13
Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space H.S.Abdel-Aziz and M.Khalifa Saad * Dept. of Math., Faculty of Science, Sohag Univ., 82524 Sohag, Egypt Abstract. In the present paper, Smarandache curves for some special curves in the three- dimensional Galilean space G 3 are investigated. Moreover, spherical indicatrices for the helix as well as circular helix are introduced. Furthermore, some properties for these curves are given. Finally, in the light of this study, some related examples of these curves are provided. Keywords. Smarandache curves, Spherical indicatrices, Frenet frame, Galilean space. MSC(2010). 53A35, 53B30. 1 Introduction Discovering Galilean space-time is probably one of the major achievements of non relativistic physics. Nowadays Galilean space is becoming increasingly popular as evidenced from the connection of the fundamental concepts such as velocity, momentum, kinetic energy, etc. and principles as indicated in [7]. In recent years, researchers have begun to investigate curves and surfaces in the Galilean space and thereafter pseudo-Galilean space. A regular curve in Euclidean space whose position vector is composed by Frenet frame vectors on another regular curve is called a Smarandache curve. Smaran- dache curves have been investigated by some differential geometers [1,9]. M. Turgut and S. Yilmaz have defined a special case of such curves and call it Smarandache TB 2 curves in the space E 4 1 [9]. They have dealed with a special Smarandache curves which is defined by the tangent and second bi- normal vector fields. Additionally, they have computed formulas of this kind curves. In [1], the author has introduced some special Smarandache curves in the Euclidean space. He has studied Frenet-Serret invariants of a special case. In this paper, we investigate Smarandache curves for the position vector of an arbitrary curve in terms of the curvature and the torsion with respect to standard frame. Besides, special Smarandache curves such as TN , TB and TNB according to Frenet frame in Galilean 3-space are studied. Furthermore, we find differential geometric properties of these special curves and we calculate curvatures (natural curvatures) of these curves. Our main result in this work is to study Smarandache curves for some special curves in the Galilean 3-space G 3 . * E-mail address: mohamed [email protected] 1 arXiv:1501.05245v1 [math.DG] 21 Jan 2015

Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space

Embed Size (px)

DESCRIPTION

In the present paper, Smarandache curves for some special curves in the threedimensional Galilean space G3are investigated.

