34
Simulation, reconstruction and testbeam preparations G.Mavromanolakis, University of Cambridge General Simulation studies Clustering algorithm Testbeam preparation 041110 CALICE-UK meeting, London

Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Simulation, reconstruction andtestbeam preparationsG.Mavromanolakis, University of Cambridge

� � � ����� �

General

Simulation studies

Clustering algorithm

Testbeam preparation

041110 CALICE-UK meeting, London

Page 2: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

General - Activities . Simulation

: survey of various shower models in GEANT4 and GEANT3,systematic studies/comparisons for CALICE proto geometries

. Reconstruction

: develop advanced pattern recognition algorithm for efficientcalorimeter clustering

. Testbeam preparation

: work on implementation of suitable data model

: design graphical user interface for monitoring/event display

Page 3: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Simulation

.simulation studies focused on CALICE ECAL and HCAL prototypes,to support and guide the testbeam program

.in general, studies reveal significant discrepancies amongshower packages, thus preventing model independentpredictions on calorimeter performance and reliable detectordesign optimization

.one of the main goals of the CALICE testbeam program isto resolve the situation and reduce the current largeuncertainty factors

.within this context, a proposal has been made to expose theECAL alone to hadronic beam for inclusive measurement of shower

Page 4: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

model tag brief description

G3-GHEISHA : GHEISHA

G3-FLUKA+GH : FLUKA, for neutrons with � � 20 MeV GHEISHA

G3-FLUKA+MI : FLUKA, for neutrons with � � 20 MeV MICAP

G3-GH SLAC : GHEISHA with some bug fixes from SLAC

G3-GCALOR : � � 3 GeV Bertini cascade, 3 � � � 10 GeV hybrid Bertini/FLUKA, � 10 GeV FLUKA,for neutrons with � � 20 MeV MICAP

G4-LHEP : GHEISHA ported from GEANT3

G4-LHEP-BERT : � � 3 GeV Bertini cascade, � 3 GeV GHEISHA

G4-LHEP-BIC : � � 3 GeV Binary cascade, � 3 GeV GHEISHA

G4-LHEP-GN : GHEISHA + gamma nuclear processes

G4-LHEP-HP : as G4-LHEP, for neutrons with � � 20 MeV use evaluated cross-section data

G4-QGSP : � � 25 GeV GHEISHA, � 25 GeV quark-gluon string model

G4-QGSP-BERT : � � 3 GeV Bertini cascade, 3 � � � 25 GeV GHEISHA, � 25 GeV quark-gluon string model

G4-QGSP-BIC : � � 3 GeV Binary cascade, 3 � � � 25 GeV GHEISHA, � 25 GeV quark-gluon string model

G4-FTFP : � � 25 GeV GHEISHA, � 25 GeV quark-gluon string model with fragmentation ala FRITJOF

G4-QGSC : � � 25 GeV GHEISHA, � 25 GeV quark-gluon string model

G3: GEANT3.21 G4: GEANT4.6.1 with hadronic physics list PACK 2.5

Page 5: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

ECAL+HCAL scint "response" vs model, � � 10 GeV

N cells hit E deposited

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ECAL 10 GeV-π

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ECAL 10 GeV-π

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

HCAL (with ECAL in front) 10 GeV-π

scint

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

HCAL (with ECAL in front) 10 GeV-π

scint

� different models predict different calorimeter response� HCAL more sensitive than ECAL� EM discrepancies between frameworks seen by ECAL

Page 6: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

ECAL+HCAL scint "response" vs model, � � 1 GeV

N cells hit E deposited

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ECAL 1 GeV-π

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ECAL 1 GeV-π

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

1

1.5

2

2.5

3

HCAL (with ECAL in front) 1 GeV-π

scint

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

resp

on

se (

no

rmal

ised

)

0.5

1

1.5

2

2.5

3

HCAL (with ECAL in front) 1 GeV-π

scint

� same pattern as at 10 GeV case, even more pronounced� ECAL standalone may have some discriminating power

