Sloan Auto Lab

Embed Size (px)

Citation preview

  • 8/3/2019 Sloan Auto Lab

    1/51

    Sloan Automotive Laboratory

    Massachusetts Institute of Technology

    Cambridge, MA, USA

    Sloan Automotive Laboratory

    31-153

    Massachusetts Institute of Technology77 Massachusetts Avenue

    Cambridge, MA 02139-4307

    Phone: (617) 253-4529

    Fax: (617) 253-9453

    http://engine.mit.edu December, 2004

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    2/51

    Sloan Automotive Laboratory

    Massachusetts Institute of Technology

    Cambridge, MA, USA

    Founded 1929 by Professor C.F. Taylor, with a grant

    from A. P. Sloan

    Established as a major laboratory forautomotive

    research

    Extensive industrial and government funding

    Research areas:

    - Internal combustion engine

    - Fundamental combustion studies

    - Engine/fuel inter actions- Engine and fuels technology assessment

    Objective: Contribute to future developments in automotive

    technology through fundamental and applied

    research on propulsion technology and fuels

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    3/51

    Sloan Automotive Laboratory

    Faculty and Staff

    Professor Wai K. Cheng, Associate DirectorCombustion, diagnostics, engine design

    Professor William H. Green, Jr. (Chem. Eng.)Combustion chemistry, fuels

    Professor John B. Heywood, Director

    Engine combustion, performance and emissions; enginedesign

    Professor James C. Keck (Emeritus)Combustion, thermodynamics, kinetics

    Dr. Tian Tian

    Analysis, lubrication, engine dynamics

    Dr. Victor W. Wong, ManagerLubrication, engine design and operating characteristics

    About 25 graduate students are involved in the researchprojects

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    4/51

    Sloan Automotive Laboratory

    Facilities

    12 Test Cells:

    Single cylinder Spark-Ignition engines

    Single cylinder HCCI engine with VVT Multi-cylinder Spark-Ignition engines

    Heavy Duty Multi-cylinder Diesel engine

    Optical-access engines with transparent

    cylinders for combustion and lubricationmeasurements

    Rapid compression machine

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    5/51

    Sloan Automotive Laboratory Facilities:

    Special Equipment

    LIF imaging systems

    Fluorescence-based lubricant film diagnostic

    High-speed digital video camera (1000 frames/s)

    Particulate Spectrometer

    Gas chromatograph

    Fourier transform infrared analyzer

    Laser Phase Doppleranemometer

    Fast-response FID Hydrocarbon and NOx analyzers

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    6/51

    Current/Recent Research ProjectsI

    M T

    Engine and Fuels Research Consortium (DaimlerChrysler, Delphi, Ford,GM, Saudi Aramco)

    Lubrication Consortium (Dana, Mahle, PSA, Renault, Volvo Truck)

    Homogeneous-Charge-Compression-Ignition (HCCI) Engine (DOE)

    Control-Auto-Ignition (CAI) Engine (Ford)

    Plasmatron Enabled SI Engine Concepts (Ford, Arvin Meritor)

    Engine starting strategies (DaimlerChrysler)

    Robust Retarded Combustion (Nissan)

    Clean Diesel Fuels (DOE)

    Oil Aeration Study (Ford) Heavy Duty Natural Gas Engine Friction Reduction (DOE)

    Heavy Duty Diesel Engine Wear Reduction (DOD)

    High Speed Engine Lubrication (Ferrari)

    Assessment of Future Powertrain, Vehicle, and Fuels Technology (V.

