) / ( s i n ~ ;(Bc Cy /8 . r ) ) ( 1 1 )I n a s i m i l a r m anner, i f t h e a n g u l a r v e l o c i t y d ow ns tr ea m i s assumed t o b e t w i c et h a t f oun d a t t h e r o t o r , e q u at io n s 8) n d ( 1 0 ) may be eq u a te d t o o b t a i n t h ea n g u l a r i n t e r f e r e n c e f a c t o r i n te rm s o f known v a r i a b l e s . Th us :

    a ' = ( B c C X / 4 n r ) / ( s i n 2 j - ( B c C X / 4 n r ) ) ( 1 2 )Enough i n f o r m a t i o n i s now a v a i l a b l e s o t h a t t h e f l ow c h a r a c t e r i s t i c s f o r

    a n y g i v e n b l a d e e l e m e n t c a n b e f o u n d . f i n i t i a l v a l u es f o r a an d a ' a r ea s s u m e d ( a = . 0 5 a n d a l = O ) e q u a t i o n ( 4 ) c a n be u sed t o c a l c u l a t e 4 Once i s

  • 8/12/2019 Simple Momentum Theory

    36/122

  • 8/12/2019 Simple Momentum Theory

    37/122

    C om p ute r S i n l u l a t i o n R e s u l t s : The po we r c o e f f i c i e n t s o btc tin t.d w i t h o p t ~IIIUIIIr o t o r s o f two t h r e e and f o u r b la de s a r e l i s t e d i n T ab le 1 T h e s e r o t o r sw ere d es ig ne d f o r a t i p s peed r a t i o o f 7 a CL o f -9 1 4 a t an an g l e o f a t t a c ko f 5 . 5 7 d eg re es . The l a s t tw o f i g u r e s r e p r e s e n t t h e p o i n t a t w h i c h CL /CD i smax imum f o r an NACA 4415 s ta nd a rd roughness p r o f i l e .

    The n e x t tw o b l a d e ty p e s t o be c o n si d e r e d a r e l i n e a r c h o rd z e ro t w i s tand l i n e a r c ho rd l i n e a r t w i s t . I n b o th c as es t h e f i n a l d e s ig n c o n f i g u r a t i o n wasf o u nd b y m a ki ng a s e r i e s o f c o rr ~p u te r u n s i n w h ic h c h o r d and t w i s t w eres y s t e m a t i c a l l y c hange d i n a s e r i e s o f a p pr o x im a t io n s a s w ere f i and X u n t i l0a maximum power o u t p u t a t a t i p speed r a t i o o f 7 was reac hed . The ch or d andt w i s t a p p r ox im a t i on s t h a t w ere t r i e d a r e shown i n F i g u r e 3. I n o r d e r t o o b t a i na c o n s i s t e n t m ethod o f d e s i g n in g b la de s o f t h i s t yp e t h e i r c h o rd and t w i s t d i s -t r i b u t i o n s a r e l i s t e d i n Ta bl e 2 i n t erm s o f t h e o pt in lum bl a d e o f s i m i l a r d e s ig nc o n s t r a i n t s .

    For example i f a n LCZT 3 -b la de d r o t o r w i t h a r a d i u s o f 1 0 f e e t a nd a t i pspeed r a t i o o f 7 i s d e s i r e d t h e b l ad e c o n f i g u r a t i o n i s f ou nd as f o l l o w s . Theo pt im um b l a d e f o r t h e se c o n d i t i o n s i s l a i d o u t . The ch o r d o f t h e LCZT b l a d e a t100 p e r ce n t o f t h e r a d i u s i s t a k en as 90 p e r c en t o f t h e c h o rd o f t h e o pt im umb l a de a t t h a t p o i n t . The c h or d o f t h e LCZT b la d e a t 10 p e r c e n t o f t h e r a d i u si s t ak e n as 67 p e r c e n t o f t h e c ho r d o f t h e op tim um b la d e a t t h a t p o i n t . Ast h e ch o rd d i s t r i b u t i o n i s l i n e a r t h e d im en sio ns o f t h e b l ad e a r e now f i x e d .A l l t h a t re m ain s i s t o s e t t he -o t o t h a t s p e c i f i e d i n Ta b le 2 .

    T he p ow er c o e f f i c i e n t s o b t a i n e d f o r LCZT a nd LCLT r o t o r s o f tw o t h r e ea nd f o u r b l a d e s a r e shown i n T a b le 1 .

    The f i n a l b l a d e t y p e t o be c o ns id e re d i s co n s ta n t c ho rd z er o t w i s t . F orr o t o r s o f t h i s t y p e t h e r e a re t h r ee v a r i a b l e s t h a t w i l l a f f e c t p er fo rm a nc e:

  • 8/12/2019 Simple Momentum Theory

    38/122

  • 8/12/2019 Simple Momentum Theory

    39/122

    F o r e ac h r o t o r t y pe a s e r i e s o f t e s t s w ere f i r s t c on du cte d t o a s c e r t a i nt h e po s e t t i n g f o r maximum p ow er. T h a t s e t t i n g was t h e n u se d f o r a s e r i e s o fr u n s a t i n c r e a s i n g w i n d s p ee ds . T he i n c r e as e i n maximum pow er w i t h w i nd s peedp a r a l l e l e d c l o s e l y t h e e x pe ct ed cu b i c r e l a t i o n s h i p and i s shown i n F i g u r e 6.A l s o shown i s t h e r e l a t i o n s h i p b et we en pow er a nd RPM a s a f u n c t i o n o f a p p l i e dl oa d . T a b le 3 c o n t a i n s t h e power c o e f f i c i e n t s o f t h r e e r o t o r syste ms f o rc o mp a ri so n w i t h t h e po we r c o e f f i c i e n t s p r e d i c t e d b y t h e c om p ut er s i m u l a t i o n .

    c o n c l u s i o nE x p e r im e n t a l v e r i f i c a t i o n o f t h e c om p ut er s i m u l a t i o n h as n o t be en c om p le te d .

