63
Yien Fuang Tiong Hasan Jehanzaib Yaseen Bokhamseen Fei Zhao Zalani Kamarudin Karthik Surisetty Reservoir Characterisation Study Group A

Simulating Reservoir Structure using Well Log Data

Embed Size (px)

Citation preview

Yien Fuang TiongHasan Jehanzaib

Yaseen BokhamseenFei Zhao

Zalani KamarudinKarthik Surisetty

Reservoir Characterisation Study

Group A

15/04/2023 2

Outline• Objectives• Well data overview• Well data quality control• Top reservoir realisation• Bulk rock volume (BRV) and pore volume in

hydrocarbon zone (HPV) estimations• Fine scale model BRV, NTG and HPV• Reservoir model upscaling and volume

estimation

15/04/2023 3

Objectives

• Using stochastic simulation, construct reservoir model from well data

• Volume estimation• Investigate the accuracy of upscaling via

volume comparison

15/04/2023 4

Well locationsWell locations

X Location

Y L

ocat

ion

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

No well data in the circled areas!

14 exploration wells were drilled

15/04/2023 5

Comments regarding wells

• Well data covers a wide area of reservoir, especially in the east and south-west

• Lacking data in north-west and left centre of the reservoir

• Affects reliability of reservoir model at those areas

• All wells intersect oil-water contact and bottom of the reservoir. All contacts are shallower than reservoir bottom

15/04/2023 6

Well data summaryWell no. x (m) y (m) top (m) bottom (m) owc (m)

1 1603 729 3045 3149 30832 1617 1782 3052 3141 30833 1515 1403 3052 3141 30834 1690 573 3044 3147 30835 1605 1363 3052 3141 30836 916 257 3030 3122 30837 812 1548 3039 3134 30838 1293 972 3048 3144 30839 540 567 3007 3095 3083

10 238 660 2974 3085 308311 1770 1608 3052 3141 308312 1211 645 3043 3147 308313 1226 1663 3050 3140 308314 1441 1302 3052 3141 3083

15/04/2023 7

Well Data Quality Control

• Only well data is provided for stochastic simulation

• Important to conduct quality check• For properties like porosity and permeability,

check for trends in x and y directions• Check quality of data

15/04/2023 8

Porosity boxplots sorted in x direction

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

X Location (m)

Por

osity

(fr

ac)

Porosity boxplots sorted in X direction

• Facies 1 and 3 are low porosity formations• No obvious trends in x direction for facies 2, 4 and 5• No outlier data

15/04/2023 9

Porosity boxplots sorted in y direction

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

Y location (m)

Porosity boxplots sorted in y direction

Por

osity

(fr

ac)

• No obvious trends in y direction for facies 2, 4 and 5

15/04/2023 10

Permeability boxplots sorted in x direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

237.

821

539.

595

812.

111

916.

467

1211

.22

1225

.85

1293

.414

40.6

1514

.67

1603

.16

1605

.01

1617

.03

1689

.69

1770

.38

X location (m)

Per

mea

bilit

y (D

)

Permeability boxplots sorted in x direction

• No obvious trends in x direction for facies 2, 4 and 5• Outlier data present beyond the upper whisker. No extreme data

Outliers!

15/04/2023 11

Permeability boxplots sorted in y direction

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

256.

614

567.

4957

3.24

464

4.70

965

9.55

272

8.88

797

1.94

313

02.4

413

62.8

814

02.8

815

48.4

716

08.4

316

63.3

1782

.3

Y location (m)

Per

mea

bilit

y (D

)

Permeability boxplots sorted in y direction

• No obvious trends in y direction for facies 2, 4 and 5• Outlier data present beyond the upper whisker. No extreme data

Outliers!

15/04/2023 12

Question to Ask?

• Is the permeability outlier data dubious?• Conduct further quality check to find out

15/04/2023 13

Porosity-permeability qqplots (all wells)

0 0.05 0.1 0.15 0.2 0.25-0.1

0

0.1

0.2

0.3

0.4

Porosity (frac)

Per

mea

bilit

y (D

)

Facies 2 porosity & permeability qqplot

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18-0.1

0

0.1

0.2

0.3

0.4

Porosity (frac)

Per

mea

bilit

y (D

)

Facies 4 porosity & permeability qqplot

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Porosity (frac)

Per

mea

bilit

y (D

)

Facies 5 porosity & permeability qqplot

• Porosity and permeability distributions are similar for most parts of data• Dissimilarity is more severe at the higher end of the data• Strong indication that porosity and permeability do not have the same distribution

15/04/2023 14

Porosity histograms (all wells)

0 0.05 0.1 0.15 0.2 0.250

5

10

15

20

25

30

Porosity (frac)

Fre

quen

cy

Facies 2 porosity histogram

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.180

5

10

15

20

Porosity (frac)

