Slides PECh3 July03

  • Upload
    jefri

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 Slides PECh3 July03

    1/39

    © Ned Mohan, 2003

    3- 1

    3-1 DC-DC Converters

    3-2 Switching Power-Pole in DC Steady State

    3-3 Simplifying Assumptions

    3-4 Common Operating Principles

    3-5 Buck Converter Switching Analysis in DC Steady State

    3-6 Boost Converter Switching Analysis in DC Steady State

    3-7 Buck-Boost Converter Switching Analysis in DC Steady State

    3-8 Topology Selection

    3-9 Worst-Case Design

    3-10 Synchronous-Rectified Buck Converter for Very Low Output Voltages

    3-11 Interleaving of Converters

    3-12 Regulation of DC-DC Converters by PWM

    3-13 Dynamic Average Representation of Converters in CCM

    3-14 Bi-Directional Switching Power-Pole

    3-15 Discontinuous-Conduction Mode (DCM)

    ReferencesProblems

    Appendix 3A Discontinuous-Conduction Mode (DCM) in DC-DC Converters

    Chapter 3

    SWITCH-MODE DC-DC CONVERTERS:

    SWITCHING ANALYSIS, TOPOLOGY

    SELECTION AND DESIGN

  • 8/18/2019 Slides PECh3 July03

    2/39

    © Ned Mohan, 2003

    3- 2

    Regulated switch-mode dc power supplies

    Figure 3-1 Regulated switch-mode dc power supplies.

    inV  oV 

    ,o ref   V controller 

    dc-dcconverter topology

    ,in oV V 

    ,in o I I 

    (a) (b)

    inV  oV 

    ,o ref   V controller 

    dc-dcconverter topology

    ,in oV V 

    ,in o I I 

    (a) (b)

  • 8/18/2019 Slides PECh3 July03

    3/39

    © Ned Mohan, 2003

    3- 3

    Switching power-pole as the building block of dc-dc converters

    ( ) ( ) L L si t i t T  = −

    0

    area area

    10

     s s

     s

     DT T 

     L L L

     s   DT 

     A  B

    V v d v d  T 

    τ τ  

    = ⋅ + ⋅ =

    ∫ ∫  

    ( ) ( )C C sv t v t T  = −

    Figure 3-2 Switching power-pole as the building block of dc-dc converters.

    inV 

     Lv

     Li

    q

     A Lv

     Li

     B

    0

    0

     s DT 

     sT 

    ( )b( )a

    inV 

     Lv

     Li

    q

    inV 

     Lv

     Li

    q

     A Lv

     Li

     B

    0

    0

     s DT 

     sT 

     Lv

     Li

     B

    0

    0

     s DT 

     sT 

    ( )b( )a

  • 8/18/2019 Slides PECh3 July03

    4/39

    © Ned Mohan, 2003

    3- 4

    • Simplifying Assumptions

    • Two-Step Process

    • Common Operating Principles

  • 8/18/2019 Slides PECh3 July03

    5/39

    © Ned Mohan, 2003

    3- 5

    BUCK CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

    o A inV V DV  = =

    (1 )in o o L s sV V V 

    i DT D T   L L

    −∆ = = −

    o L o

    V  I I = =

    ,( ) ( )C L ripplei t i t  

    in L o DI DI = =

    in in o oV I V I  =

    Figure 3-3 Buck dc-dc converter.

    inV 

     Li

     Av

     L in ov V V = −

     Lv

    oV 

    1q =

    inV 

     Li Av

     L ov V = −

    oV 

    0q =

    0 Av   =

    inV 

    ini

     Li

     Av  Lv

    oV 

    q

    C i  o I 

    (a)