    Kann Rasmussen Foundation, Energy Choices Consortium)

  • 8/3/2019 Sloan Auto Lab

    7/51

    Industrial Consortium Operation

    Multi-sponsor, multi-year program

    Pre-competitive research agenda

    Regular meetings (every 4 months) to set program

    agendaand discuss research findings

    Periodic visits to sponsor companies for discussionwith staff

    Direct technology transfer through exchange ofpersonal and use of facilities and computer codes

    I

    M T

  • 8/3/2019 Sloan Auto Lab

    8/51

    Engine and Fuels Research Consortium

    Current Research Program Str ategies to reduce engine start up emissions

    Fast catalyst light-off strategies

    Fundamental study of particulate matters formation

    Catalyst behavior: effects of sulfurand age oneffectiveness

    I

    M T

    1982 - present

    Current Focus: SI EnginesMembers:

    DaimlerChrysler Corp.,Delphi Corp., Ford Motor Co.,

    General Motors Corp., Saudi Aramco

  • 8/3/2019 Sloan Auto Lab

    9/51

    Industrial Consortium on Lubrication in IC Engines

    Current Research Program Characterization of lubricant behavior between piston

    and linerand its impacts on engine wear, friction and

    lubricant requirements

    Quantitative 2D LIF visualization of oil film

    dynamics in the piston/liner interface

    Modeling of oil transport/consumption and ring

    friction

    Application to ring designs (geometry and tension)

    I

    M T

    1989 - present

    Current Focus: Piston/liner tribologyMembers:

    Dana Corp., Mahle Corp., Peugeot SA, Renault, Volvo Truck

  • 8/3/2019 Sloan Auto Lab

    10/51

    Research High Lights

  • 8/3/2019 Sloan Auto Lab

    11/51

    Drivers for Emissions Research

    1975 1980 1985 1990 1995 2000 2005 2010

    0.01

    0.1

    11977

    1975

    19811994 US

    1994 TLEV

    1997 TLEV

    1997-2003 ULEV

    2004 SULEV2

    NMOG(g

    /mile)

    Starting year of implementation

    1975 1980 1985 1990 1995 2000 2005 2010

    0.01

    0.1

    11977

    1975

    19811994 US

    1994 TLEV

    1997 TLEV

    1997-2003 ULEV

    2004 SULEV2

    NMOG(g

    /mile)

    Starting year of implementation

    1975 1980 1985 1990 1995 2000 2005 20100.01

    0.1

    1

    1975

    1977

    19811994 TLEV

    1997-2003 ULEV

    2004 SULEV2

    NOx(g/m

    ile)

    Starting year of implementation

    1975 1980 1985 1990 1995 2000 2005 20100.01

    0.1

    1

    1975

    1977

    19811994 TLEV

    1997-2003 ULEV

    2004 SULEV2

    NOx(g/m

    ile)

    Starting year of implementation

    Least square fit:

    Factor of 10 reduction in both HC and NOx

    every 15 years

  • 8/3/2019 Sloan Auto Lab

    12/51

    Engine start

    up behavior

    2.4 L, 4-cylinder

    engine

    Engine startswith Cyl#2

    piston in mid

    stroke of

    compression

    Firing order

    1-3-4-2

    First fuel pulse

    ~90 mg/cylinder

    First firing:

    Cyl#2

    Integrated HC emissions:

    1st peak

    16 mg Total: 71 mg (SULEV:

    FTP total is < 110 mg)

    2nd peak

    55 mg

  • 8/3/2019 Sloan Auto Lab

    13/51

    First cycle in-cylinderJ results (SAE 2002-01-2805)

    Lean Limit of consistent firing

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 50 100 150 200 250 300 350

    Injected Fuel Mass (mg)

    FirstC

    ycleIn-cylinder

    J

    R300 ( 40C, MAP 0.92 bar )

    R600 ( 40C, MAP 0.8 bar )

    R900 ( 40C, MAP 0.7 bar )

    R300 ( 60C, MAP 0.92 bar )

    R600 ( 60C, MAP 0.8 bar )

    R900 ( 60C, MAP 0.7 bar )

    R300 ( 80C, MAP 0.92 bar )

    R600 ( 80C, MAP 0.8 bar )