Citation preview

SmarandacheCurvesandSphericalIndicatricesintheGalilean3-SpaceH.S.Abdel-Aziz andM.KhalifaSaadDept. ofMath.,FacultyofScience,SohagUniv.,82524Sohag,EgyptAbstract. Inthe present paper, Smarandache curves for some special curves inthe three-dimensional GalileanspaceG3areinvestigated. Moreover, spherical indicatricesforthehelixaswellascircularhelixareintroduced. Furthermore,somepropertiesforthesecurvesaregiven. Finally,inthelightofthisstudy,somerelatedexamplesofthesecurvesareprovided.Keywords. Smarandachecurves,Sphericalindicatrices,Frenetframe,Galileanspace.MSC(2010). 53A35,53B30.1 IntroductionDiscovering Galilean space-time is probably one of the major achievements of non relativistic physics.NowadaysGalileanspaceisbecomingincreasinglypopularasevidencedfromtheconnectionof thefundamental conceptssuchasvelocity, momentum, kineticenergy, etc. andprinciplesasindicatedin [7]. In recent years,researchers have begun to investigate curves and surfaces in the Galilean spaceandthereafterpseudo-Galileanspace. AregularcurveinEuclideanspacewhosepositionvectoriscomposedbyFrenetframevectorsonanotherregularcurveiscalledaSmarandachecurve. Smaran-dachecurveshavebeeninvestigatedbysomedierential geometers[1, 9]. M. TurgutandS. Yilmazhavedenedaspecial caseof suchcurvesandcall itSmarandacheTB2curvesinthespaceE41[9].TheyhavedealedwithaspecialSmarandachecurveswhichisdenedbythetangentandsecondbi-normal vector elds. Additionally, they have computed formulas of this kind curves. In [1], the authorhas introduced some special Smarandache curves in the Euclidean space. He has studied Frenet-Serretinvariants of a special case. In this paper, we investigate Smarandache curves for the position vector ofanarbitrarycurveintermsofthecurvatureandthetorsionwithrespecttostandardframe. Besides,special Smarandache curves such as TN, TBand TNBaccording to Frenet frame in Galilean 3-spacearestudied. Furthermore, wenddierential geometricproperties of thesespecial curves andwecalculatecurvatures(natural curvatures)of thesecurves. OurmainresultinthisworkistostudySmarandachecurvesforsomespecialcurvesintheGalilean3-spaceG3.E-mailaddress:[email protected]:1501.05245v1 [math.DG] 21 Jan 20152 PreliminariesLet us recall thebasicfacts about thethree-dimensional GalileangeometryG3. ThegeometryoftheGalileanspacehasbeenrstlyexplainedin[11]. ThecurvesandsomespecialsurfacesinG3areconsideredin[3]. TheGalileangeometryisareal Cayley-Kleingeometrywithprojectivesignature(0, 0, +, +) accordingto[5]. Theabsoluteof theGalileangeometryis anorderedtriple(w, f, I )wherewis theideal (absolute) plane(x0=0), f is alineinw(x0=x1=0) andI is elliptic((0: 0: x2: x3) (0: 0: x3: x2))involutionof thepointsof f . IntheGalileanspacetherearejusttwotypesofvectors, non-isotropicx(x, y, z)(forwhichholdsx =0). Otherwise, itiscalledisotropic. Wedonot distinguishclasses of vectors amongisotropicvectors inG3. Aplaneof theformx=const. intheGalileanspaceiscalledEuclidean, sinceitsinducedgeometryisEuclidean.Otherwiseitiscalledisotropicplane. Inanecoordinates, theGalileaninnerproductbetweentwovectorsP= (p1, p2, p3)andQ = (q1, q2, q3)isdenedby[4]:P, QG3=_p1q1ifp1 = 0 q1 = 0,p2q2 + p3q3ifp1= 0 q1= 0.(2.1)AndthecrossproductinthesenseofGalileanspaceisgivenby:(P Q)G3=___0 e2e3p1p2p3q1q2q3; ifp1 = 0 q1 = 0,e1e2e3p1p2p3q1q2q3; ifp1= 0 q1= 0.(2.2)TheGalileansphereofradiusdandcentercofthespaceG3isdenedbyS2G(c, d) = {X c G3: X c, X cG3= d2}.A curve (t) = (x(t), y(t), z(t)) is admissible in G3if it has no inection points ( (t) (t) = 0) . AnadmissiblecurveinG3isananalogueofaregularcurveinEuclideanspace.Foranadmissiblecurve:I G3, I Rparameterizedbythearclengthswithdierentialformdt = ds,givenby(s) = (s, y(s), z(s)). (2.3)Thecurvature(s)andtorsion(s)ofaredenedby(s) =___

(s)___ =_y

(s)2+ z

(s)2,(s) =y

(s)z

(s) + y

(s)z

(s)2(s). (2.4)Notethatanadmissiblecurvehasnon-zerocurvature.2TheassociatedtrihedronisgivenbyT(s) =

(s) = (1, y

(s), z

(s)),N(s) =

(s)(s)=(0, y

(s), z

(s))(s),B(s) =(0, z

(s), y

(s))(s). (2.5)For derivatives of the tangent T, normal N and binormal B vector eld, the following Frenet formulasintheGalileanspacehold[11]__TNB__

