Slides Aula8[1]

Embed Size (px)

Citation preview

  • 8/8/2019 Slides Aula8[1]

    1/76

  • 8/8/2019 Slides Aula8[1]

    2/76

    PROCESSAMENTO

  • 8/8/2019 Slides Aula8[1]

    3/76

    Do Processamento Performance

    Microstructura Propriedades

    Processamento

    Performance

    Nd-Fe-B

    PERFORMANCEPERFORMANCEtcnica e econmica

  • 8/8/2019 Slides Aula8[1]

    4/76

    Obteno da Liga

    Obteno da Liga

    Fuso Queima Reduo Difuso Sintese mecnica Sputtering

  • 8/8/2019 Slides Aula8[1]

    5/76

    Produo da Liga

    Fuso

    Gs inerte

    Bomba de vcuo

    Cadinho de Alumina

    Bobinas de induo (1400 oC)

    Contaminao com Alumnio

  • 8/8/2019 Slides Aula8[1]

    6/76

    Produo da Liga

    a

    d

    c

    b

    Microestrutura da Ligade Nd16Fe76B8 Fundida

  • 8/8/2019 Slides Aula8[1]

    7/76

    Produo da Liga

    Microestrutura da Ligade Nd16Fe76B8 Fundida

  • 8/8/2019 Slides Aula8[1]

    8/76

    Produo da Liga

    Evaporao de Samrio

  • 8/8/2019 Slides Aula8[1]

    9/76

    Produo da Liga

    Sm2Fe17 FundidoLingote(Virgem/homogeneizado)

    Lingote Homogeneizado

    Fe=9% e Sm2Fe17=91%

    Lingote No Homogeneizado

    Fe=10%, Sm2Fe17=82% e SmFe2/3=8%

  • 8/8/2019 Slides Aula8[1]

    10/76

    Produo da Liga

    Diagrama de Equilibrio

    Sm-Fe

  • 8/8/2019 Slides Aula8[1]

    11/76

    Produo da Liga

    Fuso

    Ligas base de Nd - principal processo produtivo

    Ligas base de Sm - processos alternativos que operam emtemperaturas mais baixas

  • 8/8/2019 Slides Aula8[1]

    12/76

    Produo da Liga

    Reduo Calciotrmica

    8Nd2O3 + 64Fe +20Fe0.6B0.4 + 24Ca

    8Nd2O3 + 4B2O3 + 5Fe2O3 + 64Fe + 51Ca

    Nd16Fe76B76 + 24CaO

    Nd16Fe76B76 + 51CaO

  • 8/8/2019 Slides Aula8[1]

    13/76

    Produo da Liga

    Reduo Calciotrmica

    Sm2O3 + 17Fe + 3Ca Sm2Fe17 + 3CaO

  • 8/8/2019 Slides Aula8[1]

    14/76

    Etapas intermedirias

    ETAPAS INTERMEDIRIAS

    Objetivos:

    a) preparar o material para a etapa de consolidao/conformao e shaping

    b) adequar a microestrutura

  • 8/8/2019 Slides Aula8[1]

    15/76

    Obteno de PartculasMonocristalinas

    Moagem Mecnica

    Moagem Qumica (HD)

    Obs. Os processos de resfriamento rpido, atomizao e sntese mecnicapermitem a obteno de material particulado, mas em nenhum dos dois

    casos as partculas so monocristalinas

    O processo de Reduo Calciotrmica permite a obteno de umgrande numero de partculas monocristalinas diretamente aps aobteno da liga.

  • 8/8/2019 Slides Aula8[1]

    16/76

  • 8/8/2019 Slides Aula8[1]

    17/76

  • 8/8/2019 Slides Aula8[1]

    18/76

  • 8/8/2019 Slides Aula8[1]

    19/76

    Obtencao de ParticulasMonocritalinas

  • 8/8/2019 Slides Aula8[1]

    20/76

  • 8/8/2019 Slides Aula8[1]

    21/76

    MOAGEM QUMICADIFUSO DE HIDROGNIO POR CONTORNO DE GRO

  • 8/8/2019 Slides Aula8[1]

    22/76

  • 8/8/2019 Slides Aula8[1]

    23/76

    Grau de Alinhamento verificado viaVSM

    -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5

    -1,5

    -1,2

    -0,9

    -0,6

    -0,3

    0,0

    0,3

    0,6

    0,9

    1,2

    1,5

    J

    (T)

    He(T)

    Jf= 1,24

    Jd= 0,64

    Br= 0,84

    jHc= 0,076

    BHmx

    = 17,9

    Sm2Fe17Nx produzido com pHoeganaes Ancor MH100

    volta

  • 8/8/2019 Slides Aula8[1]

    24/76

    Etapas intermedirias

    Resfriamento Rpido

  • 8/8/2019 Slides Aula8[1]

    25/76

    Etapas intermedirias

  • 8/8/2019 Slides Aula8[1]