Page 7: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

HCAL rpc – HCAL scint

N cells hit shower width

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

res

po

ns

e (

no

rma

lis

ed

)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

HCAL (with ECAL in front) 10 GeV-π

scintrpc

modelG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALORG4-FTFP

G4-LHEP

G4-LHEP-BERT

G4-LHEP-BIC

G4-LHEP-GN

G4-LHEP-HPG4-QGSC

G4-QGSP

G4-QGSP-BERT

G4-QGSP-BIC

G3-GHEISHA

G3-FLUKA+GH

G3-FLUKA+MI

G3-GH SLAC

G3-GCALOR

sh

ow

er

rad

ius

(n

orm

ali

se

d)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

HCAL (with ECAL in front) 10 GeV-π

scintrpc

� HCAL rpc less sensitive to low energy neutrons than HCAL scint

Page 8: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

discrepancies between frameworks at em level

N cells hit E deposited

# of ECAL cells0 10 20 30 40 50 60 70 80 90 100

cou

nts

0

0.02

0.04

0.06

0.08

0.1

Number of ECAL cells hit per event

GEANT4

GEANT3

FLUGG

1 GeV-e

BinWidth: 1e+00Number of ECAL cells hit per event

E deposited in ECAL (MeV)0 10 20 30 40 50 60 70 80 90 100

even

ts

0

0.02

0.04

0.06

0.08

0.1

0.12

ECAL E deposited per event

GEANT4

GEANT3

FLUGG

1 GeV-e

BinWidth: 1e+00ECAL E deposited per event

GEANT3 14% higher than GEANT4 GEANT3 14% higher than GEANT4

FLUGG 24% higher than GEANT4 FLUGG 30% higher than GEANT4

Page 9: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

0

2.5

5

7.5

10

12.5

15

17.5

20

0 2.5 5 7.5 10 12.5 15 17.5 20

π−

ECAL+HCAL rpcECAL+HCAL scintECAL

E incident (GeV)

E r

econ

str

(GeV

)

� combine ECAL+HCAL to study hadronic shower development� is it worth exposing ECAL alone to lower energy hadrons?

Page 10: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

shower longitudinal profile by W block + ECALW block ��� � ��� � ����� ��� � W block ��� � ��� � ����� � ��� �

ECAL layer0 5 10 15 20 25 30

N c

ells

hit

(a.

u.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

ECAL 5 GeV-π

BinWidth: 1e-00

ECAL layer0 5 10 15 20 25 30

N c

ells

hit

(a.

u.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

) + ECALIλW(0.9 5 GeV-π

BinWidth: 1e-00

ECAL layer0 5 10 15 20 25 30

N c

ells

hit

(a.

u.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

) + ECALIλW(1.8 5 GeV-π

BinWidth: 1e-00

� differences among models start to show up at the end of ECAL� use W block to have similar shower development as in ECAL! models clearly distinguishable with block of W in front of ECAL! combine "photos" to reveal inclusive longitudinal profile

Page 11: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

shower transverse profile by W block + ECALW block ��� � ��� � ����� ��� � W block ��� � ��� � ����� � ��� �

x (mm)-100 -80 -60 -40 -20 0 20 40 60 80 100

N c

ells

hit

(a.

u.)

0

10000

20000

30000

40000

50000

60000G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

ECAL 5 GeV-π

BinWidth: 1e+01

x (mm)-100 -80 -60 -40 -20 0 20 40 60 80 100

N c

ells

hit

(a.

u.)

0

10000

20000

30000

40000

50000

60000G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

) + ECALIλW(0.9 5 GeV-π

BinWidth: 1e+01

x (mm)-100 -80 -60 -40 -20 0 20 40 60 80 100

N c

ells

hit

(a.

u.)

0

10000

20000

30000

40000

50000

60000G3-FLUKA GH

G3-FLUKA MI

G3-GCALOR

G3-GHEISHA

) + ECALIλW(1.8 5 GeV-π

BinWidth: 1e+01

" front face # $ % # $ &�' ( segmented into # % # &�' ( cells,sufficient to record shower’s core

� differences more pronounced with a block of matter in front of ECAL

Page 12: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Calorimeter clustering . particle flow paradigm

: highly granular em and hadr calorimeters to allow very efficientpattern recognition for excellent shower separation and pidwithin jets to provide excellent jet reconstruction efficiency

.: software development (calorimeter clustering, track finding,

track-shower matching) to play a very crucial role

. current activity

: algorithm based on MST theory has been developed toexploit a "top-down and then bottom-up" approach tocalorimeter clustering

Page 13: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Introduction – theory minimal spanning tree

: a tree which contains all nodes with no circuits andof which the sum of weights of its edges is minimum

properties

: unique for the given set of nodes and the chosen metric

: deterministic, no dependence on random choices of nodes

: invariant under similarity transformations that preserve themonotony of the metric

Page 14: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

nodes, path & circuit

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

spanning tree

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

minimal spanning tree

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

40

50

60

70

80

90

100

clustering

clustering

Page 15: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

MST Clustering – Main steps . metric

define a metric : metric defines configuration space

: not necessarily euclidean

fill distance matrix : lower triangular ) * matrix

. MST

construct the MST : apply Prim’s algorithm

. clustering

set cut : "proximity" bound between nodes belongingto the same cluster

find clusters : single linkage cluster analysis

: i.e. go through MST and cut brancheswith length above cut

Page 16: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

nodes minimal spanning tree clustering

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Page 17: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

+ , - , . ,

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

x (mm)

-500-400

-300-200

-1000

100200

300400

500

y (mm)

0

200

400

600

800

1000

1200

1400

z (mm

)

-500

-400

-300

-200

-100

0

100

200

300

400

500

Page 18: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Top-down and then bottom-up clustering in brief

: use MST clustering algorithm with loose cut to performcoarse clustering

: go through MST clusters found in previous step and refineusing a cone like clustering algorithm

advantages of top-down and then bottom-up approach

: speed because of preclustering, vital for a verygranular calorimeter even if its occupancy is low