    (b)

    q

     Av

     Lv

    , L ripplei

     Li

    ini

    inV    A oV V =

    ( )in o

    V V −

    ( )oV −

     Li∆

     L o I I =

    in I 

     A

     B

    t 0

    0

    0

    0

    0

    0

    1

    (c)(d)

    inV 

     Li

     Av

     L in ov V V = −

     Lv

    oV 

    1q =

     Li

     Av

     L in ov V V = −

     Lv

    oV 

    1q =

    inV 

     Li

     Av

     L ov V = −

    oV 

    0q =

    0 Av   =

    inV 

     Li

     Av

     L ov V = −

    oV 

    0q =

    0 Av   =

    inV 

    ini

     Li

     Av  Lv

    oV 

    q

    C i  o I 

    (a)

    (b)

    q

     Av

     Lv

    , L ripplei

     Li

    ini

    inV    A oV V =

    ( )in o

    V V −

    ( )oV −

     Li∆

     L o I I =

    in I 

     A

     B

    t 0

    0

    0

    0

    0

    0

    1q

     Av

     Lv

    , L ripplei

     Li

    ini

    inV    A oV V =

    ( )in o

    V V −

    ( )oV −

     Li∆

     L o I I =

    in I 

     A

     B

    t 0

    0

    0

    0

    0

    0

    1

    (c)(d)

  • 8/18/2019 Slides PECh3 July03

    6/39

    © Ned Mohan, 2003

    3- 6

    PSpice Modeling: C:\FirstCourse_PE_Book03\Buckconv.sch

  • 8/18/2019 Slides PECh3 July03

    7/39

    © Ned Mohan, 2003

    3- 7

    Simulation Results

      Time

    450us 455us 460us 465us 470us 475us 480us 485us 490us 495us 500us

    I(C1) I(L1) V(L1:1,L1:2)

    -8

    -4

    0

    4

    8

    12

    16

  • 8/18/2019 Slides PECh3 July03

    8/39

    © Ned Mohan, 2003

    3- 8

    BOOST CONVERTER SWITCHING ANALYSIS IN DC STEADY STATE

    Figure 3-4 Boost dc-dc converter.

    oV 

    inV 

    q   p

    C  Lv

     Li

    inV 

    oV 

     p

    C  Lv

    q

     Li

    (a) (b)

    oV 

    inV 

    q   p

    C  Lv

     Li

    oV 

    inV 

    q   p

    C  Lv

     Li

    inV 

    oV 

     p

    C  Lv

    q

     Li

    inV 

    oV 

     p

    C  Lv

    q

     Li

    (a) (b)

  • 8/18/2019 Slides PECh3 July03

    9/39

    © Ned Mohan, 2003

    3- 9

    Boost converter: operation and waveforms

    1

    1

    o

    in

    V D=

    −  ( )o inV V >

    (1 )in o in L s sV V V 

    i DT D T   L L

    −∆ = = −

    in in o oV I V I  = 11 1

    o o o L in o

    in

    V I V  I I I 

    V D D R= = = =

    − −

    ,( ) ( )C diode ripple diode oi t i t i I  = −

    Figure 3-5 Boost converter: operation and waveforms.

    inV oV 

     L inv V =

     Li 0 Av   =

    1q =

    inV 

    oV 

     L in ov V V = −

     Li

    0q =

     A ov V =

     Lv

     Av

    q

    , L ripplei

     Li

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    0

    oV 

     A inv V =

     A

     B( )o inV V − −

     Li∆

     L I 

    ( )diode o

     I I =

    inV 

    (a)

    (b) (c)

    inV oV 

     L inv V =

     Li 0 Av   =

    1q =

    inV oV 

     L inv V =

     Li 0 Av   =

    1q =

    inV 

    oV 

     L in ov V V = −

     Li

    0q =

     A ov V =

     Lv

     Av

    q

    , L ripplei

     Li

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    0

    oV 

     A inv V =

     A

     B( )o inV V − −

     Li∆

     L I 

    ( )diode o

     I I =

    inV  L

    v

     Av

    q

    , L ripplei

     Li

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    0

    oV 

     A inv V =

     A

     B( )o inV V − −

     Li∆

     L I 

    ( )diode o

     I I =

    inV 

    (a)

