53
Slab – Column Frames John Wallace University of California, Los Angeles with contributions from: Dr. Thomas H.-K. Kang Dr. Ian Robertson University of California, Los Angeles University of Hawaii, Manoa

Slab – Column Frames

Embed Size (px)

Citation preview

Page 1: Slab – Column Frames

Slab – Column Frames

John WallaceUniversity of California, Los Angeles

with contributions from: Dr. Thomas H.-K. Kang Dr. Ian RobertsonUniversity of California, Los Angeles University of Hawaii, Manoa

Page 2: Slab – Column Frames

2

Presentation OverviewCurrent Practice

! Modeling & analysis! Connection design! Progressive collapse! Deformation compatibility

Existing Construction! Post-earthquake observations! Modeling and Model Assessment! Backbone curves/Rehabilitation

Shear reinforcement

Page 3: Slab – Column Frames

3

Current PracticeNon-participating or “gravity” system

Post-tensioned slab-column frameSpan-to-depth ratios typically ~40+Use of shear reinforcement at slab-column connection to allow for thinner slabs or to eliminate drop panels

~1/3 scale shake table test specimen

Page 4: Slab – Column Frames

4

Shear Reinforcement

Post-tensioning steel

~1/3 scale shake table tests: Kang & Walalce, ACI SJ, Sept-Oct. 2005

Page 5: Slab – Column Frames

5

Gravity Load Analysis & DesignACI 318 Chapter 11, 13, & 21 Materials! Slab moments: Use direct design, Equivalent frame,

or computer program! Connection design – Chapter 11 & 13

EIcolumn

Effective slab width

wu = 1.2D + 1.6L

wu = 1.2D + 1.6L

EIslab = Ec(!"I2)

Page 6: Slab – Column Frames

6

Gravity Load Analysis - MomentsGravity Analysis: 1.2D + 1.6L

Slab Moments

UnbalancedMoment

UnbalancedMoment

! Design slab-column connection to transfer unbalanced moment to column

! FEMA 356 refers to ACI 318 provisions

Page 7: Slab – Column Frames

7

Unbalanced Moment TransferUnbalanced moment at the slab-column connection is transferred by two mechanisms:

! Moment transfer (flexure) over a transfer width of c + 3h centered on the column

! Eccentric shear on a critical section around the slab-column connection

! Code provisions are covered in Chapter 13 (13.5) and Chapter 11 (11.12) of ACI 318

1 2

1 2

1where 1 (2 /3) /

, widths of critical section defined in 11.12.1.2

f f unbalanced

f

M M

b bb b

#

#

$

$%

$

1 2

(1 )

If b , then: 0.6 and 0.4

v f unbalanced v unbalanced

f v

M M M

b

# #

# #

$ & $

$$ $

Page 8: Slab – Column Frames

8

Unbalanced Moment TransferFlexural Transfer: c2 + 3h! #f Munb where #f is typically ~0.6

for square columns! Ratio of top to bottom

reinforcement of 2:1 recommended in ACI 318 (R13.5.3.3)

MRML

Munb = ML + MR

Unbalanced Moment(Interior connection)

c2+3h

h

c2

! FEMA 356 6.5.4.3(2) allows use of c2+5h

Page 9: Slab – Column Frames

9

Unbalanced Moment Transfer

( )u directgravity

o

Vv

b d$

Eccentric Shear transfer! Critical section is defined d/2

from column face! Direct shear stress

" b0 = perimeter of critical section

! Eccentric shear stress due to (1-#f)Munb = #vMunb

JzMv unb

vunb #$

column

d/2d

c

a

b

c2+d

c1+d

zcentroid

z

c2+da

b c

d

c2+da

b c

d

Page 10: Slab – Column Frames

10

Unbalanced Moment TransferCombined shear stressesCheck punching failure per 318

c2+da

b c

dDirect shearstress

z

c2+da

b c

dEccentric shearstress

+

Total shearstress

c2+da

b c

d

=

' (

'

' s

0

where =0.75

42

2 2

4

n c n u

cc

c c

'c

v v v v

f

dv Min fb

f

) ) ) )

"

!

