SMP Neuro Lab Manual

Embed Size (px)

Citation preview

  • 7/28/2019 SMP Neuro Lab Manual

    1/37

    GEO

    Prepar

    GETOW

    dbyI.Mo

    UNIVEINTR

    chettiand

    SITYMEDUCTIO

    LABORA

    SP

    .Riesenh

    IC LSCNTONETORYMING201

    ber

    HOOLGUROSCIE

    NUAL3

    ADUATENCE

    EDUCATION

  • 7/28/2019 SMP Neuro Lab Manual

    2/37

    IntrotoNeuroscienceLabManual2013 2

    TEACHINGFACULTY

    NAME TITLE OFFICE EMAIL

    Nabil Azzam, Ph.D. Professor

    Neuroscience

    WP-08

    Research Building

    [email protected]

    Alessia Bachis, Ph.D. Assistant Professor EG17CResearch Building

    [email protected]

    Mark Burns, Ph.D. Assistant ProfessorNeuroscience

    WP-22AResearch Building

    [email protected]

    Katherine Conant, MD AssistantProifessor

    EP-16Research Building

    [email protected]

    Hyang-Sook Hoe, Ph.D. Assistant ProfessorNeuroscience

    EP-20Research Building

    [email protected]

    Kathleen Maguire-Zeiss,

    Ph.D.

    Associate Professor

    Neuroscience

    EP-08A

    Research Building

    [email protected]

    Italo Mocchetti, Ph.D. ProfessorNeuroscience

    WP-13Research Building

    [email protected]

    Charbell Moussa, PhD Assistant Professor WP-09BResearch Building

    [email protected]

    J osef Rauschecker, Ph.D. Professor WP-19Research Building

    [email protected]

    William Rebeck, PhD Professor WP-10Research Building

    [email protected]

    Max Riesenhuber, Ph.D. Associate Professor

    Neuroscience

    WP-12

    Research Building

    [email protected]

    Michael Ullman, PhD Professor D237BBuilding D

    [email protected]

  • 7/28/2019 SMP Neuro Lab Manual

    3/37

    IntrotoNeuroscienceLabManual2013 3

    INTRODUCTION

    Thepurposeof this laboratory is toprovideyouhandsonexperiencewithavarietyof

    humancentralnervoussystem(CNS)specimens,andtoreinforcethe importantconceptsof

    the lecturecomponentofthecourse. Thesespecimens includewholeandhalfbrains,brain

    dissections,plastic

    embedded

    brain

    sections,

    Magnetic

    Resonance

    Images

    (MRIs).

    LABORATORYFORMATSchedule:

    Youwillbeassignedtoonegroup(eitherTuesday,May7th

    orWednesday,May8th)who

    willbeusingroomsLE2A,LE2B,LF1A,orLF1BofthePreClinicalScienceBuilding. These

    roomsareequippedwithsafetyfeaturestohandlehumanmaterial. Thelaboratorywillstart

    promptlyat1:30PM,withabriefintroductionbyafacultymember. About3:40PM,youwill

    workwith the instructor to review/solve the four questions listed at the end of this lab

    manual.

    LaboratoryRules:

    Eatinganddrinkingarenotpermitted inthe labs. Shoesshouldbeclosed (nosandals,

    flipflops,etc). Anyonenotwearingappropriateshoeswillbesentawaytochange.

    UsingtheLaboratoryMaterial:

    The brains are stored in plastic containers of fixative (50% alcohol). Wash the brains

    beforeyouusethem,andreplacetheminthecontainersonceyouaredonewiththem. You

    shouldonlyhandlethebrainsifyouarewearinggloves. Don'tforgettoclosethelidonthe

    brainbucketafterremovingthebrain.

    AdditionalmaterialstobeusedareglassslidesinthewoodenboxandMRIsondisplayon

    thelightbox. Specialdissectionswillbepresentedbytheinstructors. Ifyouneedtoreview

    specimensoutsidenormallaboratorytimespleasecontactthedirectorsofthecourse.

    Requiredtext

    There isno requiredtext for this lab. This iswhy themanualcontainsseveralpictures

    takenfromspecimensused inthe lab. Inaddition,BACC inthe libraryhasseveraldifferent

    typesofteachingaidsthatareavailabletohelpinlearningthematerialthatwecoverinthe

    laboratory.TheNeuroscienceDepartment togetherwith the Libraryhavedevelopedaweb

    sitecontainingmostoftheslidesandMRIusedinthelaboratoryinwhichnucleiandtractsare

    labeled. Weencourageyoutousethesetsofglassslidesprovided. Youcanfindthissiteon

    the

    Educational

    Software

    page

    of

    the

    Library:

    http://www8.georgetown.edu/dml/educ/neurolab/frameset.html (bestviewedwith Internet

    Explorer). SectionsthatarepresentedinthislaboratoryarelabeledGT.

    Inaddition totheLibraryWebSite,andtoprovideselfdirectedguides for learning the

    three dimensional organization of the CNS, othermaterialwill be available on the library

    reserveshelforpostedonBlackboard.

  • 7/28/2019 SMP Neuro Lab Manual

    4/37

    IntrotoNeuroscienceLabManual2013 4

    LABORATORYMANUAL

    We encourage you to read thismanual before class. Themanual is devided into 7

    sectionsthatprovideadetaileddescriptionofhowtolocalize/identifyagivenstructure. Each

    sectioncontainsfiguresofactualspecimensthatarelabeledtohelpyouintheidentification.

    Pleasebe aware that specimens in yourbucket couldbedifferent from the figuresof this

    manual. Therefore,compareyourspecimenswiththoseofothertables,bothtoappreciate

    thevariabilitybetweendifferentbrainsandtofindstructureswhichmaybemissingonyour

    specimens. Discussquestionsthatarisewithinyourgroup. Yourparticipation isessential in

    order to learn thematerial. Ifyouneedmorehelp,askamemberofstaff. Therearenonavequestionsinneuroanatomy!

    Attheendofthemanualyouwill findanappendixcontainingadescriptionofthetwo

    main pathways that you need to study after the laboratory. This section is labeled

    independentstudiesbecausewebelievethatyoucandoitwithouttheinstructors. These

    pathways are important for the overall development of a 3D view of the brain and to

    appreciatehowneuroanatomycanhelpclinicians inthediagnosisofneurologicaldisorders.