    The d i f fe r e n c e s i n power c o e f f i c i e n t s l i s t e d i n T ab le 3 a r e q u i t e l a r g e w i t hn o c o n s i s t e n t p a t t e r n d i s c e r n a b l e . A d d i t i o n a l w i n d t u n n e l t e s t s a r e p l an n e di n o r d e r t o o b t a i n a b e t t e r c o r r e l a t i o n b etwe en t h e o r e t i c a l and e x pe r i me n ta lr e s u l t s . S i n c e t h e c o mp u te r m od el i s b as ed o n w e l l - e s t a b l i s h e d a e ro d yn a m ict h eo r y t h e r e s u l t s f o r co m pa ra ti ve p urp ose s a r e c e r t a i n l y v a l i d .

    T he s e l e c t i o n o f t h e r o t o r t y pe e . opt im um LCLT CCZT e t c . dependso n t h e p a r t i c u l a r a p p l i c a t i o n b u t m ore i m p o rt a n t depends o n t h e metho d o fb l a d e m a nu fa c tu re an d t h e m a t e r i a l t o be used. T h i s i s a pr o bl em o f c o s te f f e c t i v e n e s s a nd n o t o f j u s t r o t o r p e rfo rm an ce .

    The p ro b le m o f o p t i m i z i n g may b e v ie we d d i f f e r e n t l y b y s t a n d a r d i z i n g t h epower o f e ac h r o t o r s ys te m i n t er ms o f t h e r e q u i r e d r o t o r d i am e t e r. T hi s i sdone i n t h e f o l l o w i n g manner. F o r a ny p r o p o se d w i n d g e n e r a t i n g s y st em t h e r ew i l l b e a r e q u i r e d p ow er f o r a p a r t i c u l a r d e s i g n w i n d sp ee d. F or t h e d e s i g np ow er and r a t e d w i n d spe ed t h e r e q u i r e d r o t o r di a m e t e r ca n b e c a l c u l a t e df r o m t h e s t a n d a r d p o w er e q u a t i o n a s = [8P/nC The r e s u l t i s t h a tP

  • 8/12/2019 Simple Momentum Theory

    40/122

    a t w o - b la d e d CCZT r o t o r w i t h a d i a m e t e r 5 . 2 7 p e r c e n t g r e a t e r t h an a t e n - f o o td i a m e te r tw o b l ad e d o pt im um r o t o r w i l l y i e l d e q ua l po wer. T h e re f or e t h ec h o i c e t o b e made i s b e t w ee n a t e n - f o o t o p ti m um b l a d e an d a 1 0 .5 3 f o o t CCZTb l a d e . The d e c i s i o n a s t o w h ic h b l a d e t o u s e i s b a se d on w h i ch b l a d e t y p ew o ul d h ave t h e l o w e s t u n i t p r o d u c t i o n c o s t f o r t h e number o f b l a d e s r e q u i r e d .T a b l e 4 i n d i c a t e s t h e p e r c e n t i n c r e a s e i n b l a d e d i a m e te r needed f o r e q u alp ow er o u t p u t s t a n d a r d i z e d t o t h e o ptim um b l a d e shape.

    t s h o u ld be s t r e s s e d t h a t t h e r e s u l t s c i t e d a p p l y r e a l l y o n l y t o NACA 4415a i r f o i l p r o f i l e s a l t h o u g h t h e r e s u l t s o b t a i n e d u s i n g a NACA 4418 p r o f i l e w e req u i t e s i m i l a r . O t h e r b l a d e s e c t i o n s need t o b e a na l yz e d b e f o r e t h i s p r oc e du r ec a n b e g e n e r a l i z e d .

    t s ho u ld a l s o be k e p t i n m in d t h a t t h e p ower c o e f f i c i e n t s f ou n d a r e f o rp e r f e c t l y c o n s t r u c t e d b la d es . f l i m i t e d num ber o f o pt im u m b l a d e s w er e t obe p roduced i t w ou ld be d i f f i c u l t t o o b ta i n t h e e x ac t ch or d and t w i s t d i s t r i -b u t i o n n ee ded . On t h e o t h e r hand b e t t e r q u a l i t y c o n t r o l m i g h t b e e x p ec t ed f o rCCZT b l a d e s be ca us e o f t h e s i m p l e r c o n s t r u c t i o n .

    T h i s s t u dy a tt em p te d t o o p t i m i z e t h e c h or d and t w i s t d i s t r i b u t i o n o f f o u rr o t o r t yp e s. t h as b een s ug ge st ed t h a t f u r t h e r i n c re a s e s i n t h e p ow er c o e f f i -c i e n t s m i g h t be o b t a in e d b y su ch m ethods as v a r y i n g t h e a i r f o i l p r o f i l e a l o n gt h e bl ad e o r by d e s i g n in g t h e b l ad e i n s uc h a way t h a t t h e C L C D r a t i o was af u n c t i o n o f t h e r a d i a l s t a t i o n i n s te a d o f h o l d i n g t a t a c o n s t a n t C L C D maximum.

  • 8/12/2019 Simple Momentum Theory

    41/122

    TAGLEPOWER COEFFICIENTS O TWELVE SIMULATED ROTORS

    L i s t e d i n o r d e r o f m a g n it u de )

    T yp e o f R o t o r No. o f B l ad e s B o Power C o e f f i c i e n tOptimumOpt imumOpt imumLCLTLCLTLCLTLCZT

    CZTLCZTCCZTCCZTCCZTCCZT

  • 8/12/2019 Simple Momentum Theory

    42/122

  • 8/12/2019 Simple Momentum Theory

    43/122

  • 8/12/2019 Simple Momentum Theory

    44/122

    TABLE 4

    INCREASE OF BLADE DIAMETER NEEDED TO OFFSET LOSS OFEFFICIENCY DUE TO USE OF NON OPTIMUM BLADE

    I nc re as e i nN a B l a d es R o t o r T yp e Power C o e f f i c i e n t D i a m e te r@ o