    (b) (c)

  • 8/18/2019 Slides PECh3 July03

    10/39

    © Ned Mohan, 2003

    3- 10

    PSpice Modeling: C:\FirstCourse_PE_Book03\Boost.sch

  • 8/18/2019 Slides PECh3 July03

    11/39

    © Ned Mohan, 2003

    3- 11

      Time

    1.950ms 1.955ms 1.960ms 1.965ms 1.970ms 1.975ms 1.980ms 1.985ms 1.990ms 1.995ms 2.000ms

    I(L1) V(L1:1,L1:2)

    -15

    -10

    -5

    0

    5

    10

    15

    Simulation Results

  • 8/18/2019 Slides PECh3 July03

    12/39

    © Ned Mohan, 2003

    3- 12

    Boost converter: voltage transfer ratio

    Figure 3-6 Boost converter: voltage transfer ratio.

    0

    1

    1   D−

    , L crit  I  DCM    CCM 

     L I 

    o

    in

    1

    0

    1

    1   D−

    , L crit  I  DCM    CCM 

     L I 

    o

    in

    1

  • 8/18/2019 Slides PECh3 July03

    13/39

    © Ned Mohan, 2003

    3- 13

    BUCK-BOOST CONVERTER ANALYSIS IN DC

    STEADY STATE

    Figure 3-7 Buck-Boost dc-dc converter.

    q

     A

     Av

     Lv

     Li  inV 

    oV 

    diodei

    o I   Lv

     Av

    oV inV o

     I 

    (a) (b)

     Li

    q

     A

     Av

     Lv

     Li  inV 

    oV 

    diodei

    o I 

    q

     A

     Av

     Lv

     Li  inV 

    oV 

    diodei

    o I   Lv

     Av

    oV inV o

     I 

    (a) (b)

     Li

  • 8/18/2019 Slides PECh3 July03

    14/39

    © Ned Mohan, 2003

    3- 14

    Figure 3-8 Buck-Boost converter: operation and waveforms.

    ini

     L inv V =

     A in ov V V = +

    oV inV   Li

    inV   Li L ov V = −

    0 Av   =

    oV 

    (a)

    (b)

     Lv

     Av

    q

    , L ripplei

     Li

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    0

    oV −

     A oV V =

     A

     B

    ( )in oV V +

     Li∆

     L I 

    ( )diode o I I =

    inV 

    (c)

    inio I 

    o I 

    ini

     L inv V =

     A in ov V V = +

    oV inV   Li

      L inv V =

     A in ov V V = +

    oV inV   Li

    inV   Li L ov V = −

    0 Av   =

    oV 

    (a)

    (b)

     Lv

     Av

    q

    , L ripplei

     Li

    diodei

    C i

    t 0

    0

    0

    0

    0

    0

    0

    oV −

     A oV V =

     A

     B

    ( )in oV V +

     Li∆

     L I 

    ( )diode o I I =

    inV 

    (c)

    inio I 

    o I 

    Buck-Boost converter: operation and waveforms

    1

    o

    in

    V    D

    V D

    =

    (1 )in o L s sV V 

    i DT D T   L L

    ∆ = = −

     L in o I I = +

    in in o oV I V I  =

    1

    oin o o

    in

    V    D

     I I I V D= = −1 1

    1 1

    o L in o o

    V  I I I I 

     D D R= + = =

    − −

    ,( ) ( )C diode ripplei t i t  

  • 8/18/2019 Slides PECh3 July03

    15/39

    © Ned Mohan, 2003

    3- 15

    PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching.sch

  • 8/18/2019 Slides PECh3 July03

    16/39

    © Ned Mohan, 2003

    3- 16

    Simulation Results

      Time

    2.950ms 2.955ms 2.960ms 2.965ms 2.970ms 2.975ms 2.980ms 2.985ms 2.990ms 2.995ms 3.000ms

    I(L1) V(L1:1,L1:2)

    -30

    -20

    -10

    0

    10

    20

  • 8/18/2019 Slides PECh3 July03

    17/39

    © Ned Mohan, 2003

    3- 17

    Buck-Boost converter: voltage transfer ratio

    Figure 3-9 Buck-Boost converter: voltage transfer ratio.