=__0 00 0 0 0____TNB__. (2.6)From(2.5)and(2.6),wederiveanimportantrelation

(s) =

(s)N(s) + (s)(s)B(s).Letusconsiderthefollowingdenitions:Denition2.1Asinthethree-dimensionalEuclideanspace,anadmissiblecurveinG3,whose posi-tionvectoriscomposedbyFrenetframevectorsonanotheradmissiblecurveiscalledaSmarandachecurve[9].Inthelight of theabovedenition, weadapt it toadmissiblecurves intheGalileanspaceasfollows:Denition2.2let = (s)beanadmissiblecurveinG3and {T, N, B}beitsmovingFrenetframe.SmarandacheTN, TBandTNBcurvesarerespectively,denedbyTN=T+NT+N,TB=T+BT+B,TNB=T+N+BT+N+B. (2.7)Denition2.3Ahelix is a geometric curve with non-vanishing constant curvature and non-vanishingconstanttorsion [10]Denition2.4A family of curves with constant curvature but non-constant torsion is called Salkowskicurves and a family of curves with constant torsion but non-constant curvature is called Anti-Salkowskicurves[6].Denition2.5As in Euclidean 3-space ,let be an admissible curve in Galilean 3-space with FrenetvectorsT, NandB. TheunittangentvectorsalongthecurvegenerateacurveTonaGalilean3sphereof radius 1about theorigin. ThecurveTis calledthespherical indicatrixof Tor morecommonly, Tiscalledtangentindicatrixof thecurve. If =(s)isanatural representationof, thenT(sT)=T(s)will bearepresentationof T. Similarlyoneconsiderstheprincipal normalindicatrixN(sN) = N(s)andbinormal indicatrixB(sB) = B(s)[8].3 SmarandachecurvesofspecialcurvesInthissection,weconsiderthepositionvectorofanarbitrarycurvewithcurvature(s)andtorsion(s)intheGalileanspaceG3whichcomputedfromthenaturalrepresentationformasfollows[2]r (s) =_s,_ __(s) cos__(s)ds_ds_ds,_ __(s) sin__(s)ds_ds_ds_. (3.1)ItsmovingframeisT(s) =_1,__(s) cos__(s)ds_ds_,__(s) sin__(s)ds_ds__,N(s) =_0, cos__(s)ds_, sin__(s)ds__,B(s) =_0, sin__(s)ds_, cos__(s)ds__. (3.2)LetusinvestigateFrenetinvariantsofSmarandachecurvesaccordingtodenition2.2.3.1 TN-SmarandachecurveLetr1(s1)beaTN-Smarandachecurveofr(s)writtenasr1(s1) =_1,_(s) cos__(s)dsds + cos__(s)ds,_(s) sin__(s)dsds + sin__(s)ds_. (3.3)Bydierentiating(3.3)withrespecttos,wegetT1=12+ 2_0, (s) cos__(s)ds(s) sin__(s)ds,(s) sin__(s)ds+ (s) cos__(s)ds_, (3.4)whereds1ds=_2+ 2. (3.5)Also,dierentiating(3.4),weobtain1N1=1(2+ 2)2(0, 1, 2) , (3.6)then,thecurvatureandprincipalnormalvectoreldofr1(s1)arerespectively,1=1(2+ 