    2 Opt imum 0.0 .439 0.002 LCLT 2.0 .428 1.2 82 LCZT2 CCZT

    3 Optimum 0.0 .4633 LCLT 1.5 .4493 LCZT 4.5 .423 4 .623 CCZT 6.1 .41 5 5.6 2

    4 Opt imum 0.0 .474 0.004 LCLT 1.5 .460 1.514 LCZT 4.5 43 0 4.994 CCZT 6.1 .425 5. 61

  • 8/12/2019 Simple Momentum Theory

    45/122

  • 8/12/2019 Simple Momentum Theory

    46/122

    F I G U R E

    I 4 ar5 6 7L O C A L S P E E D R A T I O V o

    A X I A L A N D A N G U L A R I N T E R F E R E N C EF A C T O R S v s L O C A L S P E E D R A T I O

  • 8/12/2019 Simple Momentum Theory

    47/122

    FIGUREAPPROXIMATIONS USED FOR THE COMPUTERSIMULATION OF THE LCZT AND LCLT BLADES

    LINEAR TWISAPPROXIMATION

    CHORD TWIST

  • 8/12/2019 Simple Momentum Theory

    48/122

    F I G U R E 4SOLID ITY vs P I T C H A N G L E AND T I PS PE ED R A T IO F O R C O N S T AN T C H O R DZ E R O T W I S T B LA DE S

    / N A C A 44 5o

    STD ROUGHNESSN A C A 44 8

    V

    O 3 0 O9 I 2S O L I D I T Y 0

  • 8/12/2019 Simple Momentum Theory

    49/122

  • 8/12/2019 Simple Momentum Theory

    50/122

    F I G U R EP OWE R vs R.F M. F O R2 B L A D E D O P TIM U MR O T 0 R

    300 4 00 500 6 7 8 900R O T O R R.P.M.

  • 8/12/2019 Simple Momentum Theory

    51/122

    Nomencl a u reA x i a l i n t e r fe r e n c e f a c t o rA ng ula r i n t e r f e r e n c e f a c t o rWake a x i a l i n t e r f e r e n c e f a c t o rNumber o f b la d es i n a g i v e n r o t o rL o ca l c h o rd f o r a g i v e n b l a d eD r a g c o e f f i c i e n tL i f t c o e f f i c i e n tP o w e r c o e f f i c i e n tC o e f f i c ie n t o f f o r c e i n t h e d i r e c t i o n o f r o t a t i o nC o e f f i c i e n t o f f o r c e normal t o t h e p l an e o f r o t a t i o nR a d i u s o f t h e r o t o rR adius o f a g i v e n lo c a l s t a t i o nA x ia l f l o r v e l o c i t y t t he r o t o rA x i a l f l o w v e l o c i t y i n t h e wakeTorque as g i ve n by aerodynamic th eo ryTorque as given by momentum theoryTh r us t as g i v en by ae rodynam ic t h eo r yThrust as g iven by momentum theoryF re e s tr ea m v e l o c i t yThe r e l a t i v e v e l o c i t y a s seen by a moving b la de e lementThe t i p speed r a t i o o f t h e r o t o r d e vin ed a s nR/VoThe ang l e be tween t he cho r d o f t h e b lade e lem en t and t he r e l a t i v ev e l o c i t yAn equa l angu l a r de f l e c t i o n i n a d d i t i o n t o b la de t w i s t g i ve n t oeach b lade e lement

  • 8/12/2019 Simple Momentum Theory

    52/122

    n A ng ula r v e l o c i t y o f t h e r o t o rD e n s i t y o f t h e f l u i d mediumA ng le b etween t h e p l a ne o f r o t a t i o n and t h e r e l a t i v e v e l o c i t yA n gle b etw ee n t h e p l a ne o f r o t a t i o n and t h e c ho r d o f t h e b l a d eelement

  • 8/12/2019 Simple Momentum Theory

    53/122

    r e f e r e n c e s

    1 . G l ave r t , H., Aerodyn an~ics Theory IJ. F. Durand , Ed i t o r - i n - C h i e f ) Vo l I V ,D i v i s i o n L , J u l i u s S p ri ng e r , B e r l i n , 1935.

    2. i b i d3. Wils on and L issaman, A pp l ie d Aerodynamics o f Wind Power Machines, OregonS t a t e U n i v e r s i t y , J u l y 1 974.4. Putnam, P. C., Power from t h e Wind, Van No str an d Company, I n c . , New York,1948.

  • 8/12/2019 Simple Momentum Theory

    54/122

    P P E N D I X PL N H0 0 1 0 0 P??OG??AI.1 O?T IPJP 'JT O T? T0 0 1 0 5 D I M E ? I .S IC ? IC E ( 1 5 )0 0 1 1 8 ?EAD l r ?0 0 1 2 0 ?EAD l r B0 0 1 3 8 ? E A 9 l r X0 0 1 4 3 FZAD l r C L0 0 1 5 8 ?EAD l r A0 0 1 6 0 1 F O ? A A ( F 7 * )@ 0 1 7 E ? ?I N? 20 0 1 68 2 FC ? M A T 0 0 2 4 5 v = ? ./ i e0 0 2 5 0 DO 3 2 L -1 1 00 0 2 6 0 Y L = Y L + ( Y / l B m >0 0 2 7 0 P = ? * P I / l E B *E 0 2 8 8 ? L = ? L + ( ? / l a * )0 8 2 9 3 ? E ? = ? E " + * l0 0 3 0 0 DO I = 1 ~ 6 0 0 C0 0 3 1 0 P = ? - < * C l * ? I / 1 8 3 * >0 0 3 2 0 XE= SI?I ?>* 2**CCC ?>-l*>)/< l * + 2 e * C O ~ ( ? > > * ( l - C G S ( P ) ) )00330 I F ( A S Z ( : < L - X E > * L T * 2 5 > O T O 60 0 3 3 2 5 COM?IP E0 0 3 3 4 6 DO 7 J - l r 4 D 2 20 0 3 3 6 ? = ? - < .C O l* ? I / lE ? ~ >00338 Y E = < S I ~ l < ? ? * 2 ~ * C @ S < ? > - l e> / ( ( I * + ~ * * C O S ( Q ) ) * ( I - C O S ( ? ) ) )0 3 3 4 8 I F< A SC . Y L -X E ) e L T * e Z C 5 O T O I O0 6 3 4 2 7 COP TIN'JE00358 l e 9CCL=