    0

    1

     D

     D−

    , L crit  I  DCM    CCM 

     L I 

    o

    in

    1

    0

    1

     D

     D−

    , L crit  I  DCM    CCM 

     L I 

    o

    in

    1

  • 8/18/2019 Slides PECh3 July03

    18/39

    © Ned Mohan, 2003

    3- 18

    Other Buck-Boost Topologies

    • SEPIC Converters (Single-Ended Primary Inductor Converters)

    • Cuk Converters

  • 8/18/2019 Slides PECh3 July03

    19/39

    © Ned Mohan, 2003

    3- 19

    SEPIC Converters (Single-Ended Primary Inductor Converters)

    (1 )in oV D V = −1

    o

    in

    V    D

    V D

    =

    Figure 3-10 SEPIC converter.

    inV 

    2 Li

    q

    C v

    oV 

     Li   diodei

    2 Lv(a)

    inV 

    C v

    oV 

    2 L C v v=1q =

    2 LvoV 

    inV 

    0q =

    C v2 Lv

    2 L ov V = −

    (b) (c)

    inV 

    2 Li

    q

    C v

    oV 

     Li   diodei

    2 Lv(a)   inV 

    2 Li

    q

    C v

    oV 

     Li   diodei

    2 LvinV 

    2 Li

    q

    C v

    oV 

     Li   diodei

    2 Lv(a)

    inV 

    C v

    oV 

    2 L C v v=1q =

    2 LvoV 

    inV 

    0q =

    C v2 Lv

    2 L ov V = −

    (b) (c)inV 

    C v

    oV 

    2 L C v v=1q =

    2 LvinV 

    C v

    oV 

    2 L C v v=1q =

    2 LvoV 

    inV 

    0q =

    C v2 Lv

    2 L ov V = −

    oV inV 

    0q =

    C v2 Lv

    2 L ov V = −

    (b) (c)

  • 8/18/2019 Slides PECh3 July03

    20/39

    © Ned Mohan, 2003

    3- 20

    Cuk Converter

    (1 )o in I D I = − 1in

    o

     I    D

     I D=

    − 1o

    in

    V    D

    V D=

    Figure 3-11 Cuk converter.

    inV 

    q

    C v

    oV 

     Li   oi

    o I 

    C 1 L 2 L

    (a)

    inV 

    1q =

    C v

    oV ini

      oi

    inV 

    0q =

    C v

    oV ini oi

    (b) (c)

    inV 

    q

    C v

    oV 

     Li   oi

    o I 

    C 1 L 2 L

    (a)   inV 

    q

    C v

    oV 

     Li   oi

    o I 

    C 1 L 2 L

    inV 

    q

    C v

    oV 

     Li   oi

    o I 

    C 1 L 2 L

    (a)

    inV 

    1q =

    C v

    oV ini

      oi

    inV 

    0q =

    C v

    oV ini oi

    (b) (c)

  • 8/18/2019 Slides PECh3 July03

    21/39

    © Ned Mohan, 2003

    3- 21

    TOPOLOGY SELECTION

    Criterion Buck Boost Buck-Boost

    Transistor

    ˆ

    V   inV    oV    ( )in oV V +  

    Transistor ˆ I    o I    in I    in o I I +  

    rms I    Transistor o DI    in DI    ( )in o D I I +  

    Transistoro DI    in DI    ( )in o D I I +  avg  I   

    Diode (1 ) o D I −   (1 ) in D I −   ( )(1 ) in o D I I − +

     L I    o I    in I    in o I I +  

    Effect of  L  on C  significant little little

    Pulsating Current input output both

  • 8/18/2019 Slides PECh3 July03

    22/39

    © Ned Mohan, 2003

    3- 22

    WORST-CASE DESIGN

    The worst-case design should consider the ranges in which the input voltage and the

    output load vary. As mentioned earlier, often converters above a few tens of watts are

    designed to operate in CCM. To ensure CCM even under very light load conditions

    would require prohibitively large inductance. Hence, the inductance value chosen is

    often no larger than three times the critical inductance ( )3 c L L< , where, as discussed in

    section 3-15, the critical inductance c L   is the value of the inductor that will make the

    converter operate at the border of CCM and DCM at full-load.