    26/76

    Etapas intermedirias

    Espetro de um Slido Cristalino

    Resfriamento Rpido

  • 8/8/2019 Slides Aula8[1]

    27/76

    Etapas intermedirias

    Resfriamento Rpido

  • 8/8/2019 Slides Aula8[1]

    28/76

    Etapas intermedirias

    Atomizao

  • 8/8/2019 Slides Aula8[1]

    29/76

  • 8/8/2019 Slides Aula8[1]

    30/76

  • 8/8/2019 Slides Aula8[1]

    31/76

    HDDR

  • 8/8/2019 Slides Aula8[1]

    32/76

    HDDR

  • 8/8/2019 Slides Aula8[1]

    33/76

  • 8/8/2019 Slides Aula8[1]

    34/76

  • 8/8/2019 Slides Aula8[1]

    35/76

    RECOMBINAO

  • 8/8/2019 Slides Aula8[1]

    36/76

    RECOMBINAO

  • 8/8/2019 Slides Aula8[1]

    37/76

    RECOMBINAO

  • 8/8/2019 Slides Aula8[1]

    38/76

    RECOMBINAO

  • 8/8/2019 Slides Aula8[1]

    39/76

    Modificacao Microestrutral

    HDDR

    Resfriamento Rapido

    Sinterizacao

  • 8/8/2019 Slides Aula8[1]

    40/76

    Processos de Consolidacao

    SINTERIZADOS

    Compactacao Uniaxial + Sinterizcao

    Compactacao Isostatica + Sinterizacao

    Compositos

    ROTAS ALTERNATIVAS

    Injecao + Sinterizacao

    Extruso

    Objetivos:

    a) Dar forma ao material

    b) Adequar a microestrutura

  • 8/8/2019 Slides Aula8[1]

    41/76

    Por que Sinterizar ?

    Permite a densificar os components (ps)

    Permite melhor controle microestrutural.

    Permite a precipitao de fases, xidos (nos contornosde gro) e controle no tamanho de gro.

    Processo mais produtivo que a fuso.

    Proporciona um melhor controle da estequiometria.

  • 8/8/2019 Slides Aula8[1]

    42/76

  • 8/8/2019 Slides Aula8[1]

    43/76

    SINTERIZAO DA LIGA

  • 8/8/2019 Slides Aula8[1]

    44/76

  • 8/8/2019 Slides Aula8[1]

    45/76

  • 8/8/2019 Slides Aula8[1]

    46/76

    Dificuldades atuais na fabricao de

  • 8/8/2019 Slides Aula8[1]

    47/76

    ms base de SmSm22FeFe1717NN33

    A introduo de nitrognio s vivel a partir de reao do tipo gs slido, mas o processo de difuso lento.

    Assim, a fase SmSm

    22FeFe

    1717NN

    33, atualmente, s pode ser produzida na forma de p.

    A Fase SmSm

    22FeFe

    1717NN

    33 metaestvel e se decompe em SmN e Fe em temperaturas superiores a 550 oC.

    Esta decomposio inviabiliza o processo de sinterizao como meio para densificar os ms.

  • 8/8/2019 Slides Aula8[1]

    48/76

    Sinterizao

  • 8/8/2019 Slides Aula8[1]

    49/76

    Sinterizao

  • 8/8/2019 Slides Aula8[1]

    50/76

    Sinterizao - Resultados

    Mi t t

  • 8/8/2019 Slides Aula8[1]

    51/76

    Microestrutura

    Mi t t

  • 8/8/2019 Slides Aula8[1]

    52/76

    Microestrutura

  • 8/8/2019 Slides Aula8[1]

    53/76

    Processos de Consolidacao

  • 8/8/2019 Slides Aula8[1]

    54/76

    Processos de ConsolidacaoMetal Bonding

    Processos de Consolidacao

  • 8/8/2019 Slides Aula8[1]

    55/76

    Processos de ConsolidacaoMetal Bonding

    Rotas Alternati as

  • 8/8/2019 Slides Aula8[1]

    56/76

    Textura

    Alinhamento de gros

    Rotas AlternativasExtruso

  • 8/8/2019 Slides Aula8[1]

    57/76

  • 8/8/2019 Slides Aula8[1]

    58/76

  • 8/8/2019 Slides Aula8[1]

    59/76

  • 8/8/2019 Slides Aula8[1]

    60/76

    Mtodos de

  • 8/8/2019 Slides Aula8[1]

    61/76

    Mtodos deRecobrimento/Proteo

  • 8/8/2019 Slides Aula8[1]

    62/76

    Recomendaes Finais

  • 8/8/2019 Slides Aula8[1]

    63/76

    Seleo de Materiais

    Si t i d

  • 8/8/2019 Slides Aula8[1]

    64/76

    Sinterizados

    Compositos Injetados

  • 8/8/2019 Slides Aula8[1]