2)2_21 + 22, N1=1_21 + 22(0, 1, 2) , (3.7)where41=_3 2 3 + _sin__(s)ds_+_22+ 2 4 _cos__(s)ds_, (3.8)2=_3+ 2 + 3 _cos__(s)ds_+_222 + 4+ _sin__(s)ds_. (3.9)Ontheotherhand,thebinormalvectorofthiscurveisexpressedasB1=1_(2+ 2)_21 + 22__2_(s) cos__(s)ds(s) sin__(s)ds_1_(s) sin__(s)ds+ (s) cos__(s)ds_, 0, 0_, (3.10)itfollowsthat1= 0. (3.11)3.2 TB-SmarandachecurveLetr2(s2)beaTB-Smarandachecurvegivenbyr2(s2) =_1,_(s) cos__(s)dssin__(s)ds,_(s) sin__(s)ds+ cos__(s)ds_. (3.12)DierentiatingthisequationwithrespecttosyieldsT2=_0, cos__(s)ds_, sin__(s)ds__, (3.13)whereds2ds= ( ) . (3.14)Again,dierentiating(3.13)gives2=( ), (3.15)N2=_0, sin__(s)ds_, cos__(s)ds__. (3.16)Fromtheabovementioned,onecanobtainB2= (1, 0, 0) . (3.17)Fromwhich2= 0. (3.18)53.3 TNB-SmarandachecurveBydenition2.2,theTNB-Smarandachecurveisgivenbyr3(s3) =_1,_(s) cos__(s)ds+ cos__(s)dssin__(s)ds,_(s) sin__(s)ds+ sin__(s)ds+ cos__(s)ds_. (3.19)Similarly,itstangent,theprincipalnormalandthebinormalvectorsarerespectively,T3=1_( )2+ 2_0, ( ) cos__(s)ds(s) sin__(s)ds,( ) sin__(s)ds+ (s) cos__(s)ds_, (3.20)inwhichds3ds=_( )2+ 2, (3.21)N3=_0, 1 cos__(s)ds2 sin__(s)ds,2 cos__(s)ds+ 1 sin__(s)ds__21 + 22, (3.22)B3=(2 ( ) 1)_( )2+ 2_21 + 22(1, 0, 0) , (3.23)where1(s) =__( )2+ 2__ 2_( ) (( ) ( ) + )_,2(s) =__( )2+ 2__ 2+ _ (( ) ( ) + )_. (3.24)Thecurvatureandthetorsionofthiscurvearerespectively,givenby3=_21 + 22_( )2+ 2_2, 3= 0. (3.25)Theorem3.1Letr(s)givenby(3.1)beahelix(s)inG3(/ = m = const.)whichcanbewrittenas(s) =_s,1m_sin_m_(s)ds_ds, 1m_cos_m_(s)ds_ds_, (3.26)thenTN, TBandTNB-Smarandachecurvesofareplanecurveswithconstantcurvatures.Proof. WeprovethistheoremforTN-Smarandachecurveonly. Thestraightforwardcomputationsongiverespectively,thetangent,theprincipalnormalandthebinormalvectorsofasfollowsT(s) =_1,1m sin_m_(s)ds_, 1m cos_m_(s)ds__,N(s) =_0, cos_m_(s)ds_, sin_m_(s)ds__,6B(s) =_0, sin_m_(s)ds_, cos_m_(s)ds__. (3.27)TheTN-Smarandachecurveofcanbeexpressedas1(s1) =_1,1m sin_m_(s)ds+ cos_m_(s)ds,1m cos_m_(s)ds+ sin_m_(s)ds_. (3.28)IthasthemovingFrenetframeT1=11 + m2_0, cos_m_(s)dsmsin_m_(s)ds,sin_m_(s)ds+ mcos_m_(s)ds_,N1=1(1 + m2)_0, sin_m_(s)dsmcos_m_(s)ds,cos_m_(s)dsmsin_m_(s)ds_,B1=_11 + m2, 0, 0_. (3.29)Fromtheabovedata,thecurvatureandtorsionof1are1= m, 