    R900 ( 80C, MAP 0.7bar )

    R200 ( 20C, Zetec Engine )

    R200 ( 0C, Zetec Engine )

    RPM Tcoolant

    80C

    60C

    40C

    20C

    0C

  • 8/3/2019 Sloan Auto Lab

    14/51

    First cycle fuel delivery efficiency results (SAE 2002-01-2805)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 50 100 150 200 250 300

    Injected Fuel Mass(mg)

    DeliveryEfficiencyIf

    RPM

    Tcoolant

    0C

    20C

    40C

    60C

    80C

    R300 ( 40C, MAP 0.92 bar )

    R600 ( 40C, MAP 0.8 bar )

    R900 ( 40C, MAP 0.7 bar )

    R300 ( 60C, MAP 0.92 bar )

    R600 ( 60C, MAP 0.8 bar )

    R900 ( 60C, MAP 0.7 bar )

    R300 ( 80C, MAP 0.92 bar )

    R600 ( 80C, MAP 0.8 bar )

    R900 ( 80C, MAP 0.7bar )

    R200 ( 20C, Zetec Engine )

    R200 ( 0C, Zetec Engine )

  • 8/3/2019 Sloan Auto Lab

    15/51

    Effect of delaying IVO on 1st cycle fuel delivery(SAE 2004-01-1852)

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    -20 -10 0 10 20

    Intake Valve Opening (CAD from TDC Exhaust)

    Fuelequivalen

    ceRatio(*)

    132.9 mg 199.3 mg 265.7 mgInjected mass:

    PISTON

    DISPLACES

    MORE LEAN

    CHARGE AS

    IVC DELAYED

    INTAKE

    FLOW

    PISTON

    LEAN

    RICH

    INCOMING

    MIXTURE

    INCREASINGLY

    LEAN AS PISTON

    DRAWS IN

    CHARGE

    PISTON

    DISPLACES

    MORE LEAN

    CHARGE AS

    IVC DELAYED

    INTAKE

    FLOW

    PISTON

    LEAN

    RICH

    PISTONPISTON

    LEAN

    RICH

    INCOMING

    MIXTURE

    INCREASINGLY

    LEAN AS PISTON

    DRAWS IN

    CHARGE

    0 500 1000 1500 20000

    5

    10

    15

    20

    25

    30

    35

    PressureIn-cylinder HC

    value for*

    calculation

    HC

    Crank angle

    Pressure(bar)

    orHCmolefraction(%)

  • 8/3/2019 Sloan Auto Lab

    16/51

    Exhaust port/runner oxidation

    with retard spark timing

    Cylinder Exit [Quenching]

    Port Exit [FFID: 7-cm from EVRunner [FFID: 37-cm from EV

    Exhaust Tank 120-cm from EV

    -150150

    10

    20

    30

    40

    50

    60

    HCEmissions(g-HC/kg-fuel)

    Spark Timing ( BTDC)

    3.0 bar n-imep, 1500 RPM, P =1.0, 20C

  • 8/3/2019 Sloan Auto Lab

    17/51

    Secondary air injection

    Ref value: at

    condition of

    15o

    BTDC sparkand P = 1

    0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    Sp =0 BTDC

    Sp =15 BTDC

    P= 0.85

    P=

    1.0P= 1.1

    3.0 bar NIMEP, 1500 RPM, 20 C

    Sp = -15BTDC

    Pexhaust = 0.85

    PExhaust=1.4

    HC/H

    Cref

    value.fRe

    )hm( catalysts

  • 8/3/2019 Sloan Auto Lab

    18/51

    0.2

    0.4

    0.6

    0.8

    1

    NO

    /NOinlet

    4K miles aged

    50K miles aged

    150K miles aged

    0

    0

    0.2

    0.4

    0.6

    0.8

    1

    CO/COinlet 4K miles aged

    50K miles aged

    150K miles aged

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    Fraction of cumulative catalyst volume