Fre

quen

cy

Facies 4 porosity histogram

0 0.02 0.04 0.06 0.08 0.1 0.12 0.140

5

10

15

20

25

30

35Facies 5 porosity histogram

Porosity (frac)

Fre

quen

cy

• Porosity for each facies has uniform distribution

15/04/2023 15

Permeability histograms (all wells)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40

5

10

15

20

25

30

35Facies 2 permeability histogram

Permeability (D)

Fre

quen

cy

0 0.05 0.1 0.15 0.2 0.25 0.3 0.350

5

10

15

20

25

30

Permeability (D)

Fre

quen

cy

Facies 4 permeability histogram

0 0.05 0.1 0.15 0.2 0.250

10

20

30

40

50

Permeability (D)

Fre

quen

cy

Facies 5 permeability histogram

• Permeability for each facies has lognormal –like distribution• Likely reason for the permeability outlier data beyond the boxplots’ upper whiskers

15/04/2023 16

Porosity-permeability scatter plots

0 0.05 0.1 0.15 0.2 0.250

0.5

1

1.5

2

2.5

3Facies 2 porosity-log(permeability) cross plot

Porosity (frac)

Log(

perm

eabi

lity)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18-0.5

0

0.5

1

1.5

2

2.5

3Facies 4 porosity-log(permeability) cross plot

Porosity (frac)

Log(

perm

eabi

lity)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.140

0.5

1

1.5

2

2.5Facies 5 porosity-log(permeability) cross plot

Porosity (frac)

Log(

perm

eabi

lity)

• High likelihood of correlations between porosity and log(permeability) • No outliers in these plots• Permeability data is not dubious

15/04/2023 17

Top reservoir realisation

• Use stochastic simulation to generate a top surface

• Important to remove trend• Information from regional geology

– Reservoir dips gently to the east– Reservoir is strongly compartmentalised,

indicating presence of faults• Expect trend in east-west (x) direction and

trend arising from fault compartmentalisation

15/04/2023 18

Well top markerssorted in x direction

20 40 60 80 100 120 140 160 1802920

2940

2960

2980

3000

3020

3040

3060

x grid no. vs. top

x grid no.

Top

(m)

Faults

Grid 50Shift ~ 20m

Grid 150Shift ~ 10m

15/04/2023 19

Detrending fault compartmentalisation

• Assume middle compartment is the hanging wall to the two foot walls at east and west– Shift middle compartment upwards

• Assume linear increase in shift from west to east (between grid 50 and 150)

• For x grid between 50 and 150, vertical shift = 25 - 0.1(X grid no.)

15/04/2023 20

Top markers after removing fault trend

20 40 60 80 100 120 140 160 1802920

2940

2960

2980

3000

3020

3040

3060

f(x) = 0.500771099127626 x + 2968.26378721977R² = 0.938674239734604

Top markers without fault trend

X grid no.

Dept

h (m

)

Top markers dipping from west to east

15/04/2023 21

Top markers residuals

0 20 40 60 80 100 120 140 160 180 200

-10

-5

0

5

10

15

Top marker residuals sorted in x

X grid no.

Resid

ual (

m)

0 20 40 60 80 100 120 140 160 180 200

-10

-5

0

5

10

15

Top marker residuals sorted in y

Y grid no.Re

sidua

l (m

)

Top markers residuals do not have trends in x and y directions Ready for stochastic simulation

15/04/2023 22

Residual Tops stochastic simulation

X

Y

Residuals map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

-10

-5

0

5

10

Stochastic simulation for 500 points (range = 40, sill = 10), then interpolate residuals using inverse distance interpolation (with power 2)

15/04/2023 23

Top reservoir map after restoring x direction trend and faults

X

Y

Top Reservoir Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

15/04/2023 24

Bulk rock volume calculation

• Since oil-water contact (owc) is within the reservoir, it is assumed to be the bottom of the reservoir

• Area of each cell is 10m by 10m• Reservoir thickness at each location = owc –

top • Bulk rock volume = 231MMm3

15/04/2023 25

Pore volume in hydrocarbon zone (HPV)

• HPV estimation requires net-to-gross and porosity values

• Approach: estimate net volume and average sandstone porosity at each well location– Assume facies 2, 4 and 5 are clean sandstone

net-to-gross of 1– Facies 1 and 3 are pure shale net-to-gross of 0

• Use stochastic simulation, generate net volume map and average porosity map

15/04/2023 26

Cartesian to Structural GridsAssume dip in x-direction only - yield deeper structural x-coordinate location vs cartesian. Estimated dip angle (~3 degree)

15/04/2023 27

Estimating average porosity•Use defined structural coordinate•Run stochastic simulation for parts of the grid

• Use well data average porosity•Populate the rest of the grid by inverse distance method

Calculated Average sandstone porosity = 0.0942

15/04/2023 28

Porosity map

Stochastic Average sandstone porosity = 0.085

15/04/2023 29

Net volume at well locations

20 40 60 80 100 120 140 160 1801000

2000

3000

4000

5000

6000

7000

8000

f(x) = − 53.5303608722359 x + 8745.94931203931R² = 0.93151341344148

Net volume sorted in x direction

X grid no.