$ *

+ ,- .%/ /0 1

/ /2 3/ /- .%/ /$ %0 14 5

2 3/ // // // /6 7

ACI Eq. 11-33, -34, -35 ,maxu nv v)8

Page 11: Slab – Column Frames

11

Laboratory Studies

Progressive collapse -continuous bottom steel (2 bars)ACI 318-05 7.13.2.5 (13.3.8.5)

Photo: Hwang and Moehle, ACI SJ, March-April 2000.

Interior connection

Exterior connection

Page 12: Slab – Column Frames

12

ACI Committee 352.1R89Slab – Column Report

1 20.5 usm

y

w l lAf)

$

Recommendations for the design of slab-column connections in monolithic RC Structures, ACI-ASCE Committee 352, Report 352.1R-89 (reapproved 1997)

spalling

kink

Bottom bar at angle of30 degrees from horizontal

Page 13: Slab – Column Frames

13

Deformation Compatibility

ImposedlateralDisplacements(new design)

EIcolumn

EIslab = Ec(!"I2)

wu = 1.2D + 0.5L

wu = 1.2D + 0.5L

Slab – column (gravity) frame assessment! Included in the model with the lateral system

Pushover Analysis(Assessmentof existing)

Page 14: Slab – Column Frames

14

Deformation Compatibility! Determine if the connection can resist the Vu & Munb without

punching failure – Adequate strength. (ACI 318-05 21.11.5)

" Flexural transfer, eccentric shear stress model

" Limit analysis approach – for connections with a fuse

" this does not consider the potential for shear strength degradation.

0 1 2 3 4 5 6 7Ductility (9)

Shea

r Dem

and

(Vu)

Shea

r Cap

acity

(Vn)

Stress-inducedPunching

Shear CapacityShear Demand

Drift-induced Punching

Slab Moments

Munb , VuMunb , Vu

Page 15: Slab – Column Frames

15

Alternative - Deformation Compatibility! Verify that punching failures do not occur for gravity shear

combined with imposed interstory displacement for :M (new) or ;target (Rehab). Adequate deformability. (ACI 318-05 21.11.5)

! RC interior and exterior (limited data) connections

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Gravity Shear Ratio (Vg /)Vc), where Vc = (1/3)f'c

1/2bod

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Drif

t Rat

io a

t Pun

chin

g

.

.

.

.

Isolated RC "Interior" Connections2,10,14,15,16,17

Subassemblies6

Nine-panel Frame18

Isolated RC "Edge" Connections9

Best-Fit Line for Interior Connections

without Shear Reinforcement

ACI 318-05 Limit

Relationshipfor RC with stud-rails

(Robertson et al.10)

Page 16: Slab – Column Frames

16

Deformation Compatibility! PT Connections without shear reinforcement

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Gravity Shear Ratio (Vg /)Vc), where Vc = (0.29f'c

1/2+0.3fpc)bod

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Drif

t Rat

io a

t Pun

chin

g

Qaisrani ('93) - Int.Trongtham et al. ('77) - Int.

Shatila ('87) - Ext.Trongtham ('77) - Ext.

Martinez ('93) - Ext.Martinez ('93) - Corner

.

.

.

.

.

.

.

.Best-Fit Line for

PT without Shear Reinforcement

ACI 318-05 Limit

Pimanmas ('04) - Int.

Foutch et al. ('90) - Ext.

Best-Fit Line forPT Subjected to Reversed Cyclic

Loading

Page 17: Slab – Column Frames

17

Presentation OverviewCurrent Practice

! Modeling & analysis! Connection design! Progressive collapse! Deformation compatibility

Existing Construction! Background & observations! Modeling and Model Assessment! Backbone curves/Rehabilitation

Shear reinforcement

Page 18: Slab – Column Frames

18

Older Construction ! Gravity design, or relatively low lateral forces

used for design

No continuous bottom reinforcementthrough column cage

Bent reinforcementsometimes used

Page 19: Slab – Column Frames

19

Post-Earthquake Observations

Bullock’s Department Store - Northridge Fashion Mall

Page 20: Slab – Column Frames

20

Presentation OverviewCurrent Practice

! Modeling & analysis! Connection design! Progressive collapse! Deformation compatibility

Existing Construction! Background & observations! Modeling and Model Assessment! Backbone curves/Rehabilitation

Shear reinforcement

Page 21: Slab – Column Frames

21

Modeling OverviewHow to model…

! Lateral stiffness?! Connection behavior?

