8
IJD/AAPM-09 Small Small- Field Dosimetry Field Dosimetry Indra J. Das, PhD, FACR Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA IJD/AAPM-09 TG-155: Small Fields and Non-Equilibrium Condition Photon Beam Dosimetry Indra J. Das (Chair) Indiana University School of Medicine, Indianapolis, IN 46202 Paolo Francescon (Co-chair) Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy Anders Ahnesjo Uppsala University & Nucletron Scandinavia AB, 751 47 Uppsala, Sweden Maria M. Aspradakis Department of Radiation Oncology, Kantonsspital Graubünden, Chur, Switzerland Chee-Wai Cheng Midwest Proton Radiotherapy Institute, Bloomington & Indiana University School of Medicine, Indianapolis, IN, 46202 George X. Ding Vanderbilt University Medical Center, Nashville , TN 37232 Geoffrey S. Ibbott Radiological Physics Center, MD Anderson Cancer Center, Houston, TX 77030 Iwan Kawrakow Ionizing Radiation Standards, National Research Council of Canada, Ottawa , ON K1A 0R6, Canada Mark Oldham Duke University Medical Center, Durham, NC 27710 M. Saiful Huq University of Pittsburgh Medical Center, Pittsburgh, PA 15232 Chester S. Reft University of Chicago, Chicago, IL 60637 IJD/AAPM-09 Treatment Fields Magna-Fields Traditional Fields Advance Therapy Fields SRS/SRT Gamma Knife Cyber-Knife Tomotherapy IMRT 40x40 cm 2 4x4 cm 2 4x4 cm 2 0.3x0.3 cm 2 200x200 cm 2 Small Field IJD/AAPM-09 What is a Small Field? Lack of charged particle Dependent on the range of secondary electrons Photon energy Collimator setting that obstructs the source size Detector is comparable to the field size

Small -Field Dosimetry · Small Field Dosimetry Problem Institutional ... Dia mond TLD MC(1 m) MC(5mm) ... Ph o tn e rgy a d sp c um Cha ng ei sp ctrum

Embed Size (px)

Citation preview

IJD/AAPM-09

SmallSmall--Field DosimetryField Dosimetry

Indra J. Das, PhD, FACRDepartment of Radiation OncologyIndiana University School of MedicineIndianapolis, IN, USA IJD/AAPM-09

TG-155: Small Fields and Non-Equilibrium ConditionPhoton Beam Dosimetry

Indra J. Das (Chair)Indiana University School of Medicine, Indianapolis, IN 46202

Paolo Francescon (Co-chair)Ospedale Di Vicenza, Viale Rodolfi, Vicenza 36100, Italy

Anders AhnesjoUppsala University & Nucletron Scandinavia AB, 751 47 Uppsala, Sweden

Maria M. AspradakisDepartment of Radiation Oncology, Kantonsspital Graubünden, Chur, Switzerland

Chee-Wai ChengMidwest Proton Radiotherapy Institute, Bloomington & Indiana University School of Medicine, Indianapolis, IN, 46202

George X. DingVanderbilt University Medical Center, Nashville , TN 37232

Geoffrey S. IbbottRadiological Physics Center, MD Anderson Cancer Center, Houston, TX 77030

Iwan KawrakowIonizing Radiation Standards, National Research Council of Canada, Ottawa , ON K1A 0R6, Canada

Mark OldhamDuke University Medical Center, Durham, NC 27710

M. Saiful HuqUniversity of Pittsburgh Medical Center, Pittsburgh, PA 15232

Chester S. ReftUniversity of Chicago, Chicago, IL 60637

IJD/AAPM-09

Treatment Fields

Magna-FieldsTraditional Fields

Advance Therapy FieldsSRS/SRTGamma KnifeCyber-KnifeTomotherapyIMRT

40x40 cm2 4x4 cm2

4x4 cm2 0.3x0.3 cm2

200x200 cm2

Small Field

IJD/AAPM-09

What is a Small Field?

� Lack of charged particle■ Dependent on the range of

secondary electrons■ Photon energy

� Collimator setting that obstructs the source size

� Detector is comparable to the field size

IJD/AAPM-09Das et al, Med. Phys. 35, 206-215, 2008

Definition of Small Fields

IJD/AAPM-09

Dosimetry

� Absolute■ Dose

� Relative■ Depth Dose [D(r,d)/D(r,dm)]■ TMR■ Profiles■ Output, Scp (total scatter factor),

[D(r)/D(ref)]

IJD/AAPM-09Alfonso, et al. Med Phys 35, 5179-5186 (2008)

IAEA/AAPM proposed pathway

IJD/AAPM-09

403530252015100.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

WEHU-ArizonaTemple UU PennErlanger Serago et al.Fan et al.Zhu et al.