Net

Vol

ume

(m3)

Net volume reduces until grid 120

15/04/2023 30

Net volume residuals without x trend

0 20 40 60 80 100 120 140 160 180 200

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

Net volume residuals sorted in x

X grid no.

Net

Vol

ume

Resid

ual (

m3)

0 20 40 60 80 100 120 140 160 180 200

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

600

f(x) = − 3.60065602239179 x + 494.308175865485R² = 0.823494867273253

Net volume residuals sorted in y

Y grid no.

Net

Vol

ume

Resid

ual (

m3)

Net volume residuals without x trend has a trend in y direction Remove the trend in y direction

15/04/2023 31

Net volume residuals without x and y trends

0 20 40 60 80 100 120 140 160 180 200

-1400-1200-1000

-800-600-400-200

0200400

Net volume residuals sorted in x

X grid no.

Net

Vol

ume

Resid

ual (

m3)

0 20 40 60 80 100 120 140 160 180 200

-1400-1200-1000

-800-600-400-200

0200400

Net volume residuals sorted in y

Y grid no.

Net

Vol

ume

Resid

ual (

m3)

After removing x and y trends, net volume residuals do not have trends in x and y directions Ready for stochastic simulation

15/04/2023 32

Net volume residual mapStochastic simulation for 704 points (range = 40, sill = 10), then interpolate residuals using inverse distance technique (with power 2)

X

Y

Net Volume Residuals Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

-1000

-800

-600

-400

-200

0

15/04/2023 33

Net volume map after restoring trends

Total net volume = 166.7MMm3

Reservoir NTG = 0.7216

X

Y

Net Volume Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

2002000

3000

4000

5000

6000

7000

8000

9000

15/04/2023 34

Hydrocarbon pore volume (HPV)

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 100

200

300

400

500

600

700

800

900

1000

HPV= 13.45 MM m3

15/04/2023 35

Fine scale model volume estimation

• Using similar methods to estimate BRV, HPV, reservoir NTG and average reservoir sandstone porosity

15/04/2023 36

Fine scale model BRV

X

Y

Top Reservoir Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

2980

2990

3000

3010

3020

3030

3040

3050

3060

BRV = 183.6MMm3

15/04/2023 37

Fine scale NTG map

X

Y

Net To Gross Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Reservoir NTG = 0.7203

15/04/2023 38

Fine scale porosity map

X

Y

Average Sandstone Porosity Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 0.06

0.08

0.1

0.12

0.14

0.16

Average reservoir sandstone porosity = 0.1101

15/04/2023 39

Fine scale HPV map

X

Y

Map of Pore Volume in Hydrocarbon Zone

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

200

300

400

500

600

700

Pore volume in hydrocarbon zone = 14.3MMm3

15/04/2023 40

Upscaling

• Upscale fine scale model from 2003 grids to 203 grids

• Upscale top reservoir map to calculate upscaled BRV

• Use facies values to upscale NTG• Use arithmetic average to upscale porosity

15/04/2023 41

X

Y

Top Reservoir Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

2980

2990

3000

3010

3020

3030

3040

3050

3060

Upscaled top reservoir map

X

Y

Upscaled Top Reservoir Map

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

202980

2990

3000

3010

3020

3030

3040

3050

3060

15/04/2023 42

Bulk rock volume estimation

• BRV is the same for fine and coarse scale models = 183.6MMm3

• Similarity is due to method of calculating BRV• Upscaled top reservoir has the same

distribution as fine scale top reservoir• Only difference is the grid size 1000 bigger

15/04/2023 43

NTG upscaling

• Assign facies 2, 4 and 5 with NTG = 1• Assign facies 1 and 3 with NTG = 0• Upscaled NTG = number of sandstone cells

within 1000 cells / 1000 cells• Therefore, there are NTG values between 0

and 1• Upscaled facies: if upscaled NTG > 0.5

sandstone, otherwise it is shale

15/04/2023 44

NTG cross section at y=500mCross-Section, NTG, y=500m

X

Dep

th

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Upscaled reservoir NTG = 0.8667

15/04/2023 45

Porosity upscaling

• Porosity model is upscaled by taking the arithmetic mean of porosity within the 1000 cells grid