How good are our models?! Shake table studies

FEMA 356 backbone curves! Basis of existing curves! New information?

Page 22: Slab – Column Frames

22

Modeling Assumptions - Typical

EIeff = effectivecolumn stiffness

EIeff

Rigid end zones at joints

EIeff = !"EIg

Model slab with “an effective beam”

Page 23: Slab – Column Frames

23

Analytical Model - Column Stiffness

P = PG

P = PG - PE

P = PG + PE

0.38 EIg

0.42 EIg0.39 EIg

M

!Exterior Column

EIcr,col " 0.4 EIg,col

Interior Column

EIcr " 0.45 EIg

P = PGM

!

My

#y

! PG = axial from gravity and PE = axial from earthquake! Anchorage slip – not likely as significant as noted for beam –

column frames (see Elwood presentation)

Page 24: Slab – Column Frames

24

Analytical Model – Slab Flexural StiffnessEffective Beam Width Model

l2

!: Effective Beam Width Factor

!l2

Applied lateral loads

l1

CL

CL

Allen & Darvall, ACI 74(7), 1977.Grossman, ACI 94(2), 1997. Hwang & Moehle, ACI 97(1), 2000.Kang & Wallace, ACI 102(5), 2005.

RC PT!"

0.75 0.650.33 0.5

Kang & Wallace (2005)

!"l2

": Coefficient accounting for Cracking

Page 25: Slab – Column Frames

25

Analytical Modeling - Connections

Munbalanced @connectionFlexure c2+3h (5h)Eccentric shear Mn = Mf/0.6

M-n / M+

n @ column strip

Punching before or after yieldingKang, 13WCEE, Aug. 2004, Paper 1119

Slab

Connection( rigid plastic spring )Column

( fiber element )

Column strip spring

This model satisfies FEMA 356 6.5.4.2.2, which states that the connection must be modeled separately from slab and column elements.

M

<=>;Mn

Vg / Vo0.75

0.0375

Limit State Model: Mean – 1 ?

<=>;

Limit

Page 26: Slab – Column Frames

26

Connection Modeling - Punching

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Gravity Shear Ratio (Vg /)Vc), where Vc = (1/3)f'c

1/2bod

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Drif

t Rat

io a

t Pun

chin

g

.

.

.

.

Isolated RC "Interior" Connections2,10,14,15,16,17

Subassemblies6

Nine-panel Frame18

Isolated RC "Edge" Connections9

Best-Fit Line for Interior Connections

without Shear Reinforcement

ACI 318-05 Limit

Relationshipfor RC with stud-rails

(Robertson et al.10)

Page 27: Slab – Column Frames

27

Shake Table Studies

Two stories, 2 × 2 baysApproximately 1/3 scale

W C E

S

N

CL

CL

1.82 m

Kang and Wallace, ACI SJ, Sept-Oct, 2005, another paper in-press.

Page 28: Slab – Column Frames

28

RC Specimen

Six 200 x 200 mm columns90 mm thick slab

9.5 mm rebar fy = 414 MPaf’c = 28 MPa

4.3 m

4.1 m

Page 29: Slab – Column Frames

29

RC Specimen - Reinforcement

Interior Connection Shear Reinforcement

Expected connection behavior: Flexural yielding, followed by punching

Page 30: Slab – Column Frames

30

5.7 m

5.7 m

8 mm 7-wire strand

6.35 mm deformed rebar

PT Specimen

Page 31: Slab – Column Frames

31

PT Specimen – Interior ACI318-05 Requires only bottom (integrity) reinforcement

Page 32: Slab – Column Frames

32

PT Video – Run 5

Page 33: Slab – Column Frames

33

Model Assessment - NSP-4 -3 -2 -1 0 1 2 3 4

Top Drift Ratio [%]