    Theappendixalsocontainspotentialexamquestionsthatwillbereviewedwiththeinstructor

    attheendofthelaboratory. Athirdappendixincludesadescriptionofthebasicprinciplesof

    MRI. Althoughyouarenotgoingtobetestedontheseprinciples,abasiccomprehensionof

    howMRIworksisnecessary.

    Laboratoryexam

    Therewillbenoexam for the lab. However, the finalexamwill contain at least four

    questionsbasedonthematerialthatyouhavelearnedinthelab. Unlessotherwiseindicated,

    allterms/structuresinBOLDinthismanualareexaminable. Foryourconveniencewehave

    listedthenamesofstructuresthatmustbelearned.

    Listoftermstobelearned

    (inalphabeticalorder)

    abducensnerve

    accessorynerve

    agnosia

    tactile,visual

    Alzheimersdisease

    amydgala

    angulargyrus

    anteriorcommissure

    basalforebrain

    basalganglia

    brainstem

    Broca'sspeecharea

    Brodmannareas

    caudatenucleus

    centralsulcus

  • 7/28/2019 SMP Neuro Lab Manual

    5/37

    IntrotoNeuroscienceLabManual2013 5

    cerebellum,

    cerebellarlobes

    anterior,posteriorandflocculonodularlobes

    cerebellarpeduncles

    Superior,middle,andinferiorpeduncles

    cerebralaqueduct

    cerebralcortex

    cerebralhemispheres

    cerebralpeduncles(orcruscerebri)

    cerebrospinalfluid(CSF)

    choroidplexus

    cingulategyrus

    corpuscallosum

    corticallobes

    frontal,parietal,occipital,andtemporallobes

    corticospinaltract(fibers)

    corticopontinefibers

    cuneus

    diencephalon

    expressiveaphasia

    facialnerve

    flocculus

    fornix

    fourthventricle

    frontalgyrus

    superior,middle,andinferiorfrontalgyri

    globuspallidus

    glossopharyngealnerve

    hippocampus

    hypoglossalnerve

    hypothalamus

    infundibulum

    internalcapsule

    lateralfissure

    lateralventricles

    linguallobe

    longitudinal

    fibers

    mammillarybodies

    mediallemniscus(dorsalcolumn)

    medulla(medullaoblongata)

    midbrain(mesencephalon)

    nucleusaccumbens

    occipitalgyrus

    superioroccipitalandinferioroccipitalgyri

  • 7/28/2019 SMP Neuro Lab Manual

    6/37

    IntrotoNeuroscienceLabManual2013 6

    oculomotornerve

    olfactory

    olfactorybulbandolfactorytract

    olive

    optic

    opticnerve,

    optic

    chiasm

    and

    optic

    tract

    paracentrallobule

    Parkinsonsdisease

    pyramidaldecussation

    pyramids

    postcentralgyrus

    precentralgyrus

    precuneus

    premotorcortex

    primarycortex

    auditory,motor,somatosensory,visual

    putamen

    rednucleus

    spinalcord

    substantianigra

    superiorandinferiorcolliculi(orcorporaquadrigemina)

    supramarginalgyrus

    uncus

    telencephalon

    temporal

    superior,middleandinferiortemporalgyri

    thalamus

    thirdventricle

    transversefibers

    trigeminalnerve

    troclearnerve

    vagusnerve

    vestibulocochlearnerve

    Wernicke'sspeecharea

  • 7/28/2019 SMP Neuro Lab Manual

    7/37

    IntrotoNeuroscienceLabManual2013 7

    CHAPTERINDEX

    1.DefinitionsandTerms

    2.SurfaceTopographyoftheCerebralHemispheres

    2A.Lateralsurface

    2B.Frontallobe2C.Parietallobe

    2D.Occipitallobe

    2E.Temporallobe

    3.VentralSurface

    4.Brainstem

    4A.Midbrain

    4B.PonsandCerebellum

    4C.Medulla

    4D.Morecranialnerves

    5.MidSagittalSection

    5A.Corpuscallosumandsagittalgyri

    5B.Visualcortex

    5C.Lateralventricles

    5D.Diencephalon

    6. CoronalBrainSections

    6A.Sectionthroughtheuncus,optictract,andhypothalamus

    6B.Coronalsectionthroughthesupramarginalgyrus,caudalthalamusandpons6C.Magneticresonanceimaging

    7.SpinalCord

    8A.Generalanatomy

    8B.White

    Matter

    8C.GrayMatter

    Appendix

    I.Questions

    II.Majorpathways

    III.PrinciplesofMRI

  • 7/28/2019 SMP Neuro Lab Manual

    8/37

    Introt

    Thece

    subdivi

    dience

    oblongbasal

    organiz

    Th

    which i

    pointin

    rostral

    terms

    toward

    Additio

    towardposteri

    andbr

    the sa

    cortex.

    Ot

    andinf

    andlat

    section

    Neuroscie

    tralnervou

    ded (based

    halon,mi

    ta).The

    t

    anglia, thation,yous

    firstseto

    sderived fr

    gtowardth

    caudalaxis

    entral,whi

    the back,

    nal terms

    sthe

    back.

    or. Infact,

    instemas

    e as the

    ertermst

    erior,mean

    ralindicat

    There are

    sthrought

    ceLabMan

    ssystem(C

    on the e

    brain (orlencephalo hippocamhouldrevie

    termsdesc

    omtheLati

    enose. Th

    ofthenerv

    chmeans t

    are define

    re anterio

    Anterioran

    whileventr

    andorsala

    orsal aspe

    atareused

    ingbelow(

    sawayfro

    several ref

    eCNS. The

    ual2013

    1.DEFINIS)iscomp

    bryological

    esenceph

    nincludes

    pus and tsomebasi

    ribesorien

    nwordfor

    reverse is

    ussystemi

    oward the

    d with res

    , which in

    dventral

    ar

    alandante

    ndposterio

    t; likewise,

    todescrib

    ig.1). The

    themidlin

    rence plan

    planesofs

    IONSAN

    sedofthe

    developm

    lon), pons,arious

    stru

    e amydgacterminolo

    ationsand

    snout,alw

    trueforca

    sactuallya

    belly, and

    ect to the

    icates tow

    enot

    alwa

    riorcanbe

    r,theposte

    with ventr

    locationsi

    termmedia

    .