    65/76

    Compositos Injetados

  • 8/8/2019 Slides Aula8[1]

    66/76

    Compositos Compactados

  • 8/8/2019 Slides Aula8[1]

    67/76

    Material - NdFeB

  • 8/8/2019 Slides Aula8[1]

    68/76

    Material SmCo5

  • 8/8/2019 Slides Aula8[1]

    69/76

    Material - Ferrites

  • 8/8/2019 Slides Aula8[1]

    70/76

    Critrios de Seleo

    Aichi Steel Develops Process That

  • 8/8/2019 Slides Aula8[1]

    71/76

    Aichi Steel Develops Process ThatHalves Plastic Magnet Costs

    Nagoya, March 6, 2000 - Today Aichi Steel developed the world's first cobalt-free production process for neodymium based non-isotropic magneticpowder here and has launched a new plastic magnet (called Magfine 18/20)that uses this magnetic powder. The process reduces the price of the plastic

    magnet by up to 50 percent compared with the conventional plastic magnetproduced with the traditional process of using cobalt.

    Not only does the new process (called the d-HDDR method) reduce costs. Theproduct's magnetic intensity is nearly one third stronger and has a upperworking temperature limit 140oC higherthan the conventional type. Moreover,the new magnet reduces energy use in motors of electric appliances by 30percent and miniaturizes the motor for information processing equipment by 30percent. The company expects the product to be applied in motors for electriccars in the near future.

    Aichi Steel has been test-marketing the new product in limited numbers since1999 and is now ready to launch the plastic magnet on a commercial basis. Thenew production plant of magnetic powder and plastic magnets has a capacity offive tons per month.

    MAGNEQUENCH, DAIDO STEEL DEVELOP

  • 8/8/2019 Slides Aula8[1]

    72/76

    ,WORLD'S HIGHEST ENERGY PRODUCT

    Press Release Anderson, Ind. - March 21, 2002 - Magnequench Inc. and Daido Steel Co.,

    Ltd. developed new high energy, anisotropic Neodymium-Iron-Boron (Nd-Fe-B) magnets. The bonded magnets have the world's highest energyproduct with 22 MGOe (160 KJ/m3) as well as high heat resistance with thecapability of operating at temperatures of more than 100C. In addition, theprice of the newly developed anisotropic bonded magnets offer more flux

    per dollar when compared with isotropic bonded magnets. The two new types of Nd-Fe-B bonded magnets are superior to magneticmaterials produced by alternative HDDR process. The high-energy producttype (BH) max is greater than HDDR magnets by 10 percent whilemaximum operating temperature is 100C which is higher than that ofHDDR magnets by 20C. High temperature usage type energy product (BH)max is 17 MGOe with a maximum operating temperature of 120C which is

    higher than that of similar strength HDDR magnets which can only operateup to 100C.

    Development of Nd Fe B Anisotropic Bonded

  • 8/8/2019 Slides Aula8[1]

    73/76

    Development of NdFeB Anisotropic BondedMagnet With 27 MGOe

    AbstractThe maximum energy product of bonded magnets is advancing every year. The highest maximum energy product of any bonded magnet achieved is 25 MGOe (200 kJ/m3) in the NdFeB system by d-HDDR treatment. There is a great demand for even higher energy bonded magnets with the desire for smaller, more efficient electric motors. Bonded magnets made from

    d-HDDR treated anisotropic magnet powder have low squareness due to low squareness of the powder. The authors developed a method to increase squareness of d-HDDR powder, and succeeded in developing the worlds highest energy bonded magnet with 26.6 MGOe (213 kJ/m3). This was achieved through Dy-diffusion treatment followed by d-HDDR treatment, as well as an increase in the density of the bonded magnet. This magnet has little aging loss after being held at 393 K for 878 h.

    IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 5, SEPTEMBER 2003 2953

    N. Hamada, C. Mishima, H. Mitarai, and Y. Honkura

  • 8/8/2019 Slides Aula8[1]

    74/76

    THE COMPARISON OF ANISOTROPIC (AND ISOTROPIC)POWDERS FOR POLYMER BONDED RARE EARTH PERMANENT

    MAGNETS

    One example of this poor magnetic performance experienced byHDDR type magnets at elevated temperatures was presented in arecent publication, which showed a standard d-HDDR magnet tolose 5% flux at 80oC (353K) and a Dy containing d-HDDR magnet

    to lose 5% flux at 137oC (415K).5 Considering both of these testswere carried out in an inert argon atmosphere and over only threeminutes, both magnets demonstrated poor thermal stability.

    D. N. BROWN, B-M MA and P. CAMPBELLMagnequench Technology Center, 9000 Development Drive

    Research Triangle Park, P.O. Box 14827, NC 27709

    Development of NdFeB Anisotropic Bonded

  • 8/8/2019 Slides Aula8[1]

    75/76

    p pMagnet With 27 MGOe

  • 8/8/2019 Slides Aula8[1]

    76/76