23
Single-gate non- adiabatic quantized charge pumps International Conference on Quantum Metrology, Poznań, Poland, May 13 th , 2011 Datorzinātnes lietojumi un tās saiknes ar kvantu fiziku Vyacheslavs (Slava) Kashcheyevs University of Latvia, Riga, Latvia Collaboration: Bernd Kästner PTB, Braunschweig, Germany

 Single-gate non-adiabatic quantized charge pumps

  • Upload
    kalil

  • View
    30

  • Download
    0

Embed Size (px)

DESCRIPTION

Datorzinātnes lietojumi un tās saiknes ar kvantu fiziku.  Single-gate non-adiabatic quantized charge pumps. Vyacheslavs ( Slava ) Kashcheyevs University of Latvia, Riga, Latvia Collaboration: Bernd Kästner PTB, Braunschweig , Germany. - PowerPoint PPT Presentation

Citation preview

Page 1:  Single-gate non-adiabatic  quantized charge pumps

 Single-gate non-adiabatic quantized charge pumps

 International Conference on Quantum Metrology, Poznań,  Poland, May 13th , 2011

Datorzinātnes lietojumi un tās saiknes ar kvantu fiziku

Vyacheslavs (Slava) Kashcheyevs University of Latvia, Riga, Latvia

Collaboration:Bernd Kästner 

PTB, Braunschweig, Germany

Page 2:  Single-gate non-adiabatic  quantized charge pumps

Single-gate pumps in metrology context

A particular class of “quantized pumps”  Aim at low, predictable error rate Motivated by…

ometrology needs o basic physics

I

V2

1 e per cycle

I = e f

Page 3:  Single-gate non-adiabatic  quantized charge pumps

Outline

Introduction (phenomenological) Message I: constructive non-adiabaticity Message II: universality of decay cascade Outlook for metrological applications

Page 4:  Single-gate non-adiabatic  quantized charge pumps

Outline

Introduction (phenomenological) Message I: constructive non-adiabaticity Message II: universality of decay cascade Outlook for metrological applications

Page 5:  Single-gate non-adiabatic  quantized charge pumps

Animation: A. Müller

Quantum dot

V1(t)

V2

V1(t) = V1DC + V1

AC cos t

Quantum dot

~ 250 nm 

V1DC

mV

mV

V2V1

AC

f

Data: F. Luckas (U.of Hannover)

Page 6:  Single-gate non-adiabatic  quantized charge pumps

Outline

Introduction (phenomenological) Message I: constructive non-adiabaticity Message II: universality of decay cascade Outlook for metrological applications

Page 7:  Single-gate non-adiabatic  quantized charge pumps

Double-barrier quantum dot~ 250 nm 

Source

Quantum dot

Current  IDrain

V2

V1

Page 8:  Single-gate non-adiabatic  quantized charge pumps

Charge stability diagram

Coulomb blockadefor 

Resonance lines 

V1

V2

2

10

Bottom energy

3

Left

Right

Page 9:  Single-gate non-adiabatic  quantized charge pumps

V1

2

10

Bottom energy

3

Left

Right

Adiabatic paradigm for pumps Stay close to equilibrium Well-established 

SET technology At least two 

phase-shifted parameters Increasing frequency 

increases error rateV2

LOAD

UNLOAD

Mapping of charge carrier type: Buitelaar, VK et al,  Phys. Rev. Lett. 101, 126803 (2008)

First  quantized pump: Pothier et al, Eur.Phys.Lett., 17, 249 (1992)

“Electron counting capacitance standard”, Keller et al, Science 285, 1706 (1999)

Page 10:  Single-gate non-adiabatic  quantized charge pumps

Adiabatic vs single-gate pumping

V1

10

Bottom energy

Left

Right

V2

LOAD

UNLOAD

V1

1

0

V2

LOAD

UNLOAD

Blumenthal et al,  Nature Physics 3, 343 (2007)Kaestner, VK et al, Phys. Rev. B 77, 153301 (2008)

Moskalets-Büttiker (2002) “no-go theorem” :adiabatic single-parameter modulation cannot produce current