    es that ar

    ctionused

    TERMSrainands

    nt) into si

    cerebellu

    cturessuch

    la. In ord

    gyusedinn

    directionso

    ysreferst

    dal,which

    curvedline

    orsal,whic

    curved ro

    ard the fr

    ssynonym

    used interc

    rioraspect

    al and ante

    ntheCNSa

    lindicates

    Fi

    used to

    mostfrequ

    inalcord.structures

    , and medas

    the

    cer

    er to und

    euroanato

    ftheCNS.

    anyprojec

    meanstow

    asindicated

    h is away f

    stralcaudal

    nt, and p

    usand

    neit

    hangeably i

    ofthecere

    rior region

    resuperior,

    owardthe

    ure1.Gener

    describe th

    ntlyinneur

    8

    hebrainis: telenceph

    ulla (or m

    bralcorte

    rstand the

    y.

    hetermr

    tion inthe

    ardthetail.

    inFigure1.

    om thebe

    axis as sh

    sterior me

    heris

    dors

    thespinal

    ralcortex i

    of the cer

    meaninga

    idlineorc

    alterminolo

    e orientati

    oanatomy

    oftenalon,

    dulla,the

    CNS

    stral,

    brain

    The

    The

    llyor

    own.

    aning

    land

    cord

    snot

    ebral

    ove,

    enter

    gy

    n of

    re:

  • 7/28/2019 SMP Neuro Lab Manual

    9/37

    IntrotoNeuroscienceLabManual2013 9

    coronal,horizontal(axial),andsagittal. Theseplanesareillustratedinfigure2.

    Figure2.Planesofsections.The reason why we are using different plans of sections to study neuroanatomy is

    becauseinternalstructures(e.g.thalamus)canbeseenonlybytakingapartaportionofthe

    cerebralcortex. Youwillseeseveralexamplesduringthislaboratory.

    Another importantsetof termsused inneuroanatomydescribeconnectionswithin the

    CNS. TheCNSisgenerallybilaterallysymmetrical,andthetwohalvesarejoinedlargely(but

    not exclusively) by nerve fiber bundles referred to as commissures. Commissures

    interconnecthomologousareasonthetwosidesofthebrain.

    Anothertypeofcrossingisadecussation(Latinfor"xshapedcrossing")thatreferstothe

    intercrossingofhomologousaxonalpathwaysaseachcrossestotheoppositesideoftheCNS

    during the courseof itsascentordescent through theCNS. Aprojection takesonvarious

    namesaccording

    to

    the

    historical

    origin

    of

    their

    discovery.

    They

    may

    sometimes

    be

    called

    tract,suchasthepyramidaltract,lemniscustract(e.g.,mediallemniscus),orfasciculus(e.g.

    fasciculus gracilis). Each tract/fasciculus contains fibers that originate and go to different

    portionoftheCNS. Infreshtissues,myelinatedfibertractshaveawhiteappearance,hence

    thenamewhitematter,whereasareasoftheCNSthatcontainpredominatelyneuronalcell

    bodiesand theirprocesses (whichconstitute theneuropil)haveagrayappearanceandare

    calledgraymatter. Tobetterevidentiategrayandwhitematter,neuroanatomistspreferto

    usefixedtissueandspecificdyesthatstainmyelindark. Therefore,infixedtissuethewhite

    matterappearsdark(darkblue/darkbrown)whereasthegraymatterappearspale.

    2.

    SURFACE

    TOPOGRAPHY

    OF

    THE

    CEREBRAL

    HEMISPHERES

    2A.LateralSurfaceandCorticalLobes

    Usethewholebrainandexamine its lateralsurface. Theprominentexternalfeatureof

    thetelencephalon,thecerebralcortex,iseasilyidentifiedsinceitcontainsverycharacteristic

    sulciandgyri(Fig.3). Gyriarebumpsofthecorticalmantleandthegroovesarethesulci,or

    if particularly deep, are termed fissures. Gyri, in turn, form four distinct lobes: Frontal,

    Parietal, Occipital, and Temporal (Fig. 3). Each lobemay be concernedwith a different

  • 7/28/2019 SMP Neuro Lab Manual

    10/37

    IntrotoNeuroscienceLabManual2013 10

    functionasdescribed later. Thegyriofthehumanbrainare referredtobothbynameand

    alsobyanumberingsystemoriginatedbyBrodmannwhosubdividedthecerebralcortexinto

    52areasbasedoncytoarchitecturalcriteria. Youarerequiredtoknowonlythosesulciand

    gyriandassociatedBrodmannareasthatarespecificallymentionedinlecturesorareinbold

    in this manual. In order to understand the localization of higher cortical functions it is

    thereforeessential

    that

    you

    develop

    asolid

    understanding

    of

    the

    anatomical

    subdivisions

    of

    the cerebral cortex. You should be aware that some lobules and gyri are given different

    names indifferent textbooks. For this course you areexpected touse thenomenclature

    indicatedon the illustrationsand in the text

    ofthislabmanual.

    Figure3. Nomenclatureofcerebralcortexlobes.

    To appreciate the generalnomenclature

    and function of gyri and lobes, begin by

    locatingthe

    following

    two

    fissures

    or

    sulci:

    thelateralfissure(orsulcus)andthecentral

    sulcus(Fig.4).Theseareimportantlandmarks

    because they form large portions of the

    boundaries of the fourmajor lobes of each

    cerebral hemisphere. The lateral sulcus

    begins at the inferior surface of the hemisphere and extends in a posterior direction to

    partiallydemarcate the frontal,parietaland temporal lobesof the cerebrum (Fig.4). The

    central sulcus is a deep (about 2 cm) groove locatedmainly on the lateral aspect of the

    cerebralhemisphere,withasmallportionextendingontothemedialsurface. Itbeginsonthe

    superiorborderof thehemisphere slightly (about1 cm)behind themidpointbetween the

    frontalpole(therostralmosttipofthehemisphere)andtheoccipitalpole(thecaudalmosttipof thehemisphere). It slopesdownward and forward across thehemisphereandends

    abovethelateralsulcus. Indoingthis,thecentralsulcusseparatesthefrontalfromparietal

    lobes.