  • 8/18/2019 Slides PECh3 July03

    23/39

    © Ned Mohan, 2003

    3- 23

    SYNCHRONOUS-RECTIFIED BUCK CONVERTER FOR

    VERY LOW OUTPUT VOLTAGES

    Figure 3-12 Buck converter: synchronous rectified.

    inV 

    oV  Av

    T +

    T −

    q+

    q−

     Li

    ( )a

    q+ q−

     Av

     Li

    0t  =

     s DT  sT 

    inV 

    oV 0

    0

    0

    0  L I 

    ( )b

    inV 

    oV  Av

    T +

    T −

    q+

    q−

     Li

    ( )a

    inV 

    oV  Av

    T +

    T −

    q+

    q−

     Li

    ( )a

    q+ q−

     Av

     Li

    0t  =

     s DT  sT 

    inV 

    oV 0

    0

    0

    0  L I 

    ( )b

    q+ q−

     Av

     Li

    0t  =

     s DT  sT 

    inV 

    oV 0

    0

    0

    0  L I 

    ( )b

    3 24

  • 8/18/2019 Slides PECh3 July03

    24/39

    © Ned Mohan, 2003

    3- 24

    INTERLEAVING OF CONVERTERS

    Figure 3-13 Interleaving of converters.

    1q2q

    1

    q

    2q

    0

    0

    (a) (b)

    inV 

    +

    +

    oV 

    1 Li

    2 Li

    1q2q

    1

    q

    2q

    0

    0

    (a) (b)

    inV 

    +

    +

    oV 

    1 Li

    2 Li

    3 25

  • 8/18/2019 Slides PECh3 July03

    25/39

    © Ned Mohan, 2003

    3- 25

    REGULATION OF DC-DC CONVERTERS BY PWM

    ( )( )

    ˆc

    v t d t 

    V =

    Figure 3-14 Regulation of output by PWM.

    inV  oV 

    ,o ref   V controller 

    dc-dcconverter 

    topology

    (a) (b)

    0 sd T 

     sT t 

    ˆr V 

    ( )cv t 

    r v

    ( )q t 

    0

    1

    inV  oV 

    ,o ref   V controller 

    dc-dcconverter 

    topology

    (a) (b)

    0 sd T 

     sT t 

    ˆr V 

    ( )cv t 

    r v

    ( )q t 

    0

    1

    3 26

  • 8/18/2019 Slides PECh3 July03

    26/39

    © Ned Mohan, 2003

    3- 26

    Figure 3-15 Average dynamic model of a switching power-pole.

    ( )q t 

    ( )r v t 

    ( )cv t 

    vpv

    cpv

    cpi

    vpi

    vpV 

    cpV 

    cp I 

    vp I 

    1: D

    cpv

    1: ( )d t 

    ( )cv t ^

    1

    r V 

    (c)(a) (b)

    vpi

    vpv

    cpi

    ( )q t 

    ( )r v t 

    ( )cv t 

    vpv

    cpv

    cpi

    vpi

    vpV 

    cpV 

    cp I 

    vp I 

    1: D

    cpv

    1: ( )d t 

    ( )cv t ^

    1

    r V 

    (c)(a) (b)

    vpi

    vpv

    cpi

    DYNAMIC AVERAGE REPRESENTATION OF

    CONVERTERS IN CCM

    ( ) ( ) ( )cp vpv t d t v t  =

    ( ) ( ) ( )vp cpi t d t i t  =

    cp vpV DV =

    vp o I D I =

    3 27

  • 8/18/2019 Slides PECh3 July03

    27/39

    © Ned Mohan, 2003

    3- 27

    Average dynamic models of three converters

    Figure 3-16 Average dynamic models of three converters.