-1.5

-1

-0.5

0

0.5

1

1.5

Bas

e S

hear

[W]

-80 -60 -40 -20 0 20 40 60 80

Top Displacement Relative to Footing [mm]

-250

-200

-150

-100

-50

0

50

100

150

200

250B

ase

Shea

r [kN

]RC-RUN4-ExpPush-over (2:1)Push-over (1:2)

<u = 2.5%

RC-RUN4

H

2HH

2H(1:2 Ratio) (2:1 Ratio)

Top displacement relative to footing [mm]

Base

She

ar [

kN]

Base

She

ar [

W]

Top Drift [%]

Page 34: Slab – Column Frames

34

Model Assessment - PT

10 12 14 16 18 20 22

Time (sec)

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

Top

Drif

t Rat

io

(a) PT-RUN4 : ym - ?res caseExperimental Response HistoriesAnalytical Response Histories

Measured Top Drift at Peak Base Shear (2.78%)

Measured Top Drift at Peak Base Shear (2.78%)

See Kang et al., 13WCEE, August 2004, paper 1119Direct measurement of footing rotations

Page 35: Slab – Column Frames

35

Presentation OverviewCurrent Practice

! Modeling & analysis! Connection design! Progressive collapse! Deformation compatibility

Existing Construction! Background & observations! Modeling and Model Assessment! Backbone curves/Rehabilitation

Shear reinforcement

Page 36: Slab – Column Frames

36

Deformation – Backbone CurvesModel Parameters, Radians Slabs Controlled by

Flexure

0

gravityVV

Continuity Reinforcement

Plastic Hinge

a

Plastic Hinge

b

Residual Strength

c

8 0.2 Yes 0.02 0.05 0.2 > 0.4 Yes 0.0 0.04 0.2 8 0.2 No 0.02 0.02 --

* 0.25 No 0.0 0.0 --

Continuity reinforcement defined as at least one bottom bar or pt bar continuous through the column cage in each direction

a b - a

c

Vu = 1.2D + 0.5L

Page 37: Slab – Column Frames

37

Slab – Column TestsTypical test setup

Strong Floor

Reactionblock

Cyclic lateral loadLC

column

Gravity load

Load cell

Load cell

slab;

column;