    2B.FrontalLobe

    Thefrontal lobe istheportionofthecortexrostraltothecentralsulcusandsuperiorto

    the lateral fissure. The firstmajorgrove rostral (about1.5 cm) to thecentral sulcus is the

    precentral sulcus. The gyrus that lies between the precentral and central sulci is the

    precentralgyrus. Thisgyrus forms theprimarymotor cortex,orBrodmann'sarea4. The

    precentralgyrus

    contains

    an

    orderly

    motor

    map

    of

    the

    body

    (termed

    the

    homunculus),

    with

    the head represented laterally and inferiorly and the feet represented on the medial

    extensionofprimarymotor cortex (i.e., the feet insideof the longitudinal fissure) and the

    tonguerepresentationextendinguptotheanteriorwallofthecentralsulcusneartheinferior

    frontalgyrus. Lesionsoftheprecentralgyrusresultinmotordeficitsonthecontralateralside

    ofthebody.

  • 7/28/2019 SMP Neuro Lab Manual

    11/37

    Introt

    FigureCo

    These

    formt

    gyri m

    prefro

    frontal

    parsor

    theleft

    speechof the

    individ

    comm2C.Par Thi

    needt

    postce

    sulcus.

    thebo

    feetal

    inferio

    contral

    Co

    most s

    Neuroscie

    .Lateralvintinuerostr

    orizontally

    eboundari

    ke up, fro

    tal cortex (

    cortexnea

    bitalis,pars

    parstriang

    area. This

    brain (Fig.

    al has a n

    nicateverb

    ietalLobeslobebegi

    identifyb

    tralgyrus(This

    gyrus

    yismappe

    ngtheme

    aspectup

    ateralside.

    ntinuecaud

    uperior is

    ceLabMan

    woftherially. Two

    running su

    esbetween

    caudal t

    or frontal

    tothe late

    triangularis,larisandp

    areaisofte

    5). Lesion

    ormal com

    allyduetot

    scaudallyt

    causethey

    Brodmann

    formsthe

    p

    d"upsided

    ialaspect

    othelater

    ally to the

    the superio

    ual2013

    hthemisphajorsulci

    lci, the sup

    thesuperi

    rostral, t

    ole). The

    ral fissure,

    andpars

    o

    rsopercula

    nvisiblylar

    of Broca'

    rehension

    helossofn

    othecentr

    haveimpor

    areas3,1,

    imarysomwn"inat

    fthegryus,

    lfissure. A

    postcentral

    r parietal l

    re

    represent

    rior fronta

    r,middle,e premoto

    inferior fro

    canbe furt

    ercularis.risconstitut

    erthanth

    area resu

    of languag

    uronsthat

    lsulcus.Th

    antfunctio

    and2),the

    atosensorypographica

    andtheto

    lesioninth

    gyrusand

    obe (Fig.

    atrightan

    l sulcus anand inferio

    r cortex (Bntal gyrus,

    ersubdivi

    Inapproxim

    eanimport

    correspon

    lt in expre

    , but has

    controlmot

    erearesev

    ns. Yoush

    gyrusimm

    cortex. Aslfashionwi

    nguerepre

    isarearesu

    ouwill fin

    ). This lo

    lestothep

    the inferi frontalgyrodmann's

    which is th

    ed intothr

    ately98%

    o

    antspeech

    dingregion

    sive aphasdifficulty in

    orspeechf

    ralgyriint

    uldbeable

    diatelycau

    inthe

    prim

    ththerepr

    sentatione

    ltsinsenso

    twoadditi

    be is invol

    11

    recentrals

    r frontal si (Fig.4).area 6) an

    e portion o

    eportions

    fthe

    popul

    centerorBr

    ontherigh

    ia, in whic

    or is unab

    nctions.

    hislobetha

    torecogniz

    altothec

    rymotor

    c

    sentation

    tending int

    rydeficitso

    ional lobes.

    ed with s

    lcus.

    lcus,hese

    the

    f the

    : the

    tion,

    oca'sside

    the

    le to

    tyou

    ethe

    ntral

    rtex,

    fthe

    othe

    nthe

    The

    atial

  • 7/28/2019 SMP Neuro Lab Manual

    12/37

    IntrotoNeuroscienceLabManual2013 12

    orientation. Theinferiorportionoftheparietallobeisformedbytwogyri: thesupramarginal

    gyrusandtheangulargyrus(Fig.4). Thesupramarginalgyruscanbeidentifiedbyfollowing

    theposteriorportionofthe lateral fissurestartingat thepointwhere itascends; thetissue

    surroundingthisfissure isthesupramarginalgyrus. Lesionsofthisgyruscanresultintactile

    agnosiawhich is the inability to recognize common objectson thebasisof tactile cuesor

    stimuli.Using

    tactile

    cues

    alone,

    an

    individual

    can

    recognize

    general

    features

    of

    an

    object

    placed in thehandcontralateralto the lesion (e.g.,metallic,cold,round),butcannotname

    theobjectitself.

    The angular gyrus (Fig. 4) is adjacent to the supramarginal gyrus and surrounds the

    upturnedposteriorendofthesuperiortemporalsulcus(seetemporal lobe). Lesionsofthis

    gyrus in the dominant hemisphere can result in visual agnosia. There is impaired, or no,

    comprehensionof thewrittenword, although theword canbe seen. Lesionsofboth the

    angular and supramarginal gyri lead to Gerstmann syndrome, a neurological disease

    characterized by deficiency in the ability to write (dysgraphia), difficulty in learning

    mathematics(dyscalculia),inabilitytodistinguishthefingersonthehand(fingeragnosia)and

    leftright

    disorientation.

    Figure 5. Brocas andWernickessareas.

    2D.OccipitalLobe

    Theoccipital lobe (Fig.3) istheareaofthecerebralhemispherethat liescaudaltothe

    parietal

    lobe

    (on

    the

    lateral

    surface

    trace

    an

    imaginary

    line

    extending

    from

    the

    preoccipital

    notch to the caudal portion of the superior parietal lobe). This lobe contains the visual

    processingcenter. Theoccipital lobe iscomposedmainlyofprimaryvisualcortex(area17)

    andvisualassociationcortex(areas18and19). Wewillstudymoredetailsaboutthevisual

    cortexin5B.