    HC/HC

    inle

    t4K miles aged

    50K miles aged

    150K miles aged

    0.2

    0.4

    0.6

    0.8

    1

    NO

    /NOinlet

    4K miles aged

    50K miles aged

    150K miles aged

    0

    0.2

    0.4

    0.6

    0.8

    1

    NO

    /NOinlet

    4K miles aged

    50K miles aged

    150K miles aged

    0

    0

    0.2

    0.4

    0.6

    0.8

    1

    CO/COinlet 4K miles aged

    50K miles aged

    150K miles aged

    0

    0.2

    0.4

    0.6

    0.8

    1

    CO/COinlet 4K miles aged

    50K miles aged

    150K miles aged

    0

    0.2

    0.4

    0.6

    0.8

    1

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 0.2 0.4 0.6 0.8 1

    Fraction of cumulative catalyst volume

    HC/HC

    inle

    t4K miles aged

    50K miles aged

    150K miles aged

    4K miles aged

    50K miles aged

    150K miles aged

    7 ppm fuel S

    1600 rpm0.5 bar PintakeSpace vel.

    - 4.4x104/hr

    P modulation

    - 2 Hz

    - (P= 0.025

    Catalyst

    performance

    (SAE 2003-01-1874)

  • 8/3/2019 Sloan Auto Lab

    19/51

    0

    250

    500

    0

    250

    500

    0

    25

    50

    0

    25

    50

    0

    25

    50

    0

    25

    50

    0 2 4 6 8 100

    25

    50

    Time (s)

    NO(

    ppm)

    Time-resolved NO profiles along catalyst (SAE 2003-01-1874)

    Aged 4k-miles; 4.4x104/hr space vel.; l modulation: 1Hz, (P= 0.03

    0% cumulative

    catalyst vol.

    17%

    33%

    50%

    67%

    82%

    100%

  • 8/3/2019 Sloan Auto Lab

    20/51

    0 100 200 300 400 5000.6

    0.8

    1

    Normaliz

    edO2

    Storage

    Fuel sulfur (ppm)

    Slope:

    10% decreasein O2 storage

    capacity with

    every 150 ppm

    increase in

    fuel S

    Fuel Sulfur Effect on Oxygen Storage Capacity:

    Age effect and fuel S effect are separable

    10 100

    1

    2

    Catalyst age (k-miles)

    7ppmS33ppmS266ppmS500ppmS

    Power law: O2 storagew age- 0.84

    O2

    storage

    capacity(g)

  • 8/3/2019 Sloan Auto Lab

    21/51

    Plasmatron Fuel ReformerDeveloped at the MIT Plasma Science and Fusion Center

    25%H2

    49%N2

    26%CO

    Mole FractionSpecies

    Products of the IdealReaction

    Ideal Partial Oxidation Reaction:

    Air 2

    Air 3 Fuel

    Fuel Air 1

    1

    2

    3

    4

    Plasmatron

    1stStage

    Reactor

    2ndStage

    Reactor

    Nozzle

    Section

    Flow Direction

    2222

    773.322

    773.32

    Nn

    Hm

    nCONOn

    HC plasmatronmn p

  • 8/3/2019 Sloan Auto Lab

    22/51

    Effect of Plasmatron gas on lean operation(1500 rpm, 3.5 bar NIMEP, SAE2003-01-0630)

    27%

    28%

    29%

    30%

    31%

    32%

    33%

    1 1.2 1.4 1.6 1.8 2 2.2

    Lambda

    OverallNet

    Indicated

    Efficiency(%)

    Synth. Plas. gas = 10%

    Synth. Plas. gas = 20%

    Synth. Plas. gas = 30%

    Indolene Only

    10

    100

    1000

    10000

    1 1.2 1.4 1.6 1.8 2 2.2

    Lambda

    NOx(PP

    M)