: geometry independence (or at least no strict bindings)

: efficiency (hopefully)

Page 19: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

x (mm)

-2400 -2200 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600

y (m

m)

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

x (mm)

-2400 -2200 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600

y (m

m)

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

x (mm)

-2400 -2200 -2000 -1800 -1600 -1400 -1200 -1000 -800 -600

y (m

m)

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

true clusters after mst clustering final reconstructed clusters

Page 20: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

x (mm)

400 500 600 700 800 900 1000 1100 1200 1300 1400

y (m

m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

x (mm)

400 500 600 700 800 900 1000 1100 1200 1300 1400

y (m

m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

x (mm)

400 500 600 700 800 900 1000 1100 1200 1300 1400

y (m

m)

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

true clusters after mst clustering final reconstructed clusters

Page 21: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

x (mm)

-200 0 200 400 600 800 1000 1200 1400 1600

y (m

m)

1200

1400

1600

1800

2000

2200

2400

2600

x (mm)

-200 0 200 400 600 800 1000 1200 1400 1600

y (m

m)

1200

1400

1600

1800

2000

2200

2400

2600

x (mm)

-200 0 200 400 600 800 1000 1200 1400 1600

y (m

m)

1200

1400

1600

1800

2000

2200

2400

2600

true clusters after mst clustering final reconstructed clusters

Page 22: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Performance evaluation .

: / 0 pairs at 10 GeV or 5 GeV on CALICE ECAL+HCAL RPC prototypes

: ECAL, HCAL cellsize 1 1 1 cm * , cell threshold = 0.5 mip

: satisfactory performance given the fact that the algorithm is seedlessand both ECAL and HCAL hits are treated as digital in clustering

distance (cm)0 5 10 15 20 25

sepa

ratio

n ef

ficie

ncy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ECAL+HCAL rpc

5 GeV-π 10 GeV-π

separation quality

: use V.Morgunov, A.Raspereza concept

: shoot pairs of particles with fixed energy and at given distancefrom each other, how well the algorithm reconstructs the showers

: "separation quality = fraction of events in which reconstructedenergy of the shower lies in the range 2436587:9<; ��= , where = isthe nominal energy resolution of the shower without aclose by shower"

Page 23: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Testbeam data model

.proposing a data model for the CALICE testbeam program> persistency> flexible implementation> simple user interface> efficiency

.use LCIO and ROOT frameworks for some simple testimplementation and benchmarking

.general conversion scheme (from raw/simulation datato analysis data) has been discussed/decided

Page 24: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

LCIO event data entities (v01-03)

Page 25: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

CALICE testbeam data model

LCObject

LCGenericObject

TBEcalHit TBTrackerHit TBPIDData

TBEcalAux TBTrackerAux TBPIDAux

LCIOUserDefined

Page 26: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

alternative ...

TObject

TTree

treeTBEcalHits

treeTBTrackerHits

treeTBPIDData

TBTrackerAux

TBPIDAux

ROOT

UserDefined

TBEcalAux

instances of TTree

Page 27: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Benchmarks . configuration

> machine: Linux P4 2.66 GHz / 512 MB RAM> libs: ROOT v4.00/08 and LCIO v01-03> task: write/read 1 ROOT tree or 1 LCIO collection

of N events ? 100 hits (1 hit = 3 integers + 3 floats)

L C I O R O O T

100k events size (MB) 28 4time write (sec) 64 9time read (sec) 71 19

500k events size (MB) 139 19time write (sec) 365 48time read (sec) 328 95

Page 28: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Data flowchart

Cell MappingCalibration ConstantsDetector Alignment

TestbeamRAW Data

SimulationData

Noise - Pedestals

EXE

EXE

Testbeam Datafor Analysis

Simulation Datafor Analysis

A n

a l

y s

i s

Page 29: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Graphical User Interface

.cross-platform GUI application under development for@ online histogramming@ basic analysis@ monitoring@ event display

.using ROOT GUI classes based on Xclass’95 widget library

( ACBCBCD EGFCFIHKJMLMN<OCO PQOMRISUTVJ�WIXYR�T�ZVW P\[VWIB )

.basic layout has been implemented and tested onRedhat 7.3 (gcc 3.2.3 or 2.96) with ROOT 4.00 or 3.10

Page 30: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

GUI: histograms and action widgets

Page 31: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

GUI: tabs for expanded info, settings

Page 32: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

GUI: status table

Page 33: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

GUI: active pads to invoke ROOT actions

Page 34: Simulation, reconstruction and testbeam preparations · Simulation. simulation studies focused on CALICE ECAL and HCAL prototypes, to support and guide the testbeam program. in general,

Summary . Simulation

: current poor understanding of hadronic shower developmentleads to significant discrepancies among available packagesand does not permit reliable model independent predictions

: testbeam data will help to test-validate-improve simulation code

. Reconstruction

: calorimeter clustering algorithm is being developed andfirst performance tests are satisfactory

. Testbeam preparation

: work on testbeam related software to support the running andanalysis phase has started and rapid progress is expected