  • 8/12/2019 Simple Momentum Theory

    55/122

    UNIVERSITY O MASSACr:;JSETTS/ AMHWENERGY ALTERNATNES PROGRAM

    UN IVERSITY OF F1ASSACHUSETTS/AMHERSTENERGY ALTERNATIVES PROGRAM

    FIELD COtiTROLLER FOR THE UMASS W IN FURNACE

    byDaniel Handmann

    U.Mass Ui nd Furna ceE n e rg y A l t e r n a t i v e s P ro g ra mU n i v e r s i t y o f M a s s a c h u s e t t sAmhers t Massa chuse t t s 01002

    TR/ 7 6 5Append ix V I I

  • 8/12/2019 Simple Momentum Theory

    56/122

    FIELD CONTROLLER FOR THE UMASS WIND FURNACEt has been de te r rn i ned exper i l nen ta l l y t h a t I I I~X~I I~UI I I power o u t p u t o f t h e

    Lim a E l e c t r i c G e n e r a to r c a n be a c h ie v e d i t h e f i e l d c u r r e n t su p pl ie d t o t h eg e n e r a t o r f o r a g i v e n g e n e r a t o r s peed f o l l o w s t h e c u r v e shown i n F i g u r e 1 .The fu n ct io n o f t h e f i e l d c o n t r o l l e r i s t o s up ply f i e l d c u r r en t alo ng t h i s fvs. RP c u r v e . To a cc om p lis h t h i s t a s k t he f i e l d c o n t r o l l e r has f i v e b a s icc om po ne nts ; ( r e f e r t o d r a w i n g # SH -I, 0 3.0 1.0 1 F i e l d C o n t r o l l e r , B l o c k D i ag r am )a ta ch om ete r, a 6 b i t an a lo g t o d i g i t a l c o n v e r t e r , a 64 w ord b y 8 b i t sem i-c o nd u ct or memory, an b i t d i g i t a l t o a n al og c o n v e r t e r, and a p u l s e w i d t hm od ula te d t r a n s i s t o r s w i t c h i n g amp1 i f i e r .

    The o p e r a t i o n o f t h e s ys te m i s a s f o l l o w s : The t ac h om e t er i s g ea r ed t ot h e g e n e r a t o r and has a d .c . v o l t a g e o u t p u t t h a t i s l i n e a r w i t h rpm. Theo u t p u t of t h e ta ch om ete r i s c on v e rt e d f r o m a v o l t a g e l e v e l t o a 6 b i t b i n a r ynum ber by t h e a n al o g t o d i g i t a l c o n v e r t e r . The 6 b i t b i n a r y num ber c an t a k eo n i n t e g e r v a l u e s b e tw ee n 0 a nd 63 ( ba s e 1 0 ) w h ic h h as t h e e f f e c t o f b r e a k -i n g down t h e o p e r a t i n g s peed r a n g e o f t h e g e n e r a t o r i n t o i n c r e m e n ts o f 28.5 rpm.The o u t p u t o f t h e a n a lo g t o d i g i t a l c o n v e r t e r i s used t o ad dr es s one o f t h e 6 4words i n memory. The c o n t e n t s o f t h e a d d re ss ed 8 b i n a r y b i t w or d a pp ea r a t t h eo u t p u t o f t h e memory. The d i g i t a l t o an a l og c o n v e r t e r c o n v e r t s t h e w ord f r ommemory i n t o a c u r r e n t l e v e l b et we en 0 and 2.6 m i 11 -amps. T h i s c u r r e n t 1eve1 i st h e c o n t r o l s i g n a l f o r t h e p u ls e w i d t h mo du la te d t r a n s i s t o r s w i t c h in g a m p l i f i e r .The s w i t c h i n g a m p l i f i e r s w i tc h e s a 50 v o l t d. c. power s u p p l y on an d o f f a t af i xed f requency (10kHz) . The w i d t h o f t h e p u ls e v a r i e s l i n e a r l y w i t h t h e c o n t r o ls i g n a l f ro m t h e d i g i t a l t o a n al og c on v er te r. T h e w i d e r t h e w i d t h o f t h e p u l s e s ,t h e h i g h e r t h e av er ag e c u r r e n t s u p p l i e d t o t h e g e n e ra t o r f i e l d . T h e s w i t c h i n g

  • 8/12/2019 Simple Momentum Theory

    57/122

    a m p l i f i e r a l s o m o n i to r s t h e am ount o f c u r r e n t b e i ng d e l i v e r e d t o t h e g e n e r a to rf i e l d by means o f a feedback l oop . The feedback s i gna l i s sumed i n t o t hec o n t r o l s i g n a l t o p r o v id e c u r r e n t re g u l a t i o n n e c es s it a te d by t h e f l u c t u a t i o no f t h e g e ne ra to r f i e l d s r e s i s t a n c e w i t h c hanges o f f i e l d t em p er at ur e.

    By b u i l d i n g t h e s ys te m a ro u nd a memory, a c e r t a i n am ount o f f l e x i b i l i t yi s i n tr o d u c e d i n t o t h e s yste m. I f for example, t s d e te rm in ed d u r i n g t e s t so f t h e wind g e n er at or t h a t a d i f f e r e n t f s. RP curve should be used, theo ld memory can be unplugged and rep laced by a d i f f e r e n t l y programe d one. Fort h e f i r s t model o f t h e f i e l d c o n t r o l l e r , two 32 word memories were usedi ns t ead o f one 64 word memory. Th i s p rov i des t he op t i o n o f chang ing pa r t o ft h e f s. RP c u r ve a t o n e -h a l f t h e c o s t . The f s. RP cu rve can a l so bes h i f t e d h o r i z o n t a l l y and v e r t i c a l l y by a d j u s t i n g t ri m n e r p o te n ti om e te rs i n -c lu d ed i n t h e c i r c u i t . The a c tu a l o u t pu t o f t h e f i e l d c o n t r o l l e r i s shownsuper imposed over the ideal f s. RP c urv e i n F i g u r e 2.

  • 8/12/2019 Simple Momentum Theory

    58/122

  • 8/12/2019 Simple Momentum Theory

    59/122

  • 8/12/2019 Simple Momentum Theory

    60/122

    .-.- . . .--- - -.- . .-.- - -, .

    ..