    H2 Add = 10% Equiv

    H2 Add = 20% Equiv

    H2 Add = 30% Equiv

    Synth. Plas. gas = 10%

    Synth. Plas. gas = 20%

    Synth. Plas. gas = 30%

    Indolene Only

    (Assume ideal

    Plasmatron

    efficiency of 86%)

  • 8/3/2019 Sloan Auto Lab

    23/51

    ONR Decrease with Plasmatron Reformate(1500 rpm, 8.5 bar NIMEP, MBT spark timing; SAE 2004-01-0975)

    50

    60

    70

    80

    90

    100

    1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

    Lambda

    ONofPRFintoE

    ngine

    atAudibleKn

    ock

    PRF, 0% Plas Fraction

    15% Plas Fraction

    30% Plas Fraction

  • 8/3/2019 Sloan Auto Lab

    24/51

    VVT

    Engine

    for HCCI

    operation

    Geometric

    compression

    ratio = 8 to16

    Spacer to change geometric compression ratio

  • 8/3/2019 Sloan Auto Lab

    25/51

    Mode Transition Considerations: Drive Cycle

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 500 1000 1500 2000 2500 3000 3500

    RPM

    Bmep(bar)

    SAE 2002-01-0420

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 500 1000 1500 2000 2500 3000 3500

    RPM

    Bmep(bar)

    SAE 2002-01-0420

  • 8/3/2019 Sloan Auto Lab

    26/51

    Details of mode transition

    -1

    4

    9

    14

    19

    24

    440 450 460 470 480 490 500 510Time (s)

    Gear,Bmep(bar),RP

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Vehiclespeed(mph

    Gear

    bmep(bar)

    RPM/100

    Av_Velocity

    a

    b

    c

    e

    d

    f

    h

    gp

    0nmlki

    u

    t

    s

    r

    q

    v

    h2

    0

    10

    2030

    40

    50

    60

    0 200 400 600 800 1000 1200 1400

    Ge

    ar,Bmep(bar),

    RPM/100

    Time (s)

    AverageVehicleSpeed(m

    ph)

    Time (s)

    MPH

    -1

    4

    9

    14

    19

    24

    440 450 460 470 480 490 500 510Time (s)

    Gear,Bmep(bar),RP

    0

    5

    10

    15

    20

    25

    30

    35

    40

    Vehiclespeed(mph

    Gear

    bmep(bar)

    RPM/100

    Av_Velocity

    a

    b

    c

    e

    d

    f

    h

    gp

    0nmlki

    u

    t

    s

    r

    q

    v

    h2

    0

    10

    2030

    40

    50

    60

    0 200 400 600 800 1000 1200 1400

    Ge

    ar,Bmep(bar),

    RPM/100

    Time (s)

    AverageVehicleSpeed(m

    ph)

    Time (s)

    MPH

  • 8/3/2019 Sloan Auto Lab

    27/51

    Details of transition

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 500 1000 1500 2000 2500

    Speed (rpm)

    Bmep(b

    ar)

    a

    q p

    o

    n

    m

    l

    k

    j

    i

    h

    g

    f

    e

    d

    c

    b

    vu

    t

    s r

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 500 1000 1500 2000 2500

    Speed (rpm)

    Bmep(b

    ar)

    a

    q p

    o

    n

    m

    l

    k

    j

    i

    g

    fc

    vu

    t

    s r

    h2

    HCCI region

  • 8/3/2019 Sloan Auto Lab

    28/51

    A non-robust SI-HCCI transition

    (1500 rpm, 15oBTDC spark)

    1st HCCI cycle

    SI assisted

    cycles

    SI HCCI

    IVO 20 80 atdc-i

    IVC 210 185 atdc-i

    EVO 495 495 atdc-i

    EVC 700 650 atdc-i

    All subsequent

    cycles were HCCIcombustion

    IV lift EV lift

    0 1000 2000 3000 4000 5000

    Crank angle (deg.)