    2E.TemporalLobe

  • 7/28/2019 SMP Neuro Lab Manual

    13/37

    IntrotoNeuroscienceLabManual2013 13

    Thetemporal lobe isseparatedfromthefrontalandparietallobesbythelateralfissure

    (Fig. 3) and from the occipital lobe by the latter's imaginary rostral border. In the lateral

    surface,thetemporal lobe issubdivided intothreeportionsbytwomajorsulci(thesuperior

    temporalsulcusandthe inferiortemporalsulcus)thatrunparalleltothe lateralfissure(Fig.

    4). These are the superior temporal gyrus, themiddle temporal gyrus, and the inferior

    temporalgyrus.

    Lesions

    in

    the

    temporal

    lobe

    cause

    temporal

    lobe

    epilepsy

    acondition

    which

    givesrisetorecurrentseizures.

    Hiddenwithintheposterioraspectofthelateralfissureintheinnerbankofthesuperior

    temporalgyrusarethetransversetemporalgyriofHeschl(Brodmann'sareas41&42). This

    regionconstitutestheprimaryauditorycortex. Theposteriorpartofthesuperiortemporal

    gyrus,at its inner intersectionwiththeangularandsupramarginalgyri,containsWernicke's

    speecharea(Brodmann'sarea22,Fig.5). LesionsinWernicke'sareaonthedominantsideor

    bilaterallyresult inbothadeficit intheunderstandingofthespokenwordandtheabilityto

    expressoneselfverbally.

    Potentialexamquestionrelatedtothissection. Pleaseseequestion#1inappendix3.VENTRALSURFACE

    Thecerebralcortexcontinuesat theventral surface (Fig.6). Observe thegyrus that is

    adjacent (medially) tothe inferiortemporalgyrus. This istheparahippocampalgyrus. This

    gyrus surrounds the hippocampus (or hippocampal formation), a crucial structure for

    declarative memory, and thus the gateway for longterm memory retention. At the

    rostromedialaspectof theparahippocampalgyrusyoushouldbeable toseeabulgecalled

    theuncus. Beneaththeuncusisanimportanttelencephalicstructure,theamygdala. Some

    nucleioftheamygdala(oramygdaloidcomplex)receiveolfactoryprojectionsfromtheventral

    cortexsurroundingtheuncus. Thus,thisregionofthetemporallobeistheprimaryolfactory

    cortex.

    How are odors processed? Examine the ventral surface of the gross brain (Fig. 6).

    Identifytheolfactorybulbandtheolfactorytractthatrunthroughthemiddleportionofthe

    gyrus rectus. Theolfactory tract contains fibers thatarise from cells in theolfactorybulb,

    which in turn, is formed by axons of specialized receptor cells (neurons) located in the

    olfactorymucosa. Theolfactorycells form theolfactorynervewhich is responsible for the

    senseofolfaction. Follow theolfactory tractsuntil you see abifurcation at the levelof a

    regioncalledanteriorperforatedsubstance;this istheolfactorystria. The lateralportionof

    the stria reaches the primary olfactory cortex. By this route, olfactory information is

    transmitted to the cortex. The anterior perforated substance is gray matter that is

    perforatedanteriorlybynumeroussmallbloodvesselsthatsupplyinternalstructures.

    Theolfactorynerve is also called cranialnerve I. There are12pairsof cranialnerves

    emerging from the brain, each with a different function. They are named or simply

    abbreviatedtoCNfollowedbytheLatinnumberingIXII. CNIIistheopticnerve. Thisnerve

    may not be present in your specimen because during the removal of the brain from the

    cranium, the optic nerve is often cut. However, you can appreciate its location by first

    identifyingtheopticchiasm. Lookatthemidportionoftheventralsurface. Youwilleasily

  • 7/28/2019 SMP Neuro Lab Manual

    14/37

    IntrotoNeuroscienceLabManual2013 14

    seetheopticchiasmbecauseithasaXshape(Fig.6). Thetractrostraltotheopticchiasmis

    whatremainsoftheopticnerve. Theopticchiasmcontainsapartialdecussationoftheoptic

    fibersthatgeneratefromganglioncellsintheretinaandformtheopticnerve. Theaxonsin

    theopticchiasmcontinuecaudallyandformtheoptictract.

    Figure6. Ventralviewofthecerebralhemisphere. Thepons,cerebellumandmedullahavebeenremoved

    Caudaltotheoptictractarethetwomammillarybodies(Fig.6),distinctswellingsthat

    belongtothehypothalamus. Thehypothalamusandthethalamus formthediencephalon.

    The thalamuswillbe studied laterwhenwewill lookat thehemisectedbrain. The region

    bounded by themammillary bodies, optic chiasm, and the beginning of the optic tract is

    known as the tuber cinereum, which is the coneshaped protrusion from which the

    infundibulumextends.

    The

    pituitary

    gland

    is

    attached

    to

    the

    infundibulum

    (the

    pituitary

    is

    oftenmissinginyourspecimen).

    Caudaltothemammillarybodiesisadeepspacecalledinterpeduncularfossa(Fig.6).The

    name derives from the fact that it is limited on the right and left by the two cerebral

    peduncles (or crus cerebri). Whithin the interpeduncula fossa,you shouldbeablealso to

    locate the oculomotor nerve, or CN III (Fig. 7). The oculomotor nerve innervates several

    extraocular somatic muscles (inferior oblique, medial rectus, superior rectus and inferior

  • 7/28/2019 SMP Neuro Lab Manual

    15/37

    Introt

    rectus

    (lighta

    The br

    contain

    wayto

    youne

    dissect

    4A.MiTh

    termin

    formed

    take th

    auditor

    system

    Figuremidbrai

    planeo

    Looka

    IV(Fig.

    Neuroscie

    and the lev

    daccomm

    in stem is

    severalnu

    studythese

    ed thehem

    dspecime

    brainmidbrain

    tesatthe

    bythesup

    eirname f

    y pathway,

    .