    .- - - --- ----III

    -- ... -

    I ---.. ..-- ,. Tg - ... . -- . . . - - j7 -L ,.--.., 1I." ?< r - , y.. -I-:.; c;, -.-. kcr 0 I....--- L-C . : j 7 I

    \ LJ;_. I -... ; --LLJ clj i .A 2 : I I.\ / W c ; Z ,g a t I c .< A t ic i Ioi u 4 f f c * Ii. i IjIi

    I I ...j

  • 8/12/2019 Simple Momentum Theory

    61/122

  • 8/12/2019 Simple Momentum Theory

    62/122

    APPENDIX I : Determination of the Memory Bit Structure

    In order t o determine the proper b i t pa tt ern t o be programmed int o thememory to match the If vs. RPM curve, i t was necessary t o f irs t determinethe output current of the field controller circuit for every possible value ofa memory word. Since each word con ta ins 8 b i t s of information, each word canhave 256 different values. To find the output curr ent t ha t would re s ul t fo reach of the 256 possible combinations of bits in a word, the following testswere run. ( r e fe r to drawing kSH-1-03.01.03, Fie ld Control er , Memory Simula-t io n Te st ) The memories were simulated with s p t switches that connectedeach input of the di gi ta l t o analog converter t o ei th er +5 volts ( logical 1)or ground (lobical 0). Then the swi tches were s e t fo r a l l of the 256 possiblecombinations of the b i t s , and with an ammeter, th e re su lt in g cur rent deliveredto the generator field for each combination was recorded. Cornb-ining ther es ul ts of the memory simulation t e s t with a li st i ng of the rpm range that eachmemory word would cover, and the ideal If vs. RPM curve, the proper memorycontents t o generate the desired shape for the I f vs. rpm curve were determined.A copy of the b i t s tr uc tu re i s shown in Table 1. The memories were programmedusing the Signetics 8223 Programming Procedure A a copy of which i s provided.

  • 8/12/2019 Simple Momentum Theory

    63/122

  • 8/12/2019 Simple Momentum Theory

    64/122

    RPV RP :E MLMrJhY PIrhESS 89 MFMGhY CCvPJ IFN------- . m 53 L rl0 - 29 0 . .0 0 3 0 . .---- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    29 5 7 i : - ;>. c . .

    5 7 86 0---------------.-.----. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 4 3 a G i .I> 3 . J ~I...-....---------------.---.----.---

  • 8/12/2019 Simple Momentum Theory

    65/122

  • 8/12/2019 Simple Momentum Theory

    66/122

    -S l G NE T l CS D I G I T AL 8 S E RI ES T T L / MS I -8 2 2 3

    ~- ~-

    8 2 2 3 P RO G RAM MI NG P RO CE DURETl~cs ; :3 I ~ I I ~ ~ r1o(ll;1n1rr11~0l y 11511111 ( : t ~ r t ~

  • 8/12/2019 Simple Momentum Theory

    67/122

    UNNERSlTY OF M A S S A C i : ; I S m / M H mENERGY MTERNAtlVES PROGRAM

    UNIVERSITY OF MASSACHUSETTS/AMHERSTENERGY ALTERNATIVES PROGRAM

    A GENERAL DESCRIPTION OF THE BLADE-PITCH CONTROLLER

    yBruce A Caccamo

    U M ass. i nd FurnaceE n e r g y A l t e r n a t i v e s P r o g r a mU n i v e r s i t y o f M a s s a c h u s e t t sAmherst Massa chuset ts 01002

    TR/76/ 6Appendix V I I I

  • 8/12/2019 Simple Momentum Theory

    68/122

    GENERAL DESCRIPTION OF THE BLADE-PITCH CONTROLLER

    A b s t r a c tThe b l a d e - p i t c h c o n t r o l l e r p r o v i d e s f o r maximum e n e rg y t r a n s f e r b etw ee n

    t h e w in d and t h e w i n d m i l l u n d e r v a r y i n g w in d c o n d i t i o n s . The p u rp o se o f t h i sp a pe r i s t o d e f i n e t h e n e ce ss ar y r e g i o n s o f c o n t r o l an d t h e method s w h i chp e r m i t s t a b l e o p e r a t i o n t h ro u g h b l a d e - p i t c h c o n t r o l .

    The b l a d e - p i t c h c o n t r o l l e r p r o v i d e s f o r maximum e n e rg y t r a n s f e r b etw ee nt h e wi nd and t h e w i n d m i l l u n de r v a r y i n g w in d c o n d i t i o n s . I n o r d e r t o u nd er -s ta n d how t h e c o n t r o l l e r does t h i s , we m us t f i r s t l o o k a t t h e o v e r a l l s t r u c t u r e .

    The w in d m i l l i s f r e e t o r o t a t e i n yaw o n a p l a t f o r m so t h a t t h e b la de sa r e a lw a ys f a c i n g i n t o t h e w in d. T h re a r e t h r e e b la d es , w h ic h a r e c o n t r o l l a b l ei n p i t c h . The r o t o r i s c on ne cte d th r o ug h a speed-up d r i v e t o a 25 kW gene r a t o r .

    R e l a t i v e t o wind speed t h e r e a r e f o u r d i s t i n c t r eg i on s o f p i t c h c o n t r o l . I nr e g i o n 1 0 -5 mph) t h e p i t c h c o n t r o l l e r w l l be c a l l e d upon t o p o s i t i o n t h eb la de s a t an a n g le o f a t t a c k w h ic h w i l l p r o v id e t h e g r e a t e s t s t a r t i n g t o rq u e.F o r th e s e w in d s pee ds, t h e p i t c h a n g l e i s s e t a t m in u s e i g h t de gre es . I nr e g i o n 2, 5 -2 6 mph) t h e c o n t r o l l e r w l l m a i n t a i n t h e p i t c h a n g le a t m in use i g h t de gre es . T h i s w i l l b r i n g t h e ge n e ra t or up t o speed i n t h e s h o r t e s tp o s s i b l e t i m e a n d w l l d e l i v e r t h e maxim um power a t any g i ven w i nd speed. I nr e g i o n 3 26 - 45 m ph) t h e c on t r o l l e r m a i n t a i ns t h e g ene r a t o r speed a t 1800 RPM.W i th o u t t h e c o n t r o l l e r , t h e g e n e ra t or wo uld ov ers pe ed a nd t r i p o f f t h e l i n e .I n r e g i o n 4 above 45 mph) t h e c o n t r o l l e r h as t o f e a t h e r t h e w i n d m i l l b l a d e s .T h i s a mounts t o s h u t t i n g down t h e s ys te m t o p r e v e n t d e s t r u c t i o n u nd e r h i g h w in d s .