    q

    inV 

    ov Lv

     Li

    oV 

    inV 

    q   p

     A A

    qoV 

    inV 

    inV 

    1: ( )d t 

    inV 

    1: (1 ( ))d t −

     p 1: ( )d t 

    inV 

    (a)

    (b)

     Li  Li

     L

    i

     Li  Li

    ov   ov

    ov

    ⇓ ⇓  ⇓q

    inV 

    ov Lv

     Li

    oV 

    inV 

    q   p

     A A

    qoV 

    inV 

    inV 

    1: ( )d t 

    inV 

    1: (1 ( ))d t −

     p 1: ( )d t 

    inV 

    (a)

    (b)

     Li  Li

     L

    i

     Li  Li

    ov   ov

    ov

    ⇓ ⇓  ⇓

    3 28

  • 8/18/2019 Slides PECh3 July03

    28/39

    © Ned Mohan, 2003

    3- 28

    PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Avg_CCM.sch

    3 29

  • 8/18/2019 Slides PECh3 July03

    29/39

    © Ned Mohan, 2003

    3- 29

    PSpice Modeling: C:\FirstCourse_PE_Book03\Buck-Boost_Switching_LoadTransient.sch

    3 30

  • 8/18/2019 Slides PECh3 July03

    30/39

    © Ned Mohan, 2003

    3- 30

    Simulation Results

      Time

    0s 0.5ms 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms

    I(L1) V(L1:1,L1:2)

    -40

    -20

    0

    20

    40

  • 8/18/2019 Slides PECh3 July03

    31/39

    3- 32

  • 8/18/2019 Slides PECh3 July03

    32/39

    © Ned Mohan, 2003

    3- 32

    Average dynamic model of the switching power-pole with

     bi-directional power flow

    Figure 3-18 Average dynamic model of the switching power-pole with bi-directional power

    flow.

    q

    inV 

     Li

     Buck Boost 

    (1 )q q−

    = − 1: d 

     Li

    inV 

    (a) (b)q

    inV 

     Li

     Buck Boost 

    (1 )q q−

    = − 1: d 

     Li

    inV 

    (a) (b)

    3- 33

  • 8/18/2019 Slides PECh3 July03

    33/39

    © Ned Mohan, 2003

    3- 33

    DISCONTINUOUS-CONDUCTION MODE (DCM)

    Figure 3-19 Inductor current at various loads; duty-ratio is kept constant.

    1 Li

    2 Li, L crii

    1 L I 

    2 L I 

    , L crit  I 

     Li

    0

    1 Li

    2 Li, L crii

    1 L I 

    2 L I 

    , L crit  I 

     Li

    0

    3- 34

  • 8/18/2019 Slides PECh3 July03

    34/39

    © Ned Mohan, 2003

    3 34

    Figure 3-20 Waveforms for the three converters at the border of CCM/DCM.

     Li

    ˆ L I 

     Av

    in oV V −

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (a)

     Liˆ L I 

     AvoV 

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (b) (c)

     Li

    ˆ L I 

     Av

    in oV V +

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

     Li

    ˆ L I 

     Av

    in oV V −

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (a)

     Li

    ˆ L I 

     Av

    in oV V −

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

     Li

    ˆ L I 

     Av

    in oV V −

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (a)

     Liˆ L I 

     AvoV 

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (b)

     Liˆ L I 

     AvoV 

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (b) (c)

     Li

    ˆ L I 

     Av

    in oV V +

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    (c)

     Li

    ˆ L I 

     Av

    in oV V +

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

     Li

    ˆ L I 

     Av

    in oV V +

    0

    0

    0

    S  DT  (1 ) S  D T −

    S T 

    , , , , -2

    in L crit Boost L crit Buck Boost 

    V  I I D f  

    = =, , (1 )2

    in L crit Buck 

    V  I D D Lf  

    = −

    Critical Inductor Currents

    3- 35

  • 8/18/2019 Slides PECh3 July03

    35/39

    © Ned Mohan, 2003

    3 35

    Buck converter in DCM

    Figure 3A-1 Buck converter in DCM.