    0

    20

    40

    60

    80

    Pressure(bar)

  • 8/3/2019 Sloan Auto Lab

    29/51

    A Knocking transition

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    Pressure(ba

    r)

    Pressure(bar)

    Pressure(bar)

    6 0 6 1 6 2 6 3 6 4 6 5 6 6-1 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    Cycle

    Pre

    ssure(bar)

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    Pressure(ba

    r)

    Pressure(bar)

    Pressure(bar)

    6 0 6 1 6 2 6 3 6 4 6 5 6 6-1 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    Cycle

    Pre

    ssure(bar)

    6 0 6 1 6 2 6 3 6 4 6 5 6 6-1 0

    0

    1 0

    2 0

    3 0

    4 0

    5 0

    6 0

    7 0

    Cycle

    Pre

    ssure(bar)

  • 8/3/2019 Sloan Auto Lab

    30/51

    A Robust SI-HCCI Transition

    (1500 rpm, 15oBTDC spark)

    1st HCCI cycle

    IV lift EV lift

    0

    20

    40

    60

    80

    Pressure(b

    ar)

    0 1000 2000 3000 4000 5000

    Crank angle (deg.)

    All subsequent cycles

    in HCCI combustion

    SI HCCI

    IVO 20 95 atdc-i

    IVC 210 10 atdc-i

    EVO 495 495 atdc-i

    EVC 700 630 atdc-i

  • 8/3/2019 Sloan Auto Lab

    31/51

    First HCCI cycle and 10 following ones

    175 180 185 190 195 200 205 210

    20

    25

    30

    35

    40

    45

    50

    55

    Crank angle (deg)

    pressure(bar)

    2nd

    3rd

    4th

    5th

    6th

    7th

    8th

    9th

    10th

    11th

    1st

    HCCI

    cycle

  • 8/3/2019 Sloan Auto Lab

    32/51

    100 cycles after first HCCI cycle

    160 170 180 190 200 210 220

    20

    25

    30

    35

    40

    45

    50

    55

    Crank angle (deg)

    pressure(ba

    r)1st

    HCCIcycle

    2nd

    3rd

  • 8/3/2019 Sloan Auto Lab

    33/51

    Controlling transition using valve timing

    56 58 60 62 64 66 68 700

    1

    2

    3

    4

    5

    6

    7

    IMEP(bar

    )

    Cycle number

    SIcycles

    with

    late

    IVC

    and

    late

    EVC Last SI cycle(59); early EVC

    First HCCI cycle(60); early IVC

    GIMEP

    NIMEP

    Valve timing(o atdc exhaust)

    Cycle IVC EVO EVC IVO

    58 278 492 731 26

    59 278 495 658 30

    60 236 496 641 54

    61 215 494 639 7562, 219 493 644 78

  • 8/3/2019 Sloan Auto Lab

    34/51

    Relationship between IMEP and CA-50

    IMEP(ba

    r)

    Pumping

    Net

    Gross

    0

    0 .5

    1

    1 .5

    2

    2 .5

    3

    3 .5

    4

    4 .5

    5

    IMEP(ba

    r)

    Pumping

    Net

    Gross

    Pumping

    Net

    Gross

    Pumping

    Net

    Gross

    10 12 1614 10 2420 22 26 28

    CA-50 location (o

    after TDC compression)

    IMEP(ba

    r)

    Pumping

    Net

    Gross

    0

    0 .5

    1

    1 .5

    2

    2 .5

    3

    3 .5

    4

    4 .5

    5

    0

    0 .5

    1

    1 .5

    2

    2 .5

    3

    3 .5

    4

    4 .5

    5

    IMEP(ba

    r)

    Pumping

    Net

    Gross

    Pumping

    Net

    Gross

    Pumping

    Net

    Gross

    10 12 1614 10 2420 22 26 2810 12 1614 10 2420 22 26 28

    CA-50 location (o

    after TDC compression)