Total scatter factor from different institutions

Cone Diameter (mm)

Con

e F

acto

r (S

t)

Das et al, J Radiosurgery, 3, 177-186, 2000

Small Field Dosimetry Problem

Institutional variability in 6 MV Radionics SRS dosimetry

12% diff

IJD/AAPM-09

403530252015100.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pinpoint(par)

Pinpoint(per)0.125ion(par)

0.125ion(per)

Diamond

TLD

MC(1mm)

MC(5mm)

CEA (Film)Kodak(Film)

Total scatter factor with various detectors

Cone Diameter (mm)

Con

e Fa

ctor

(St

)

Das et al, J Radiosurgery, 3, 177-186, 2000

Dosimetric Variation with Detectors

14%

IJD/AAPM-09

Radiation Measurements

� Charged particle equilibrium or electronic equilibrium■ Range of secondary electrons■ Medium (tissue, lung, bone)

� Photon energy and spectrum■ Change in spectrum

● Field size● Off axis points like beamlets in IMRT

■ Changes µen/ρ and S/ρ� Detector size

■ Volume■ Signal to noise ratio

IJD/AAPM-09

CPE & Electron Range

� Electron range= dmax in forward direction

� Electron range in lateral direction■ Nearly energy independent■ Nearly equal to penumbra (8-10

mm)

� Field size needed for CPE■ Lateral range

� CPE, Charged Particle Equilibrium

dmax

IJD/AAPM-09

�� Ion ChambersIon Chambers■■ Diameter, volume, and window thicknessDiameter, volume, and window thickness■■ W/e, S/W/e, S/ρρ, , µµen/en/ρρ■■ PerturbationPerturbation

�� FilmsFilms■■ Silver bromide filmsSilver bromide films

●● high Z, sensitivity, thicknesshigh Z, sensitivity, thickness■■ GAFchromic polymer filmsGAFchromic polymer films

●● Sensitivity, thickness, polymerization at low energySensitivity, thickness, polymerization at low energy

�� TLD/OSL (sensitivity at low energy, F center)TLD/OSL (sensitivity at low energy, F center)■■ Size 10Size 10--15 15 µµm, difficulty of handlingm, difficulty of handling

�� Fricke Dosimeter (G value)Fricke Dosimeter (G value)■■ (Size and dose)(Size and dose)

�� MOSFET (thickness, dose rate, burnout, life, MOSFET (thickness, dose rate, burnout, life, cost)cost)

�� Monte Carlo (benchmarking, expertise, reliability)Monte Carlo (benchmarking, expertise, reliability)

Dosimeters & Associated Dosimeters & Associated ProblemsProblems

IJD/AAPM-09

Ratio of Readings?

Ψ=ρ

µenD

Ψ=ρ

µenD

Ψ=ρ

µenD

ax

0

( ) ( )( ) ( )

( )mh

ab

d h hD E h d h

d h

ν φ ν µ ν ν νν ρ

=

( ) ( )rr m

ref ref aref ref

D r Q r W S

D Q e ρ =

m

m

a

Q W SD

m e ρ =

1 2

( )

re fQF F

rC

QC

= • •

Q(E,r) = Qr Pion Prepl Pwall Pcec Ppcf,

( ) ( )rr m

ref ref aref ref

D r Q r W S

D Q e ρ =

IJD/AAPM-09

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

1.E+1

0.0 1.0 2.0 3.0 4.0 5.0 6.0

E (MeV)

Ph

oto

n F

luen

ce 0.5 cm, primary

5 cm, primary

0.5 cm, scatter

5 cm, scatter

WATER, at dmax (a)

Verhaegen, Das, Palmans, PMB, 43, 2755-2768, 1998

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0E (MeV)

Ph

oto

n F

luen

ce

0.5 cm

5 cmAIR, at exit (c)

6 MV

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

0 1 2 3 4 5 6

Diameter of Cone (cm)

Ave

rage

En

erg

y (M

eV)

Spectra & Effective Energy from SRS Cones (0.5-5 cm)

IJD/AAPM-09 IJD/AAPM-09Sanchez-Deblado et al, Phy. Med. Biol., 48, 2081, 2003

Radiological Parameters

IJD/AAPM-09F. Araki, Med. Phys. 33, 2955-2963 (2006).

Cyber Knife Dosimetry

0.5%

IJD/AAPM-09

Francescon et al, Med. Phys. 25(4), 503, 1998

MC

MC

MC

MC

MC

MC

IJD/AAPM-09

Correction Factors

Francescon, et al Med Phys 35, 504, 2008

Correction Factor depends on:Field sizeSource size (FWHM)Detector type

IJD/AAPM-09

Issues with IMRT Dose Delivery

� About 50% of the total MU contributes to ~95% of the dose and 30% of the total MU contributes <0.5% to isocenter due to small beamlets

� With insufficient lateral equilibrium in at least one direction, the absorbed dose never reaches the equilibrium value, and can be significantly lower for very small field sizes

� The large difference between 0.6cm3 and the 0.015 cm3 ion chamber data is due to the under sampling of the 0.6 cm3 data because of the detector size.