    . Hemisectn. Theblue

    sectionuse

    tthehemise

    ),theonlyc

    ceLabMan

    atorpalpeb

    dation).

    formed by

    leiandpat

    nucleiand

    isectedbrai

    sfoundint

    ormesenc

    nlargedbas

    eriorand ir the hill

    whereas t

    dbrain illulinethrough

    toobtainth

    ctedbrain. J

    anialnerve

    ual2013

    rae that el

    4.themidbr

    hwaysthat

    athwaysis

    n, theglas

    hesmallpla

    phalon)st

    ilar(orvent

    feriorcolli appareanc

    e superior

    trating thethesuperior

    etransverse

    ustbelowth

    xitingfromt

    vate theu

    RAINSTEin, the po

    areimport

    tousebrai

    slides in t

    sticcontain

    rtsafterth

    ral)pons(Fi

    uli (orcor. The infe

    colliculus

    ocationof tcolliculusan

    sectionillust

    inferiorcoll

    hedorsalasp

    pper eyelid

    s and the

    ntforanu

    sections.

    ewooden

    er.

    posterior

    g.7,redlin

    oraquadri

    rior collicul

    has direct

    hemidbraindthecereb

    ratedinFig.

    iculusyoum

    ectofthebr

    ). It also r

    medulla.

    beroffun

    orthisport

    boxaswell

    ndofthed

    es). Dorsall

    emina,Fig.

    us is a larg

    onnections

    . The red lialaqueduct

    .

    ayseethetr

    ain. Thisne

    15

    gulates re

    hese struc

    ctions. The

    ionofyour

    las the spe

    iencephalo

    ,themidbr

    7). Thecoenucleus

    with the

    esdemarca

    (cc) illustrat

    clearnervevesupplies

    lexes

    tures

    best

    study

    cially

    and

    ainis

    lliculi

    f the

    isual

    e the

    sthe

    orCN

    the

  • 7/28/2019 SMP Neuro Lab Manual

    16/37

    Introt

    superi

    rotates

    Th

    ventric

    surrou

    (more

    divides

    themi

    mesen

    The t

    These

    CNS.

    termin

    thecor

    Additinigra,special

    glass.

    section

    blue,n

    mostd

    tothe

    Thesu

    brown.

    abypr

    include

    nigrain

    diseas

    move

    motor

    Neuroscie

    roblique,a

    theeye.

    space bel

    lar syste

    dingthebr

    iscussiona

    themidbra

    brain(mad

    ephalonve

    gmentum i

    edunclesc

    heseinclud

    tesinthe

    texandter

    onal

    structhe red nudissected s

    For instanc

    is stained

    euronal cell

    orsalstruct

    erebralped

    stantianig

    Thisiseasi

    ductof th

    din

    the

    fu

    motorcon

    (the clinic

    ents).

    ctivity. Itr

    ceLabMan

    nextraocul

    ow the coll

    that carri

    ainandspin

    outthe

    ve

    inintoado

    eupofthe

    ntral(orflo

    soccupied

    arrythede

    ethecortic

    pinalcord),

    inateinth

    res

    that

    bleus. Thesepecimens f

    , look at fi

    formyelin,

    bodies ap

    rewherea

    uncleyousa(Fig.7) is

    erifyouus

    metabolis

    ctionalsyst

    rolisappar

    l signsof t

    ceivesfibe

    ual2013

    rmuscleof

    iculi is the

    es the cer

    alcordand

    tricularsys

    rsalandve

    twopairso

    r)tothece

    ventrolater

    cendingpa

    spinaltracandcortico

    pons).

    long

    to

    thnuclei can

    und in the

    gure8whi

    themain c

    earwhite/

    themost

    ouldbeab

    a largenu

    thebrain

    of then

    emknown

    ntbecause

    hisdisease

    sfromthe

    theeye.Th

    cerebral a

    ebrospinal

    servesasa

    temwill

    be

    tralregion

    fcolliculi)is

    rebralaque

    llyby the

    thways fro

    t(sonamepontinefib

    e

    tegmentube seen ei

    smallplast

    h shouldb

    mponent

    pale. In thi

    entralstruc

    letoidentif

    leusthat in

    temsection

    urotransmi

    sbasal

    ga

    itsdegener

    aremuscul

    otorcorte

    ismusclea

    ueduct.

    fluid (CSF)

    cushionto

    presentedl

    (Fig.7). Th

    namedthe

    ductisthet

    twocerebr

    thecereb

    becauseit

    ers(sonam

    m

    of

    the

    ther in the

    ic containe

    ematching

    f fiber trac

    is section, t

    ture isthe

    thesubst

    thefixedt

    s. Theblac

    tterdopam

    glia.The

    i

    ationisac

    ar rigidity,

    Fig

    thr

    cer

    nigr

    coll

    to

    wh

    ven

    It

    mi

    im

    xandthec

    ducts,depre

    his openin

    . The CS

    supportand

    ter).The

    c

    edorsal(o

    tectum. Tegmentum.

    lpeduncle

    ralcortext

    originatesi

    edbecasue

    idbrain

    arhemisecte

    or in secti

    glass slide

    ts.Fibersa

    he superior

    cerebralpentianigra(issueshoul

    kcolorisca

    ine. The s

    mportance

    rdinalfeatu

    slow tremo

    re 8. Tughthesupbral pedun

    a;C=rednu

    iculus.

    Look agai

    identifyth

    ich is situa

    tral portio

    runs t

    brain. The

    ortant rel

    rebelluma16

    ssesandinte

    belongs t

    fills all s

    protectth

    rebralaqu

    roof)porti

    eportion

    (Figs.6a

    therest

    nthecorte

    theygener

    the

    subst brain or i

    onsmount

    #10or11.

    pearblack

    colliculus i

    duncle.Adjlacksubst

    lookblack

    usedbymel

    bstantiani

    fthe

    subs

    reinParkin

    randpove

    ansverse sriorcolliculule; B= subs

    cleus;D=su

    at the se

    ered

    nu

    ted in the

    of the se

    roughout

    rednucleus

    ay center

    ndgivesris

    rnally

    the

    aces

    CNS

    ductonof

    fthe

    d8).

    fthe

    and

    tein

    antia

    the

    don

    The

    dark

    s the

    cent

    nce).

    dark

    lanin,

    ra is

    antia

    sons

    tyof

    ctions. A=

    tantia

    erior

    tions

    leus,

    mid

    tion.

    the

    isan

    for

    to

  • 7/28/2019 SMP Neuro Lab Manual

    17/37

    IntrotoNeuroscienceLabManual2013 17

    axonsthatterminateinthespinalcord.