  • 8/3/2019 Sloan Auto Lab

    35/51

  • 8/3/2019 Sloan Auto Lab

    36/51

    SI/HCCI/SI Transitions

    Start with SI mode

    Transition into CAI modein cycle#60

    Transition back to SI modein cycle#136

    Transition into CAI modein cycle#177

    Cycle#

    Nim

    ep(bar)

    SI HCCI SI HCCI

    Cycle#

    Nim

    ep(bar)

    SI HCCI SI HCCI

  • 8/3/2019 Sloan Auto Lab

    37/51

    Open loop control: Modulation period at 30 cycles

    0 50 100 150 200 250 300-1

    0

    1

    2

    3

    4

    5

    6

    Cycle no.

    IMEP(bar),f

    uelmasspercycle(mg)

    GIMEP

    NIMEP

    PMEP

    Fuel mass x 10

    1500 rpm; modulation period of 30 cycles=2.4 sec

  • 8/3/2019 Sloan Auto Lab

    38/51

    Open loop control: Modulation period at 14 cycles

    1500 rpm; modulation period of 14 cycles=1.12 sec

    0 50 100 150 200 250 300-1

    0

    1

    2

    3

    4

    5

    6

    Cycle no.

    IMEP(bar),f

    uelmasspercycle(mg)

    GIMEP

    NIMEPFuel mass x 10

    PMEP

  • 8/3/2019 Sloan Auto Lab

    39/51

    Open-loop step response

    0 50 100 150 200 250

    0

    2

    4

    0 50 100 150 200 250

    0.8

    1

    1.2

    1.4

    1.6

    0 50 100 150 200 250

    0

    50

    100

    NIMEP(bar)

    Valvetiming

    (oABDC)

    IVC

    EVC

    Fuelmass(m

    g),

    *

    *

    Fuel massx0.1

    Cycle number

  • 8/3/2019 Sloan Auto Lab

    40/51

    Closed-loop load controller

    Rate

    limiter

    Z-2I Z-2I

    Engine

    Integrator

    + -

    Look-

    up-table

    K

    i+1th

    cycle target

    ri+1 u f,i u i

    (ui

    y i -1

    y i+1

    ri-1

    w i

    e i

  • 8/3/2019 Sloan Auto Lab

    41/51

    Open-loop behavior

    2

    2.5

    3

    3.5

    4

    4.5

    0 100 200 300 400 500 600 700 800 900 1000

    Engine Cycle

    NIMEP(bar)

    0.9

    1

    1.1

    1.2

    1.3*

    T

    *

    NIMEP

    RPM

    100

    110

    120

    130

    T(oC)

    13001400

    1500

    1600

    1700RPM

  • 8/3/2019 Sloan Auto Lab

    42/51

    Closed-loop behavior

    2

    2.5

    3

    3.5

    4

    4.5

    0 100 200 300 400 500 600 700 800 900 1000

    Engine Cycle

    0.9

    1

    1.1

    1.2

    1.3NIMEP(bar)

    *

    T

    *

    NIMEP

    RPM

    100

    110

    120

    130

    T(oC)

    13001400

    1500

    1600

    1700

    RPM

  • 8/3/2019 Sloan Auto Lab

    43/51

    LIF Oil Distribution Image

    crown land skirt

    Fluorescence intensity profile

    Ring Pack Geometry

    20 mm

    7mm

    No load (1 N.m) - Coolant 50 C - Oil 50 C

    Expansion stroke

  • 8/3/2019 Sloan Auto Lab

    44/51

    Compression stroke

    Top Ring Up-Scraping Effect (1)