1= 0. (3.30)Thecurvatureisconstantandtorionisvanished. ThesameresultsforTBandTNB-Smarandachecurvesofarevalid. Hencetheproofiscompleted.Remark3.1If r(s) is a circular helix ( = const. , = const.), then TN, TB and TNB-Smarandachecurvesarealsoplanecurveswithconstantcurvatures.Theorem3.2Ifr(s)isafamilyofSalkowskicurves(s)inG3(= (s), = a = const.)whichcanbewrittenas(s) =_s, a_ __cos__(s)ds_ds_ds, a_ __sin__(s)ds_ds_ds_, (3.31)thenTN, TBandTNB-Smarandachecurvesofareplanecurveswithnon-constantcurvatures.Proof. Aftersomecalculationson, thetangent, theprincipalnormalandthebinormalvectorsofare,respectivelyT (s) =_1, a_ _cos__(s)ds__ds, a_ _sin__(s)ds__ds_,N (s) =_0, cos__(s)ds_, sin__(s)ds__,B (s) =_0, sin__(s)ds_, cos__(s)ds__. (3.32)Here,TN-Smarandachecurveofis1(s1) =_1, a_ _cos__(s)ds_ds + cos__(s)ds,a_ _sin__(s)ds_ds + sin__(s)ds_, (3.33)7withtheFrenetvectorsT1=1_a22(s)_0, a cos(_(s)ds) (s) sin(_(s)ds),a sin(_(s)ds) + (s) cos(_(s)ds)_,N1=1_0, 1 (s) sin(_(s)ds) + 2 (s) cos(_(s)ds),2 (s) sin(_(s)ds) + 1 (s) cos(_(s)ds)_; =_21 + 22,B1=1_(a1 2)_a22(s), 0, 0_. (3.34)Fromtheaforementionedcalculations,thecurvaturesof1(s1)are1=(a22(s))2, 1= 0, (3.35)where1 (s) =_(a)_a22_+ 2_, 2 (s) =_a 2_a22__. (3.36)As above, we can do similar calculations for TB and TNB-Smarandache curves of . In all cases, thecurvaturesarenon-constants(theydependonthetorsionoftheSalkowskicurve)andthetorionsarevanished. Thus,thiscompletestheproof.Remark3.2Ifr(s)isafamilyofAnti-Salkowskicurves(s)inG3(= b = const., = (s)),whichcanbewrittenas(s) =_s,_ __(s) cos(bs)ds_ds,_ __(s) sin(bs)ds_ds_, (3.37)then TN, TB and TNB-Smarandache curves of are also plane curves withnon-constant curvatures.4 SphericalindicatricesofageneralhelixinG3Inwhatfollows,weinvestigatethespherical indicatrixofthetangentofthehelix(s).Bydier-entiating(3.26)withrespecttos,wehavethetangentsphericalcurveasfollows:T= T(sT) =_1,1m sin(m_(s)ds), 1mcos(m_((s)ds)_. (4.1)TheFrenetvectorsofT(sT)areTT(sT) =_0, cos(m_(s)ds), sin(m_(s)ds)_,NT(sT) =_0, sin(m_(s)ds), cos(m_(s)ds)_,BT(sT) = (1, 0, 0), (4.2)anditscurvaturesaregivenbyT(sT) = m, T(sT) = 0. (4.3)8Theorem4.1Let= (s)beahelixintheGalileanspaceG3with (s) = 0. Thecurvaturesofthetangentspherical curveT(sT)offoreachsT I RsatisfythefollowingequalitiesTT, T

