15
Simulation of Contagion on Very Large Social Networks Keith Bisset, Jae-Seung Yeom Network Dynamics and Simulation Science Lab Virginia Tech

Simulation of Contagion on Very Large Social Networks...construcdng(synthedc(social(contact(networks(disaggregated population generator disaggregated synthetic population activity,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Simulation of Contagion on Very Large Social Networks

Keith Bisset, Jae-Seung Yeom Network Dynamics and Simulation Science Lab

Virginia Tech

§  Compute  the  spread  of  contagion  across  large  contact  networks  (3x10^9  -­‐  8x10^10  nodes)  §  Contagious  Disease  (Influenza,  Smallpox,  Pertussis)  §  InformaDon  Flow  (Rumors,  Fads)  §  Social  Contagion  (Smoking,  Obesity,  IncarceraDon,  Social  Unrest)    §  Computer  Malware  (Viruses)  

§  Goal:  Evaluate  intervenDons  to  reduce  or  increase  spread  

The  Problem  –  Contagion  Diffusion  

Need  for  ComputaDonal  Epidemiology  

§  InfecDous  diseases  account  for  more  than  13  million  deaths  a  year.  

§  Controlled  experiments  oWen  impossible  in  epidemiology  due  to  ethical  and  pracDcal  reasons.  

§  ComputaDonal  models  help  in  understanding  the  space-­‐Dme  dynamics  of  epidemics.    

§  Pervasive  computaDonal  environments  can  provide  real-­‐Dme  access  to  models,  data,  and  expert  opinion  to  analysts  as  an  epidemic  unfolds.  

§  Course  of  AcDon  Analysis  §  Cost-­‐benefit  analysis  §  PrioriDzaDon  of  intervenDons  §  Planning  Exercises  

§  SituaDonal  Awareness  §  EsDmaDon  of  number  infected  §  EsDmaDon  of  disease  

characterisDcs  

§  Preparedness  and  Training  

§  SyntheDc  InformaDon  Provides  §  InteracDons  with  other  systems  §  Rapid  response  to  emerging  crises  §  Flexibility  to  adapt  to  different  areas  §  IntegraDon  of  disparate  data  sources  

§  ForecasDng  §  Surveillance  §  Social  media  data  §  Blogs  §  Survey  data  

ComputaDonal  Epidemiology  Driven  by  SyntheDc  InformaDon  

ConstrucDng  syntheDc  social  contact    networks  

DISAGGREGATED POPULATION GENERATOR

DISAGGREGATED SYNTHETIC POPULATION

ACTIVITY, LOCATIONS, & ROUTE ASSIGNMENT

SYNTHETIC SOCIAL CONTACT NETWORK

WORK

SHOP

OTHERHOME

OTHER

WORKLUNCH

WORK

DOCTOR

SHOP

LOCATIONS

ROUTES

LOCATION ASSIGNMENT

HOMEWORK

GYM

DAYCARE

SHOP

WORK

LUNCH

LUNCH

SYNTHETIC NETWORK

SOCIAL NETWORKS

PEOPLE - age- household size- gender- income

LOCATION (x,y,z) -

land use -business type -

EDGE LABELS- activity type: shop, work, school- start time 1, end time 1- start time 2, end time 2

AGE

INCOME

STATUS

AUTO

26

$57K

Worker

Yes

26

$46K

Worker

Yes

7

$0

Student

No

12

$0

Student

No

Washington, DC

LOCATION

CENSUS POPULATION

POPULATION INFORMATION

SOCIAL NETWORKS

SYNTHETIC POPULATION

ANNAJOHN ALEXJOHN MATT

HOUSEHOLD

PERSON 1

AGE

INCOME

STATUS

4 PEOPLE

JOHN

26

57K

WORKER

SimulaDng  contagion  over  dynamic  networks  

transition by interaction

S

I

Local transition

P = 1-exp(t· log(1-I·S·T)) • t: duration of potential

interaction time of co-presence • I: infectivity • S: susceptivity • T: Transmissibility

Infectious

Uninfected

S

I

t

P1

P2

P3

P4

Location Social contact network L1

L2

•  Agent-based model •  Realistic Population •  Complex Interventions •  Co-evolution between

•  Contact Network •  Individual Behavior •  Public Policy •  Individual Health

§  Pandemic  Influenza  Planning  –  Fall  2006  §  How  can  we  prepare  for  a  likely  influenza  pandemic?  

§  Emergence  of  H1N1  Influenza  –  Spring  -­‐  Fall  2009  §  What  are  the  characterisDcs  of  this  influenza  strain  and  their  likely  impact  on  US  populaDons?  