     Liˆ L I    s

     Av

    oV inV 

    0

    0

     D ,1off   D ,2off   D

    1

    o

    in

    , L crit  I  DCM    CCM 

     L I 

    (a)

    0

     D

    1

     s

    t T 

    (b)

     Liˆ L I    s

     Av

    oV inV 

    0

    0

     D ,1off   D ,2off   D

    1

    o

    in

    , L crit  I  DCM    CCM 

     L I 

    (a)

    0

     D

    1

     s

    t T 

    (b)

    3- 36

  • 8/18/2019 Slides PECh3 July03

    36/39

    © Ned Mohan, 2003

    3 36

    Boost Converters in DCM

    Figure 3A-2 Boost converter in DCM.

     Liˆ L I 

     s

     AvoV 

    inV 

    0

    0

     D ,1off   D ,2off   D

    1(a)

    0

    1

    1   D−

    , L crit 

     I  DCM    CCM   L I 

    o

    in

    1

    (b)

     s

     Liˆ L I 

     s

     AvoV 

    inV 

    0

    0

     D ,1off   D ,2off   D

    1(a)

    0

    1

    1   D−

    , L crit 

     I  DCM    CCM   L I 

    o

    in

    1

    (b)

     s

    3- 37

  • 8/18/2019 Slides PECh3 July03

    37/39

    © Ned Mohan, 2003

    3 37

    Buck-Boost converter in DCM

    Figure 3A-3 Buck-Boost converter in DCM.

     Li

    ˆ L I    s

     Av

    oV in oV V +

    0

    0

     D ,1off   D ,2off   D

    1

    (a)

    0

    1

     D

     D−

    , L crit  I  DCM    CCM    L

     I 

    o

    in

    (b)

    1

     s

     Li

    ˆ L I    s

     Av

    oV in oV V +

    0

    0

     D ,1off   D ,2off   D

    1

    (a)

    0

    1

     D

     D−

    , L crit  I  DCM    CCM    L

     I 

    o

    in

    (b)

    1

     s

    3- 38

  • 8/18/2019 Slides PECh3 July03

    38/39

    © Ned Mohan, 2003

    AVERAGE REPRESENTATION OF DC-DC

    CONVERTERS IN DCM

    , 0

    2[1 ]

    ( )

     s Lk Buck 

    in o

     Lf iv v

    V v d = −

    2

    , 0( )2

    k Buck in Ld i V v di Lf  

    = − −

    • Dependent Sources in Buck and Buck-Boost Converters in DCM

    ,

    21   s Lk Buck Boost o

    in

     Lf iv v

    V d −

    = −

    2

    ,2

    k Buck Boost in Ld i V di Lf  

    −   = −

    Figure 3A-4 Average dynamic model for Buck and Buck-Boost converters.

    vpv cpv

    vpicpi

    k v

    k i

    1: ( )d t 

    vpv cpv

    vpicpi

    k v

    k i

    1: ( )d t 

    3- 39

  • 8/18/2019 Slides PECh3 July03

    39/39

    © N d M h 2003

    • Dependent Sources in Boost Converters in DCM

    ( ), 02

    1   s Lk Boost inin

     Lf iv V vV d 

    = − −

    2

    ,

    2k Boost in L

    d i V di

     Lf  

    = −

    Figure 3A-5 Average dynamic model for Boost converters.

    (1 ) :1d −

    cpv

    cpi  k v

    k i

    vpi

    vpv

    (1 ) :1d −

    cpv

    cpi  k v

    k i

    vpi

    vpv