  • 8/12/2019 Simple Momentum Theory

    69/122

    Thr ough com pu t e r ana l ys i s , t h e p ow er o u t p u t c u r v e h as b een r e l a t e d t op i t c h a n g l e t h ro u g h t h e t i p speed r a t i o s ee b l a d e - p i t c h s c h ed u le , F i g u r e 1 ) .The t i p speed r a t i o nR /V ) i s t h e a c t u a l c o n t r o l s i g n a l u sed i n t h e p i t c h -c o n t r o l c i r c u i t r y t o r e pr e se n t th e d e si re d p i t c h a ng le .

    As t h e f o u r c o n t r o l r e g io n s a r e t ra n s v er s ed , t h e t i p speed r a t i o w i l li n c r e a s e f r o m 0 t o 7 and the n decrease t o 0 . As w ind speed i nc r eas es f r om0 -5 mph, t h e t i p speed r a t i o i n cr e a s e s u n t i l t r eaches 7 . T h i s p o i n tr e p r e s e n t s t h e b e g i n n in g o f r e g i o n 2 wh ere g e n e r a t o r RPM w i l l i n cr e as e w i t hi n c r e a s i n g w in ds pe ed . T h ro ug ho ut t h i s r e g i o n t h e b l a d e p i t c h w i l l be m a i n t a i neda t ~ i l in u s i g h t deg ree s w h ic h i s e q u i v a l e n t t o Q R / V = 7 A t 26 n lph the generatorw i l l re ac h ra t e d RPM, and i i R / V w i l l s t a r t t o d e cr ea s e as w i n d sp ee d i n c r e a s e s .T h i s o cc u r s be ca us e t h e t a c h om e t e r o u t p u t i s cla mp ed a t 20 v o l t s . Thus, asw ind speed i nc reases , nR/V w i l l dec r ease and b l ade - p i t ch w i l l i n cre as e u n t i lr e a c h i n g t h e f e a t h e r e d p o s i t i o n a t a w in ds pe ed o f 4 5 mph. t shou ld be no tedt h a t t h e c o n t ro l 1er can be commanded t o f e a th e r sooner i f d e si re d see Dwg.03.02.01 ) .

    The p i t c h c o n t r o l l e r i s a c t u a l l y a p ul s e -w i d th m od ula te d P W ) t r a n s i s t o rsw i t c h i ng am p l i f i e r . see Dwg. 03. 02 .01 ) t uses a DC power s upp ly wh icht h e a m p l i f i e r s w it ch e s on and o f f a t a f i x e d f re q ue n cy . The w i d e r t h e w i d t hof t h e d r i v i n g p u ls e ; t h e h i g h e r w i l l be t h e a ve ra ge c u r r e n t d e l i v e r e d t o t h em o t o r; and t h e f a s t e r t he m o t o r w i l l t u r n . PWM p r o vi d es a c o n t in u o u s f i n ec o n t r o l o f t h e p i t c h an gle .

    P ul s e - w i d th m o d u l a t io n i s o b t a i n e d b y c om p ar in g t h e d e s i r e d p i t c h a n g l es i g n a l n R/V ) w i t h a t r i a n g l e wave. The t r i a n g l e wave i s o b t a in e d by i n t e -g r a t i ng a squa r e w ave . The l e n g t h of t im e i n w h ic h t h e v o l t a g e l e v e l o f t h e

  • 8/12/2019 Simple Momentum Theory

    70/122

    t r i a n g l e wave i s g r e a t e r t h a n t h a t of R V d ete rm in es t h e w i d t h o f t h e d r i v i r ~ gp u l s e s e e F i g u r e 2 ) . s i m i l a r c o m p a ri so n i s made be tw ee n t h i s same t r i a n g l ewave an d a fe ed ba ck s i g n a l w h ic h r e p r e s e n t s t h e a c t u a l p o s i t i o n o f t h e b l a d e s .These tw o pu l s e - w i d t h m odu la t ed s i gn a l s a r e t hen compared t he y a r e 180 deg reeso u t o f p hase w i t h each o t h e r ) ; th us , p r o v i d i n g t h e d r i v i n g s i g n a l f o r t h emotor . The moto r w i l l t u r n i n t h e d i r e c t i o n w h ic h w i l l e q u a t e t h e a c t u a la n g l e w i t h t h e d e s i r e d a n gl e.

  • 8/12/2019 Simple Momentum Theory

    71/122

    > :n l . l

    ENERGY LTERN TIVE PROGR MUNIV ERSITY OF M SS CHUSETTS

  • 8/12/2019 Simple Momentum Theory

    72/122

  • 8/12/2019 Simple Momentum Theory

    73/122

  • 8/12/2019 Simple Momentum Theory

    74/122

  • 8/12/2019 Simple Momentum Theory

    75/122

  • 8/12/2019 Simple Momentum Theory

    76/122

  • 8/12/2019 Simple Momentum Theory

    77/122

  • 8/12/2019 Simple Momentum Theory

    78/122

    UNN RSITY OF MASACHUSElTS AMHERSTENERGY ALTERNATIVES PROGRAM

    UNIVERSITY O MASSACHUSETTS/AMHERSTENERGY ALTERNATIVES PROGRAM

    PRELIMINARY REPORTTHERMAL SYSTEMS

    W I N FURNACE PROJECT

    Jon G. McGowanandG h a z i D a r k a z a l l

    U.Mass. Wind FurnaceE n er gy A l t e r n a t i v e s P ro gr amU n i v e r s i t y o f M as sa ch us et tsAmhers t Massa chuse t ts 01 002

    A p r i l 1 9 7 5

    TR/76/ 7Append ix

  • 8/12/2019 Simple Momentum Theory

    79/122

    Work in the area of thermal systems can be divided into two categories:analytical model ing work and experimental work. The analytical modeling hasformed the basis for the experimental design a n d a summary of i t s keypoints follows. With the completion of the economic p a r t of t h i s work,a more detail ed technical rep ort on th i s subjec t will be iss ued. )1. N L Y T I C L MODEL

    A. Description of the Overall System ConfigurationThe an al yt ic al model i s based on a mathematical simulation using

    a d ig i ta l computer t o determine the feasibility and performance ofusing w-ind heating systems fo r home heating a n d domestic hot waterdemands. Also, the poss ibi l ity of combining the wind systems with afl at -p la te s ola r col lec tor sub-system i s investig ated. The basic windenergy input component for a l l systems i s a horizonta l ax is wind machine.