    4B.PonsandCerebellum

    The pons is especially large in humans because its fibers either run longitudinally

    (longitudinalfibers)orhorizontally(transversefibers). Toseethesefibersyouneedtouse

    thesections

    mounted

    on

    glass

    slides

    present

    in

    your

    wooden

    box

    (glass

    slide

    #7)

    and

    the

    illustrationbelow (Fig.9). Examplesof longitudinal fibersare thecorticospinal tractat the

    baseoftheponsandthemedial lemniscusabovethecorticospinaltract. Thecorticospinal

    tract carries axons that generate in themotor cortex and innervatemotorneurons in the

    spinalcord. Themediallemniscuscarriessomatosensoryinformationfromthespinalcordto

    thecerebralcortex(seeappendix).

    Examplesoftransversefibersarethosegeneratedfromthepontinenuclei(Fig.9),small

    groupsofcellsscatteredamongthe longitudinalandtransverse fasciculi,thatreceiveaxons

    fromthemotorcortexand,inturn,projecttothecontralateralcerebellum. Thus,themotor

    cortex influencestheactivityofthecerebellumthroughtherelay inthepontinenuclei. The

    tractthat

    carries

    these

    fibers

    is

    called

    the

    middle

    cerebellar

    peduncle

    (MCP)

    which

    can

    be

    locatedalongthe lateralaspectof theponsconnecting thepons tothecerebellum (Fig.9).

    Additional peduncles that connect the cerebellum to the brain stem are the superior and

    inferiorcerebellarpeduncles. Thesepedunclesalsocarryfiberstoandfromthecerebellum.

    Cerebellarpedunclesalsohelpformingthelateralwallsofthefourthventricle(Fig.9)whichis

    anexpansionofthecerebralaqueductinitscaudalportion(Fig.7). Wewilldiscussthefourth

    ventricleinmoredetaillater.

    Figure9 Leftpanel.Ventralviewofthebrain.Theblacklinethroughtheponsillustratestheplaneof

    cutusedtoobtainthetransversesectionshownon

    the right. Right panel: A=descending longitudinal fibers; B=medial lemniscus; C=pontinenuclei;D=middlecerebellarpeduncle;E=fourthventricle;F=pontocerebellarfibers.

  • 7/28/2019 SMP Neuro Lab Manual

    18/37

    IntrotoNeuroscienceLabManual2013 18

    TheponsalsocontainsseveralCNnuclei. Wewillnotbe learningthe locationofthese

    nucleiinthiscourseduetothetimeconstraint. However,beawareofthefactthatimpaired

    functionsofcranialnerveareoftenusedinclinicalsettingstodiagnoseneurologicaldiseases.

    Locatethecerebellum.Inthegrossbrain,thecerebellumcanbeeasilyrecognizedinthe

    caudaldorsalportionofthewholebrainforitstypicaltransversesulciandconvolutioncalled

    folia.There

    is

    no

    need

    for

    learning

    the

    names

    of

    these

    sulci.

    However,

    it

    is

    important

    to

    recall

    thethreemainsubdivisionsofthecerebellarlobesbecausetheyareassociatedwithdifferent

    functions. From rostral to caudal we consider three lobes: anterior, posterior and

    flocculonodular lobes(Fig.10). Thelobesofcerebellumarelocalizedbyfirstidentifyingthe

    primaryfissure,whichformstheboundarybetweentheanterior lobeofthecerebellumand

    theposterior lobe.Theposterior lobe is the largestareaof thecerebellum. This lobehas

    majorconnectionwiththecerebralcortexandisimportantinplanningvoluntarymovements.

    Figure10.Ventralviewofthecerebellum.The flocculonodular lobe is made of the two lateral paired flocculi and the median

    nodulus. The flocculus can be seen on the ventral surface of the cerebellum projecting

    laterallyforabout2cmoneachsideofthemedulla(Fig.10). Thislobe ismainlyassociated

    withvestibularfunctionsandisconcernedwithequilibrium.

    Now lookat theventralportionofthegrossbrain. In the lateralportionof thebasilar

    pons,approximatelyatthemidline,youshouldbeabletoseethetrigeminalnerve(orcranial

    nerveV, Figs. 9 and 10). This is a very largenerve and containsbothmotor and sensory

    components. Thesensoryportioncarriesalltypesofsensationsfromtheregionoftheface.

    Themotorpartinnervatesthemusclesofmastication.

    4C.Medulla

    Themedulla (ormedullaoblongata) is a cone shape structurewhich is about3/4 inch

    long. It containsmany groups of fibers and nuclei that regulate the cardiac, respiratory,

    vomiting and vasomotor activities and dealwith involuntary functions, such as breathing,

    heart rate and blood pressure. It begins after the pons at a region known as the

    pontomedullaryjunction,aprominentsulcusthatrunstransversely(Fig.10). Themedulla is

    easily recognizable for its most prominent features located in the ventral surface: the

    pyramids (Fig. 10). These are separated along themedian plane by the anteriormedian

    fissure. Thepyramidscontainthecorticospinaltract. Canyoulocalizethistractonglassslide

  • 7/28/2019 SMP Neuro Lab Manual

    19/37

    IntrotoNeuroscienceLabManual2013 19

    #4? Lateraltothepyramidsisanelongatedprotuberancecalledtheolive(Fig.11). Theolive

    isactuallyformedbytheolivarynucleus,a largegroupofneuronsthatplayarole inmotor

    learning. Thisnucleuscanbeeasilyseenonlyinstainedsections(Fig.11).

    Figure11.Sectionoftheopenmedullathroughtheolive. Leftpanel, ventral viewof thebrain stem.The blue line showswhere the cutwas done to

    obtain the transverse section on the right panel.

    A=corticospinal trat; B=Olivary nucleus; C=medial

    lemniscus;D=fourthventricle.

    At its rostral end, themedullawidens and helps form the caudal floor of the fourth

    ventricle(seethehemisectedbraininFig.7). Thisventriclecontainstwoapertures(foramen

    of Luska and Magendie) that allow the CSF to enter the subarachnoid space (the space

    between the arachnoidmembrane and piamater). From the arachnoid space the CSF is

    absorbedintothevenousdrainage.