Page 11:  Single-gate non-adiabatic  quantized charge pumps

Outline

Introduction (phenomenological) Message I: constructive non-adiabaticity Message II: universality of decay cascade Outlook for metrological applications

Page 12:  Single-gate non-adiabatic  quantized charge pumps

Universal limit: decay cascade regime

V

V (mV)C

urre

nt (e

·f)

VK and B.Kaestner, Phys. Rev. Lett. 104, 186805 (2010)

Page 13:  Single-gate non-adiabatic  quantized charge pumps

decreasing escape rate escape rate to maintain equilibrium essential non-equilibrium for  If then the initial condition is forgotten!

Happy families are all alike; every unhappy family is unhappy in its own way.Leo Tolstoy, Anna Karenina, Chapter 1, first line

Raise faster than decouple!

Page 14:  Single-gate non-adiabatic  quantized charge pumps

1-step line shape

Backtunneling to empty space

 Survival probability:

Escape rate ansatz:

Kaestner et al,Appl. Phys. Lett. 94, 012106 (2009) Fujiwara et al. Appl.Phys.Lett. 92, 042102 (2008)

nΓ(t)

Page 15:  Single-gate non-adiabatic  quantized charge pumps

Universal shape in rescaled coordinates

Data: PTB group, unpublished

Rescaled voltage  

Page 16:  Single-gate non-adiabatic  quantized charge pumps

Data from B.Kaestner et al,Appl. Phys. Lett. 94, 012106 (2009) 

f=50 MHzT=40 mK

Single-step fitting

I=ef=8 pA• Plot on double-log scale• Look for straight line

Page 17:  Single-gate non-adiabatic  quantized charge pumps

Many-step line shape

• Define (dimensionless):

• If there is scale separation…

• …then the solution is

Page 18:  Single-gate non-adiabatic  quantized charge pumps

Data from B.Kaestner et al,Appl. Phys. Lett. 94, 012106 (2009) 

f=50 MHzT=40 mK

Two-step fitting    δ2 is the figure of merit

I=ef=8 pA

Fitting parameters!

Page 19:  Single-gate non-adiabatic  quantized charge pumps

Universality of the decay cascade

VK and B.Kaestner,  arXiv (2009);  PRL (2010)

Device “fingerprint” αV/ δ

a. Si nanowire dots, pulsed , T=20KFujiwara et al. APL (2008)

b. GaAs/AlGaAs etched, B=3 TKaestner et al APL (2009)

c. Surface-acoustic-wave-drivenJanssen & Hartland  (2001)

d. Classical simulation, Robinson & Barnes, PRB (2001)

δ2δ3

δ4δ5

Theory prediction:

    δ2 is the figure of merit

Page 20:  Single-gate non-adiabatic  quantized charge pumps

Outline

Introduction (phenomenological) Message I: constructive non-adiabaticity Message II: universality of decay cascade Outlook for metrological applications

Page 21:  Single-gate non-adiabatic  quantized charge pumps

-0.22 -0.20 -0.18

0

20

40

60IP (pA)

VGD

(V)

Sample A Fit A1 Sample B Fit B

-0.198 -0.192 -0.186

54.464

54.468

54.472

54.476

Sample A Run 1 Fit A1 Run 2 Fit A2

IP (pA)

VGD

(V)

-200

-100

0

n×106

S.Giblin et al., New J. Phys. 12 073013 (2010) 

f=340 MHz

Traceable measurement (NPL)

d2=15.2 (Fit A1)

d2=17.1 (Fit A2)

Page 22:  Single-gate non-adiabatic  quantized charge pumps

Outlook for metrological applications

Advantages:o Optimal frequencies in 100 MHz ÷ 1 GHz rangeo Stability against voltage bias  negligible leakageo Single ac driving signal  parallelizationo Robustness  one gate per pump to tune

Optimization directions:o barrier selectivity optimizationo serial operation with error detection and correction(Wulf & Zorin, arXiv:0811.3927)

L.Fricke et al.,  PRB (2011)

Page 23:  Single-gate non-adiabatic  quantized charge pumps

Thank you!