    1700 rpm - No load (1 N.m), Coolant 50 C - Oil 50 C

    Late compression stroke

    Ring Twist

    +Piston Tilt

    Anti-Thrust

    Side

  • 8/3/2019 Sloan Auto Lab

    45/51

    Transport on the land: INERTIA

    Early Upward Stroke

    Exhaust & CompressionStroke

    INERTIA

    1200 rpm- No load (1N.m) - Coolant 50 C - Oil 50 C

    Exhaust stroke

    Compression stroke

    INERTIA

    T t th l d i

  • 8/3/2019 Sloan Auto Lab

    46/51

    Transport on the land in

    CIRCUMFERENTIAL DIRECTION1200 rpm- No load (1N.m) - Coolant 50 C - Oil 50 C

    Compressionstroke

    t = 0 s

    t = 1 s

    (10 cycles)

    t = 2 s

    (20 cycles)

    3 mm

    6 mm

    Circumferential Oil Flow

  • 8/3/2019 Sloan Auto Lab

    47/51

    Oil Transport through the Ring Gaps and Mist generation

    Top

    Ring

    Scrape

    r

    Ring

    Liquid oilBreak up into mist by high velocity

    gas flow (liquid entrainment)

    2

    oilgas2h~

    .h

    .3!

    oil

    gas

    gasoilQQ

    Q

    Q

    Oil dragged from the piston may be entrained

    into mist. Oil mist is carried by gas flow going

    to crankcase or back to the combustion

    Chamber.

    PCV

    B. Thirouard

    Width of

    the gas flow

    Ring

    Ring

    Land 1

    Land 2

  • 8/3/2019 Sloan Auto Lab

    48/51

    PISTON SECONDARY

    MOTION

    RING - LINER

    LUBRICATION

    GAS FLOW

    and

    RING DYNAMICS

    OIL TRANSPORT

    and

    OIL CONSUMPTION

    Ring Pack simulation code structure

    Ring/Groove Interface

    Gas Flows

  • 8/3/2019 Sloan Auto Lab

    49/51

    [1] [2]

    oil

    pgas

    area in direct asperity contact

    oil

    RING

    GROOVE

    Ring/Groove Interface

    asperity contact

    oil squeezing

    Dynamics of the Rings

    Major Elements

    of the ExistingRing Pack Models

    Mixed Lubrication

    Three Lubrication Modes

    Outlet conditions

    Flow continuity

    Ring/Liner Interface

    Forces and pressures

    from the Expander/Spacer

    Rail/Expander Interaction

    CG

    Gas Flows

    Through groove

    Through bore

    Through gaps

    Through waviness

  • 8/3/2019 Sloan Auto Lab

    50/51

    FundamentalModels

    RINGPACK-OC

    FRICTION-OFT

    TLOCR

    TPOCR

    PISTON2nd

    IndividualOil

    TransportProcessesandmodels Ring/Liner

    ScrapingRedistribution

    Ring/groove

    Pumping out

    Gas flow dragging

    Piston lands

    Gas flow driven

    Inertia driven

    Vaporization

    On liner

    On piston

    Gap

    Gap position

    Mist

    Zone Analysis

    Oil Consumption Analysis Package

  • 8/3/2019 Sloan Auto Lab

    51/51

    0 % 100 % Load

    4200 rpm; 0 % - WOT

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    40 80 120 160 200 240Time [s]

    OilCons.

    [Qg/cyc]

    0

    20

    40

    60

    Blow-By[l/min]

    ,

    AirFlow[l/s]

    Oil Cons.Blow-By

    Air flow

    0

    10

    20

    -360 -300 -240 -180 -120 -60 0 60 120 180 240 300 360CA [degrees]

    Pressure

    [bar]

    Pres. 1

    Pres. 2

    Cylinder

    2nd Land [pred.]

    3rd Land [pred.]

    Transient oil consumption and Mechanism

    Measurements from theProduction Engine

    Modeling

    Research highlights: Integration of modeling and the Experiments on production and single-cylinder engines

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 180 360CA [degrees]

    NormalizedLift[1=topposition]

    Top Ring

    2nd Ring