    The performance of the heating systems, for a given s i t e andweather condi tions , i s studied as a function of the following keysystem parameters: 1 the wind genera tor blade diameter, 2 the windgenerator tower height, 3 the s iz e of the res ide nti al heating del iverysystem, 4 the siz e of the sol ar co lle ct or , and 5 the s iz e of the thermalstorage water tank. det ail ed economical ana lys is of the to ta l co st ,for each of the systems studied wil l be based on the assumption of massproduced unit manufacturing. The description of the different systemmodel s fo l 1ows.

    Model I i s the simples t windpower system Fig. 4 . 1 . I t has no energystorage and el ec tr ic al energy i s delivered t o the house directly from the

  • 8/12/2019 Simple Momentum Theory

    80/122

  • 8/12/2019 Simple Momentum Theory

    81/122

  • 8/12/2019 Simple Momentum Theory

    82/122

  • 8/12/2019 Simple Momentum Theory

    83/122

    s t o r a g e t a n k t o t h e h ou se . When th e t e mp e ra tu re o f t h e s o la r s t o ra g ei s l e s s t h an t h e d e s i r e d l o we r l i m i t t h e n t h e s y s t e m w i l l d e l i v e r e n e r g yf r o m t h e w i n d s t o r a g e t a n k . The t wo s t o r a g e t a n k s a r e c o n ne c te d t oe ac h o t h e r v i a a m i x i n g pump w hi c h i s u s ed when t h e t e m p e r a t u r e o f o n eo f t h e s t o r a g e ta n ks i s h i g h e r t h a n t h e u pp e r l i m i t .

    5 ) Domes t ic Ho t Wate r Node l .T h i s model i s used, i n c o n j u n c t i o n w i t h t h e p r e v i o u s m ode ls , t o

    i n v e s t i g a t e t h e p o s s i b i l i t y o f u s i n g t h e w in d and s o l a r sys tem s t op r o v i d e t h e d om e st ic h o t wa te r r e q u ir e m en t o f a r e s i d e n t i a l home.

    B. Sys tem Componen ts Desc r lp t ionS i nc e t h e o v e r a l l sy stem p er fo rm an ce i s a f u n c t i o n o f ea ch i n d i v i d u a l

    c ompo ne nt , a d e ta i l e d p h y s i c a l mo de l and ma th e ma t i c a l a n a l y s i s h as b ee nd ev e lo p ed f o r t h e f o l l o w i n g b a s i c co mp on ents: t h e e l e c t r i c w i n d g e n e r a t o r ,t h e f l a t - p l a t e s o l a r c o l l e c t o r , t h e th er m al wa te r s to r ag e t an k, t h ehouse, and th e baseboard he at exchangers . A lso, t i n c l u de s a d e r i v a t i o no f t h e maximum w in d po w er d e l i v e re d b y a w in d g e n e ra to r a s a f u n c t i o n o ft h e w in d v e l o c i t y , g e n e r a t o r b l a d e d i am e t e r, and g e n e r a t o r e f f i c i e n c y .I n a d d i t i o n , based on a v a i l a b l e da ta , t h e u s e f u l s o l a r e n er gy i s de te rm i ne d .A l s o , a n e n er gy b al a nc e e q u a t i o n f o r t h e c o n t r o l v o lu me a ro u n d a s to ra g et a n k i s d e r i v e d . The h o u r l y h e a t i n g demands a r e c a l c u l a t e d u s i n g b a s i cp r in c ip l e s o f thermodynamics and hea t t r an s f e r , and s tan dar d ASHRAEp r a c t i c e . The am ount of h e a t t r a n s f e r r e d t o t h e house b y t h e h e a t d e l i v e r ysys te m i s c a l c u l a t e d a s a f u n c t i o n of t h e s i z e and c h a r a c t e r i s t i c s o f t h ei n t e r n a l h e a t ex c ha n ge rs .

  • 8/12/2019 Simple Momentum Theory

    84/122

  • 8/12/2019 Simple Momentum Theory

    85/122

  • 8/12/2019 Simple Momentum Theory

    86/122

    C D i g i t a l C om puter A n a l y t i c a l M o de lsBecause o f t h e v a r i e t y o f m od els t e s t e d and t h e number o f d i f f e r e n t

    com ponent c o n f i g u r a t i o n s t h e c om p ut er m o de ls i n c l u d e s t h e f o l l o w i n gprogram and sub-programs: 1 ) a m ai n p ro g ra m w h i ch s p e c i f i e s t h e m o de l,t h e system c o n f i g u r a t i o n , and t h e i n i t i a l c o n d i t io n s o f t h e v a r i o u scomponents. A l s o , t h e p ro gra m c o mbine s t h e o th e r s u b -pro gra ms t o d e te rm in eth e s y ste m p e r fo rma n c e F ig . 4.5) , 2 ) a d a ta s u b -p ro g ra m w h i c h i n c l u d e st h e we at he r a nd s o l a r d a t a f o r a g i v e n s i t e , 3 ) a w in d su b -p ro g ra m t h a tc a l c u l a t e s t h e w in dp ow er a v a i l a b l e , 4 a s o l a r s ub -pro gra m t h a t c a l c u l a t e st h e u s e f u l s o l a r en e r gy a v a i l a b l e t o t h e house, 5 ) a l o a d su b- pr og ra m wh i chc a l c u l a t e s t h e h ou se h e a t i n g l o a d , 6 ) a hea t exchanger sub-program wh ichc a l c u l a t e s t h e e n e r g y d e l i v e r e d by t h e b as eb oa rd h e a t e r s , a nd 7 ) a h o tw a te r s u b - ro u t i ne t h a t d e te rm i ne s t h e e n er gy d e l i v e r e d b y t h e sys te m i na f o rm o f d o me s t i c h o t w a te r . T he u s e o f a s p e c i f i c s u b -p rog ram d e pe nd so n t h e s y st em c o n f i g u r a t i o n o f t h e m od el t e s t e d .