Cheng, Das, Huq, Med. Phys. 30(11), 2959-2968, 2003

IJD/AAPM-09

Leybovich et al Med Phys. 30, 119-123, 2003

Dependence on Chamber Volume

0.6cm3 0.125cm3 0.009cm3 0.6cm3 0.125cm3 0.009cm3

IJD/AAPM-09

6 MV; Central Axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7 8 9 10 11

Field Size (cm)

Rel

ativ

e d

ose

at d

max

Scanditronix-SFDScanditronix-PFDExradin-A16PTW-PinpointPTW-0.125ccPTW-0.3ccPTW-0.6ccPTW-MarkusWellhofer-IC4

15 MV; Central Axis

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7 8 9 10 11

Field Size (cm)

Rel

ativ

e do

se a

t dm

ax

Scanditronix-SFD

Scanditronix-PFDExradin-A16

PTW-PinpointPTW-0.125cc

PTW-0.3ccPTW-0.6cc

PTW-MarkusWellhofer-IC4

Field Size Limit for Accurate Dose Measurements with Available Detectors

Das et al, TG-106, Med Phys, 35, 4186, 2008

IJD/AAPM-09

30282624222018161412100

10

20

30

40

50

60

70

80

90

100

110

Film

Ion (0.125 cc)Ion (parallel-plate)Ion (Pinpoint)Diamomd

Dose profiles for a 40 mm cone with different detectors

Distance (mm)

Nor

mal

ized

Dos

e (%

)

201816141210864200

10

20

30

40

50

60

70

80

90

100

110

Diamond

Ion (Parallel Plate)

Film

Ion (Pinpoint)

Dose profile of a 12.5 mm cone

Distance (mm)

Nor

mal

ized

Dos

e (%

)

Hedrian, Hoban & Beddoe, PMB, 41, 93-110, 1996Das et al, J Radiosurgery, 3, 177-186, 2000

Profiles with different detectors

IJD/AAPM-09

Effect of Inhomogeneity

� Range of secondary electrons■ Simple scaling based on density

M. K. Woo, and J. R. Cunningham, "The valididty of density scaling method in primary electron transport for photon and electron beams," Med. Phys. 17, 187-194 (1990).

� Perturbations of the detector■ T. Mauceri, and K. R. Kase, "Effects of ionization

chamber construction on dose measurements in heterogeneity," Medical Physics 14, 653-656 (1987).

■ R. K. Rice, J. L. Hansen, L. M. Chin, B. J. Mijnheer, and B. E. Bjarngard, "The influence of ionization chamber and phantom design on the measurement of lung dose in photon beam," Medical Physics 15, 884-890 (1988).

IJD/AAPM-09

Electron range & inhomogeneity

IJD/AAPM-09

0.5 cm, 0.25 cm3 lung

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Depth (cm)

Rel

ativ

e D

ose

Ho mo geneo us

Mo nte C arloEP L

TMR RatioP o wer Law TMR

Co nvo lutio nCC C Water

Jones & Das, Med. Phys. 30, 296, 2003Jones & Das, Med. Phys. 30, 296, 2003

Jones & Das, Med. Phys. 32, 766, 2005

IJD/AAPM-09

Conclusions

� Small volume detector should be used that has minimum energy, dose and dose rate dependence.

� Micro-ion chambers are best suited for small field dosimetry; however, signal to noise should be evaluated.

� Stereotactic diode with micron size detector could be suitable for radiosurgery beam.

� If field size is small compared to detector and electronic equilibrium could be compromised, measurements should be performed at greater source to surface distance with proper correction. IJD/AAPM-09

� Energy spectrum does vary in small fields such as SRS, and IMRT, however, its impact is not significant.

� Stopping power ratio in small fields for most ion chambers is relatively same as the reference field.

� Spot check and verification of smaller fields should be carried out with at least another independent method (TLD, film, MC, etc).

-Conclusions

IJD/AAPM-09ThanksThanks IJD/AAPM-09

TG-155 Approved Task1. Collaborate with the new task group (Non-compliant/IAEA) on absolute

dosimetry to ensure that there is no overlap between the two task groups, but rather are complementary to each other.

2. Review and summarize literature on dosimetry of small fields irrespective of the origin and treatment modality.

3. Provide overview of the issue of CPE for the small field dosimetry in homogeneous and inhomogeneous media.

4. Provide meaningful information on the spectrum and shift in beam energy from Monte Carlo.

5. Provide radiation parameters (men/r, S/r, etc) for small field dosimetry from published literature from Monte Carlo.

6. Provide suitability of specific detectors with respect to perturbations and signal to noise ratio.

7. Provide available information on the correction and perturbation factors in detectors.

8. Provide guidelines in measurement methods for modeling the treatment planning systems for small fields.

9. Provide suitability of algorithms based on measurement for beam modeling in small fields especially in inhomogeneous medium.

10. Provide error analysis and limit of uncertainty in the measurements.11. Provide guidelines and recommendations for accurate determination of

dosimetric data for small fields.