15/04/2023 46

Cross-Section, phi, y=500m

X

Dep

th

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 0

0.05

0.1

0.15

0.2

0.25

Porosity cross section at 500mCross-Section, Por, y=500m

X

Dep

th

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

200

0.05

0.1

0.15

0.2

0.25

15/04/2023 47

Porosity cross section at 1000mCross-Section, phi, y=1000m

X

Dep

th

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 0

0.05

0.1

0.15

0.2

0.25Cross-Section, Por, y=1000m

X

Dep

th

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

200

0.05

0.1

0.15

0.2

0.25

15/04/2023 48

Porosity cross section at 1500mCross-Section, phi, y=1500m

X

Dep

th

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 0

0.05

0.1

0.15

0.2

0.25Cross-Section, Por, y=1500m

X

Dep

th

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

200

0.05

0.1

0.15

0.2

0.25

15/04/2023 49

Porosity and HPV estimation

• Average reservoir sandstone porosity is estimated only for cells upscaled as sandstone

• It is the arithmetic average of these porosity values

• Average reservoir sandstone porosity = 0.07• HPV is 14MMm3 (estimated by summing up

the pore volume above owc, then multiplying with cell volume)

15/04/2023 50

Conclusions

• Stochastic simulation yields different realisations for different runs, especially when executed using only localised data like well data

• Volume estimations can have a big range and uncertainty

15/04/2023 51

Conclusions• The purpose of upscaling is to facilitate

dynamic simulation• It is important to maintain properties like

volumes during upscaling. In this project, pore volume in hydrocarbon zone is maintained, so the hydrocarbon reserves remain unchanged after upscaling

• As a result, reservoir net-to-gross and porosity are altered

15/04/2023 52

Recommendations

• Stochastic simulation can possibly yield a result with less uncertainty if seismic data is incorporated together with well data

• Better volume estimations can be conducted

15/04/2023 53

Q & A

15/04/2023 54

Possible top markers x trend without faults

0 20 40 60 80 100 120 140 160 180 2002920

2940

2960

2980

3000

3020

3040

3060

f(x) = − 0.0048796241209423 x² + 1.44614456150013 x + 2943.903806964R² = 0.963653116114509

x grid no. vs. top

x grid no.

Top

(m)

15/04/2023 55

Possible top markers y trend after removing x trend

0 20 40 60 80 100 120 140 160 180 200

-6

-4

-2

0

2

4

6

8

10

12

f(x) = 0.0704387062273558 x − 7.20961351617845R² = 0.692764096402608

Y grid no. vs. residual without x trend

y grid no.

Resid

ual w

ithou

t x tr

end

(m)

15/04/2023 56

Residuals after removing x and y trends

0 20 40 60 80 100 120 140 160 180 200

-4

-2

0

2

4

6

8

Residuals sorted in x

X grid no.

Resid

ual (

m)

0 20 40 60 80 100 120 140 160 180 200

-4

-2

0

2

4

6

8

Residuals sorted in y

Y grid no.Re

sidua

l (m

)

15/04/2023 57

Residuals stochastic simulation

X

Y

Residual map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 -15

-10

-5

0

5

10

15

20

Stochastic simulation for 791 points (range = 40, sill = 10), then interpolate residuals using inverse distance technique (with power 2)

15/04/2023 58

Top reservoir map after restoring x and y trends

X

Y

Top reservoir map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

2002940

2960

2980

3000

3020

3040

Bulk rock volume = 0.24km3

15/04/2023 59

Average sandstone porosity at well locations

20 40 60 80 100 120 140 160 1800.08

0.09

0.1

0.11

0.12

0.13

0.14

f(x) = 0.000267325763803992 x + 0.0790138651402766R² = 0.644465926534814

Average sandstone porosity sorted in x

X grid no.

Aver

age

sand

ston

e po

rosit

y (fr

ac)

15/04/2023 60

Porosity residuals

0 20 40 60 80 100 120 140 160 180 200

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Porosity residuals sorted in y

Y grid no.

Poro

sity

resid

ual (

frac

)

0 20 40 60 80 100 120 140 160 180 200

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Porosity residuals sorted in x

X grid no.

Poro

sity

resid

ual (

frac

)

Porosity residuals do not have trends in x and y directions Ready for stochastic simulation

15/04/2023 61

Porosity residual mapStochastic simulation for 791 points (range = 40, sill = 0.01), then interpolate residuals using inverse distance technique (with power 2)

X

Y

Porosity Residuals Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

-0.03

-0.02

-0.01

0

0.01

0.02

15/04/2023 62

Porosity map

Average sandstone porosity = 0.1015

X

Y

Average Sandstone Porosity Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200 0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

15/04/2023 63

Map of pore volume in hydrocarbon zone

• Pore volume = net volume × porosity• OIIP =15.3MMm3

X

Y

Pore Volume Map

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200200

300

400

500

600

700