G3= 0,NT, T

G3= 1T,BT, T

G3=

T2TT.Proof. ByassumptionwehaveT, T

G3= d2, (4.4)foreverysT I R anddistheradiusof theGalileansphereS2G. Bydierentiating(4.4)withrespecttos,wehave_dTdsTdsTds, T_G3= 0,wheresTisthearclengthofthetangentsphericalcurveinG3. So,wegetdsTds= (s),then(s) TT, T

G3= 0,TT, T

G3= 0. (4.5)Byanewdierentiationof(4.5),wendthatT NT, T

G3+ TT, TT

G3= 0.FromwhichNT, T

G3= 1T. (4.6)Moredierentiationof(4.6)givesT BT, T

G3+ NT, TT

G3= T2T,sinceNT, TT

G3= 0, dNTdsT= TBT,thenBT, T

G3=TT2T.Thus,theproofiscompleted.Fromaforementionedinformation,wehavethefollowingproposition.Proposition4.1TheGalileanspherical imagesof ageneral helix(orcircularhelix)inthethree-dimensional Galileanspaceareplanecurveswithconstantcurvatures.Proposition4.2Wecanalsodoinsimilarwaythecalculationsfortheotherspherical imagesofTN, TBandTNB-Smarandache curves, we ndthat theyare plane curves withnon-constantcurvatures.95 ExamplesExample5.1Let (s)beageneral helixinthree-dimensional Galilieanspacewith= =12s,parameterizedby(s) =_s, 2_sins s coss, 2_coss +s sins_TheTN-Smarandachecurveof(s)isgivenby1 (s1) =_1, sin_s_+ cos_s_, cos_s_+ sin_s__.Then,theFrenetvectorsareT1(s1) =_0, cos (s) sin (s)2, cos (s) + sin (s)2_,N1(s1) =_0, (cos (s) + sin (s))2, cos (s) sin (s)2_,B1(s1) =_cos2_s_+ sin2_s_, 0, 0_.Thederivativesofthesevectorsgive1 (s1) =12, 1 (s1) = 0.TheTBandTNB-Smarandachecurvesof (s)canbecalculatedasabove.Thetangentspherical imageof(s)isdenedbyT=_1, sins, coss_.Fromwhich,onecanobtainTT=_0, coss, sins_,NT=_0, sins, coss_,BT=__sins_2+_coss_2, 0, 0_.ItfollowsthatT= 1, T= 0.Inananalogousway,onecanobtainthenormalandbinormalsphericalimagesofandtheircurva-tures. Thegeneral helix(s)anditsTN-Smarandachecurveandtangentspherical imageareshowninFigures1,2,3.10Figure1: Thegeneralhelix(s).Figure2: TheTN-Smarandachecurveof(s).Figure3: Thetangentsphericalimageof(s).Example5.2Consider a circular helix (s) in G3with non-zero constant curvature and torsion, whichisgivenby(s) = (s, coss, sins) ,therepresentationofitstangentspherical curveisT= (1, sins, coss) .11Then,simplecalculationsleadtoTT= (0, coss, sins) ,NT= (0, sins, coss) ,BT=_(sins)2+ (coss)2, 0, 0_.Bytheaidofthederivativesoftheaboveformulas,weobtainthecurvaturesofTT= 1, T= 0.Thecurveanditstangentspherical imageareshowninFigures4,5.Figure4: Acircularhelix(s).Figure5: Thetangentsphericalimageof(s).6 ConclusionInthethree-dimensional Galileanspace, Smarandachecurvesof somespecial curvessuchashelix,circularhelix,SalkowskiandAnt-Salkowskicurvesarestudied. Furthermore,thesphericalimagesofthehelixaregiven. Someinterestingresultsarepresented. Finallyasanapplicationforthiswork,someexamplesaregivenandplotted.12References[1] A. T. Ali, Special SmarandachecurvesintheEuclideanspace, International Journal ofMathe-maticalCombinatorics,2(2010),30-36.[2] A.T.Ali,PositionvectorsofcurvesintheGalileanspaceG3,MatematickiVesnik,64(3)(2012),200-210.[3] B. DivjakandZ. MilinSipus, Mindings isometries of ruledsurfaces inGalileanandpseudo-Galileanspace.J.Geom.,77(2003),35-47.[4] B.J.PavkovicandI.Kamenarovic,TheequiformdierentialgeometryofcurvesintheGalileanspaceG3,GlasnikMatematicki,22(42)(1987),449-457.[5] E. Molnar, The projective interpretationof the eight 3-dimensional homogeneous geometries.BeitrageAlgebraGeom.,38(2)(1997),261-288.[6] E.Salkowski,Zurtransformationvonraumkurven,Math.Ann.,66(1909),517-557.[7] I. M. Yaglom, Asimplenon-Euclideangeometryandits physical basis, Springer-Verlag, NewYork,1979.[8] M. Ergut and A. O. Ogrenmis, Some characterizations of a spherical curves in Galilean space G3,JournalofAdvancedResearchinPureMathematics,1(2)(2009),18-26.[9] M. TurgutandS. Yilmaz, SmarandachecurvesinMinkowski space-time, International JournalofMathematicalCombinatorics,3(2008),51-55.[10] M. P. DoCarmo, Dierential geometryofcurvesandsurfaces, PrenticeHall, EnglewoodClis,NJ,1976.[11] O.Roschel,DieGeometriedesGalileischenRaumes.Habilitationsschrift,Institutf urMath.undAngew.Geometrie,Leoben,1984.13