Axial load

Page 38: Slab – Column Frames

38

New Data – Test Results #1! Slab reinforcing details

Robertson & Johnson, 13WCEE, August 2004, Paper 143

10ft x 10 ft x 4.5” 2 Continuous bottom bars

Page 39: Slab – Column Frames

39

Test Results #1 – Control Specimen

Robertson & Johnson, 13WCEE, August 2004, Paper 143

0.23g

c

VV

$

Yield: 1.5% (assumed)2

n

p

(12)(71 mm )(414 MPa)(95mm)=33,500 kN-mmP = 33,500 kN-mm/1524mm = 22 kN

0.015; 0.02(17 / 20) 0.017

n

e

M

< <

$

$ $ $

continuity

Page 40: Slab – Column Frames

40

Test Results #1

0.28g

c

VV

$

Robertson & Johnson, 13WCEE, August 2004, Paper 143

2

n

p

(12)(71 mm )(414 MPa)(95mm)=33,500 kN-mmP = 33,500 kN-mm/1524mm = 22 kN

0.015; 0.02(12 / 20) 0.012

n

e

M

< <

$

$ $ $

continuity

Page 41: Slab – Column Frames

41

Test Results #1

0.48g

c

VV

$

Robertson & Johnson, 13WCEE, August 2004, Paper 143

2

n

p

(12)(71 mm )(414 MPa)(95mm)=33,500 kN-mmP = 33,500 kN-mm/1524mm = 22 kN

0.015; 0

n

e

M

< <

$

$ $

Page 42: Slab – Column Frames

42

Test Results #1 - Summary! FEMA 356 – Overall comparison

Robertson & Johnson, 13WCEE, August 2004, Paper 143

Page 43: Slab – Column Frames

43

Test Results - #2! Slab reinforcing details – less reinforcement

Robertson & Johnson, 13WCEE, August 2004, Paper 143

10ft x 10 ft x 4.5” 2 Continuous bottom bars

Page 44: Slab – Column Frames

44

Test Results

Robertson & Johnson, 13WCEE, August 2004, Paper 143

0.36g

c

VV

$

2

n

p

(7)(71 mm )(414 MPa)(95mm)=19,500 kN-mmP = 19,500 kN-mm/1524mm = 13 kN

0.015; 0.02(4 / 20) 0.004

n

e

M

< <

$

$ $ $

Page 45: Slab – Column Frames

45

Subassembly Test! Test specimens ~1/2 scale! 4 specimens

" DNY_1, DNY_2, DNY_3, DNY_4 (spandrel beam)" Bent-up (1,2,4), Straight (3)"

Durrani, Du, Luo, ACI SJ, July-Aug. 1995

0.2, 0.3, 0.24, 0.28g

c

VV

$

Page 46: Slab – Column Frames

46

Test Results

Durrani, Du, Luo, ACI SJ, July-Aug. 1995

0.20g

c

VV

@ 0.30g

c

VV

@

0.24g

c

VV

@ 0.28g

c

VV

@

Spandrel beam

Page 47: Slab – Column Frames

47

Test Results - Summary

Durrani, Du, Luo, ACI SJ, July-Aug. 1995

0.30g

c

VV

@ p0.01 0.02e< <@ $

Backbone relation:P = 10 kip (arbitrary)

spandrel

Straight bars vsBent up bars- no difference - except for collapse

Page 48: Slab – Column Frames

48

Presentation OverviewCurrent Practice

! Modeling & analysis! Connection design! Progressive collapse! Deformation compatibility

Existing Construction! Background & observations! Modeling and Model Assessment! Backbone curves/Rehabilitation

Shear reinforcement

Page 49: Slab – Column Frames

49

Recent Tests – ERICO Fortress Steel

0.6 Scale model tests (6” thick slab) – Smith Emery

Page 50: Slab – Column Frames

50

Preliminary Results – ERICO Steel Fortress

! Fortress steel appears to be very effective in improving the punching resistance

! Appear as effective as stud-rails

-200-160-120

-80-40

04080

120160200

Late

ral l

oad

[kip

s]

-12 -8 -4 0 4 8 12 Drift ratio [%]

S1 (none) vs S2 (shear bands)

-80

-60

-40

-20

0

20

40

60

80

-12 -8 -4 0 4 8 12 Drift ratio [%]

-12 -8 -4 0 4 8 12 Drift ratio [%]

S1 (none) vs S4 (stud rails) S1 (shear bands) vs S4 (stud rails)

Av = 1.44 in2 fy =72.5 ksi Av = 0.88 in2 fy =60 ksi

S1 – controlS2 – ESF 2.5”

S1 – controlS4 – Studrails

S2 – ESF 2.5”S4 – Studrails

Page 51: Slab – Column Frames

51

SummaryModeling! Effective beam width model! Connection behavior – Limit state modelBackbone curves - RC! Conservative – In general! Review allowable plastic rotation for low

gravity stress ratios < 0.2, mean - ?! Potential to increase plastic rotation for low

reinforcement ratios! Remove residual capacity for RC connections

Page 52: Slab – Column Frames

52

SummaryBackbone curves - PT! Conservative! Increase plastic rotation from 0.02 (RC) to

0.03 at gravity shear ratio of 0.2! Review higher gravity shear ratios – allowable

plastic rotation of 0.01 at a gravity shear ratio of 0.5

! Allow residual capacity of 0.2 up to drifts of about 5% where one strand pass within the column cage in both directions.

Page 53: Slab – Column Frames

Slab – Column Frames

John WallaceUniversity of California, Los Angeles

with contributions from: Dr. Thomas H.-K. Kang Dr. Ian RobertsonUniversity of California, Los Angeles University of Hawaii, Manoa