    D S ys te m P e r forma n ce a nd A na l t y i c a l R e s u l t sA summary o f t h e m o st i m p o r t a n t a n a l y t i c a l r e s u l t s f o r t h e v a r io u s

    m o d e l s p r e v i o u s l y d i s c u s s e d f o l l o w s . The r e s u l t s a r e b ased o n m a i n t a i n i n gt h e house i n s i d e t e m pe r at u re a t 68OF. A l l sys tem s a r e t e s t e d f o r b o t h t h eavera ge and model homes by va r y in g key sys tem param eters suc h as:

    1 ) w i n d g e n e r a t o r b l a d e d ar n e te r2 ) w i n d g e n e r a t o r t o w e r h e i g h t3 ) w a t e r s t o r a g e t a n k s i z e4 t h e h e a t d e 1 iv e r .y s ys te m s i z e5 s o l a r c o l l e c t o r s i z e

  • 8/12/2019 Simple Momentum Theory

    87/122

  • 8/12/2019 Simple Momentum Theory

    88/122

    T a b l e 4. 1 r e p r e s e n t s a m o n t h l y sum nary o f t h e h e a t i n g l o a d o f b o t hthe average and model hal ies based on the weather data f ro111 art fordConn. F igure 4.6 r e p r e s e n ts t y p i c a l m o n th l y v a lu e s o f th e a ve ra g ehome ene rgy r equ i r em en t s and t he i n p u t o f t h e w i nd and so l a r sys tem s.The r e p r e s e n t a t i v e w in dp ow er o u t p u t shown i n t h e f i g u r e i s b ase d on a3 2.5 f o o t b l a d e d ia m e t e r w i n d g e n e r a t o r p l a c e d on an 80 f o o t h i g h t o w e r .The s o l a r e ne rg y i n p u t i s g i ve n f o r a 200 s qu are f o o t f l a t p l a t e s o l a rc o l l e c t o r , m oun te d v e r t i c a l l y o n t h e s o u t h w a l l o f t h e h ou se. Due t ot he i n t e r a c t i o n be tween t h e sys tem com ponen ts , and o t h e r l oss es , t heamount o f s o l a r a nd w i nd e n erg y t h e s ys te m d e l i v e r s t o t h e h ouse i sl e s s t h a n t h e e n er gy i n p u t s shown i n t h e f i g u r e . To d e te r m in e t h e e x a c tam ount o f u s e f u l e n e rg y d e l i v e r e d b y t h e s y st em an h o ur -b y -h o ur a n a l y s i si s p e rf orm e d u s in g t h e a n a l y t i c a l m odel d e s c r ib e d p r e v i o u s l y .

    To de t e r m i ne and compare t h e per fo rm ance o f t he p r ev i o us l y desc r i bedmo dels , a par am et er (Qaux/Qtotal ) i s d ef in ed a s th e r a t i o o f t h e en erg yd e l i v e r e d t o t h e house from a n a u x i l i a r y s ou rc e t o t h e t o t a l house h e a t i n gene rgy r equ i r em en t s . Th r oughou t t he pas t yea r , a l a r ge num ber o fc a n p u t e r ru n s f o r t h e H a r t f o r d w i n d d a t a an d B l u e H i l l s , M ass. s o l a rdata were per formed. Th i s pa r am e t e r se r ves t o m easure t h e ene r gy pe r f or m anceof t h e va r io us sys tems, and a s a m a j o r i n p u t t o f u t u r e s ys te m ec on om ics t u d i e s . F i gu re 4 .7 shows per fo rmance f o r t he w ind ge ne ra t or sys temw i t h o u t s t o r a g e ( Y o de l 1 ) as a f u n c t i o n o f w in d g e n e r a t o r b l a d e d i a m e t e rand t ower he i gh t ( l ow e r 1 nes o f each band r ep r es en t 100 f t t o w e r h e i g h t s ) .The p e rfo rm a nc e o f t h e win dp ow er h e a t i n g s ys te m w i t h w a t e r t h er m a l s t o r a g e i ss um m ariz ed f o r v a r y i n g s t o r a g e s i z e s a nd b l a d e d i a m e t e rs i n F i g u r e s 4 .8and 4.9.

  • 8/12/2019 Simple Momentum Theory

    89/122

  • 8/12/2019 Simple Momentum Theory

    90/122

  • 8/12/2019 Simple Momentum Theory

    91/122

    otal0.6

    NO ENERGY STORAGESYSTEM

    TOWER HEIGHTS 60 to I f t .

    AVERAGE RESIDENCE

    MODEL HOME)

    BL DE DI M ETER FT

  • 8/12/2019 Simple Momentum Theory

    92/122

    Th e mo d e l l i n g o f t h e c o mb i n e d w i n d a n d s o l a r h e a t i n g s y s t e m o b v i o u s l yopens up th e poss i b i 1 y o f v a r y i n g mo re sy s te m p ar a me te r s, t h u s t t a k e smore g raphs t o show t h i s sys tem s pe rformance. F i g u r e s 4.10 t o 4 .1 7s ummariz e a s e r i e s o f r u n s f o r t h i s s ys te m. F i g u r e 4.10 g i v e s r e s u l t sf o r t h r e e h ouse h e a t in g l oa d s and v a ry i n g c o l l e c t o r s i z e , w i t h t h es y s t e m a l s o s u p p l y i n g 50 g a l l o n s o f h o t w a t e r p e r day . Figure 4 .11shows t h e e f f e c t o f s t o r a g e s i z e a nd b l a d e d i a me t e r o n s ys te m pe rf o rma n c e.F i g u r e s 4.12 t o 4.14 p r e s e n t r e s u l t s f o r 3 d i f f e r e n t to we r h e i g h t s v a r y in gb l a d e d i a me t e r a nd c o l l e c t o r a r e a . F i g u r e s 4.15 t o 4.1 7 r e p r e s e n t a n o t h e rway o f s h ow in g th e s e r e s u l t s .

    The two tank storage system (Model 3B p e rf or m an c e i s s