§  OpDmizing  Household  Response  to  Epidemics  –  Spring  2011  §  Do  behaviors  within  households,  while  harder  to  simulate,  have  a  significant  impact  on  the  

course  of  an  epidemic?  

§  Adenovirus  Pandemics  SimulaDon  and  Analysis  –  August  2013  §  How  can  decision  makers  become  familiar  with  the  challenges  and  decisions  they  are  likely  to  

encounter  during  a  naDonal  pandemic,  mainly  centered  on  the  allocaDon  of  scarce  resources?  

§  Emergence  of  Middle  East  Respiratory  Syndrome  –  Now  §  We  are  exploring  how  simulaDon  combined  with  a  syntheDc  informaDcs  analyDc  approach  

might  shed  light  on  what  may  be  driving  this  outbreak.  

Selected  Case  Studies  

§  Model  individual  decision-­‐making  in  socio-­‐economic  context  

§  Incorporate  the  diagnosDc  process  (false  +  /  -­‐)  into  intervenDon  applicaDons  

§  Dynamic  applicaDon  of  anDvirals  based  on  current  state  of  infecDon  

§  IntegraDng  economics  of  health  care  decisions  with  dynamic  simulaDon  

§  Effect  of  individual  decision-­‐making  on  epidemics  

AnDviral  DistribuDon  Planning  

Would  retail  dispensing  of  an6virals  reduce  morbidity  and  mortality?  

§  Early  days  of  2009  H1N1  pandemic  §  Transmissibility  and  Virulence  not  

known  §  Analysts  at  DTRA  Reachback  were  

running  simulaDons  and  interpreDng  results  on  a  24  hour  cycle  to  provide  input  to  a  daily  briefing  to  HHS  as  the  epidemic  was  unfolding  

§  Regular  training  of  analysts  played  criDcal  role  in  rapid  response  

Emergence  of  H1N1  “Swine  Flu”  

§  Goal:  Flu  Forecast  similar  to  current  weather  forcasts  §  Unlike  weather  people  can  actually  do  something  to  change  outcome  §  Harness  social  media  to  infer  populaDon  level  senDments  and  idenDfy  

events  of  interest  §  Processing  of  alternaDve  data  sources  upstream  from  event  causaDon  §  Fusing  mulDple  predicDve  data  streams  to  dynamically  opDmize  

predicDons  §  IntegraDng  Dme  series  analysis  with  simulaDon  models  §  EvaluaDng  social  media  as  an  informaDon  source  

Open  Source  Data  based  ForecasDng  

Can  freely  available  data  be  integrated  with  sta6s6cal  and  simula6on  models  to  forecast  the  near  term  future?  

ISIS: Complete  analyst  workflow  support  

Visualize

Hypothesize Model

Predict, Decide

§  Large,  highly  irregular,  dynamic  network  §  Large  number  of  small  messages  §  Large  number  of  runs  needed  for  study,  even  more  for  forecasts  §  Atypical  instrucDon  mix  (not  floaDng  point)  

Key  Challenges  

Instruction Type Portion Load/Store (L1-D) 58%

Branch 19% (70% Conditional) Floating Point < 1%

0.1

1

10

100

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256KSi

mul

atio

n tim

e pe

r da

y (s

)Number of core-modules

Strong ScalingUS Population

§  System:  NCSA  Blue  Waters  §  352k  Cray  XE6  core  modules  §  US  PopulaDon:  280  million  §  Simulated  Dme:  120  days  §  WallDme:  12  seconds  §  Granularity:  <  800  people/core  

EpiSimdemics  Strong  Scaling  

Model  280  million  people  on  352k  cores  for  120  days:  12  seconds    

Projected  Global  Popula6on  6me:  6  minutes  To appear IPDPS 14

§  World  DominaDon  §  More  complex  behavior  §  Long  distance  travel  model  §  Co-­‐circulaDng  diseases  (e.g.,  Influenza  and  ILI)  §  Complex  Contagion  

Ongoing  Work  

Acknowledgements  

§  NDSSL  and  our  collaborators  §  NCSA  §  Sanjay  Kale  and  PPL  §  NSF,  NIH,  DoD,  CDC,  HHS      CNIMS  Contract  HDTRA1-­‐11-­‐D-­‐0016-­‐0001,  NIH  MIDAS  Grant  5U01GM070694-­‐11,  NSF  Blue  Waters  OCI-­‐0832603,  NSF  PetaApps  Grant  OCI-­‐0904844,