    The caudalportionof themedulladoesnot contain the4th

    ventricleandappearsoval

    resemblingtheshapeofthespinalcord(Fig.11). Seealsoglassslide#3. Indeed,thecaudal

    portionof themedulla turns into the spinalcordafter thepyramidaldecussation (Fig.11).

    Thepyramidaldecussationcontainsthemajorityofcorticospinalfibersthatdecussategoing

    into the lateralportionof the spinalcord,hence thename lateralcorticospinal tract. This

    pathwayisinvolvedwithvoluntarycontroloflimbs.

    Potentialexamquestionrelatedtothissection.Pleaseseequestion#2inAppendix.4D. Morecranialnerves(CN)

    Returntotherostralmedullaatthelevelofthepontomedullaryjunction. Youshouldbe

    abletonoticeaseriesofrootsthatmarkvariousCNs. ThemostmedialistheabducensorCN

    VI (Figs.10and11). Thisnerve innervatesthe lateralrectusmuscleoftheeye. Followthe

    junction laterally,youwillencounteradditionalCNs. Theseare the facial (CNVII) and the

  • 7/28/2019 SMP Neuro Lab Manual

    20/37

    IntrotoNeuroscienceLabManual2013 20

    Vestibulocochlear(CNVIII)nerves(Fig.12). Atfirstglancetheymayappearasonlyone. The

    moremedialnerveisCNVIIandthelargerlateralnerveistheCNVIII. CNVIIinnervatesthe

    musclesoffacialexpression. CNVIIalsocontainsbothautonomiccomponentstotheglands

    andsensoryfibersfortastefromtheanteriortwothirdsofthetongue. Thevestibulocochlear

    nerveisaspecialsensorynervewithauditory,hearingandvestibular,balancecomponents.

    Figure 12. Representative section of closedmedulla. Leftpanel, ventral view of the brain.Thebluelineillustrateswherethesectiononthe

    rightwasobtained.Rightpanel,A=Corticospinal;B=mediallemniscus;C=cuneatenucleus;D=

    gracilisnucleus.

    Followthelateralaspectofthemedullaandmovingcaudallyalongthe lateralborderof

    theoliveyouwillfindtherootsoftheglossopharyngeal(CNIX)nerve. Thisisamixednerve

    containingbothmotorand sensorycomponents. Thevagusnerve (CNX)consistsofmany

    rootlets which also exit from the posterolateral sulcus immediately caudal to the

    glossopharyngealnerve. CNIXandCNXarefunctionallyverysimilar. Theycarrythesenseof

    tasteandothertypesofsensationfromthemouthregion. Theyalsohavemotorcomponents

    thatinnervatethemusclesinvolvedinspeakingandswallowing.

    Additionalnerverootletsinserieswiththevagusnerverootlets,butplacedmorecaudally

    form

    the

    cranial

    component

    of

    CN

    XI

    or

    Accessory

    Nerve

    (Fig.

    12).

    The

    spinal

    component

    emergesasaseriesof rootlets fromthe first fivecervicalsegmentsofthespinalcord. The

    spinal component of CN XI innervates two skeletal muscles in the neck, the

    sternocleidomastoidandthetrapezius. The lastnerve,theHypoglossalNerve (CNXII)exits

    therostralmedullaoblongataattheanterolateralsulcus locatedbetweentheoliveandthe

    pyramid(Fig.12). Thisnerveinnervatesthemusclesofthetongue.

  • 7/28/2019 SMP Neuro Lab Manual

    21/37

    IntrotoNeuroscienceLabManual2013 21

    5.MIDSAGITTALSECTION

    5A.Corpuscallosumandsagittalgyri

    Nowthatyouhavestudiedtheexternalsurfaceofthebrain,wewillconcentrateonthe

    internalstructures.Wewillbeginwithamidsagittalcutofthebrain (Fig.13). Examine the

    halfbrain. Thecerebralcortexconsistsof twohemispheresthatare interconnectedby the

    corpuscallosum.

    The

    corpus

    callosum

    has

    aCshape

    structure

    and

    is

    made

    of

    cortical

    fibers

    thatconnectthetwohemispheres. Thegyrusjustaboveandsurroundingentirelythecorpus

    callosum is the cingulate gyrus. This gyrus plays a role in different functions, including

    attention,motivationandemotional responses. In its rostralportion,thecingulategyrus is

    cappedbythesuperior frontalgyrus. Thisgyrusappearstobe involved inhighercognitive

    functions (workingmemory and selfawareness). The gyrus caudal to the superior frontal

    gyrusandabovethemidportionofthecingulategyrusistheparacentrallobule. Therostral

    portionof this lobule contains theprimarymotor cortexwhereas the caudal region is the

    primary somatosensory cortex. This region of the cortex regulates movement of the

    contralateral lower limbs. The gyrus immediately caudal to the paracental lobule is the

    precuneus,an

    area

    of

    the

    parietal

    cortex

    that

    is

    involved

    in

    visuo

    spatial

    imagery,

    episodic

    memoryretrievalandselfprocessingoperations.

    Figure13. Midsagittalviewoftheleftcerebralhemisphere.5B.VisualCortex

    Thegyricaudaltotheprecuneusbelongtotheoccipitalpole. Asmentionedbefore,this

    isthevisualcortex. Youneedtolocalizetwoimportantareasofthevisualcortex:thecuneus

    whichistheareaoftheprimaryvisualcortex,andthelingualgyrus. Thecuneusisthegyrus

  • 7/28/2019 SMP Neuro Lab Manual

    22/37

    IntrotoNeuroscienceLabManual2013 22

    immediately caudal to theprecuneus. It is separated from theprecuneusby theparietal

    occipital sulcus which begins in the lateral surface approximately 45 cm in front of the

    occipitalpoleandslopesmediallydownwardandforwardalmosttouchingtheposteriorend

    of thecorpus callosum. Approximatelyat themidlineof this sulcus you shouldbeable to

    identifyanothersulcusthatrunshorizontallyandjoinstheparietaloccipitalsulcus. Thisisthe

    calcarinefissure.

    The

    area

    ventral

    to

    the

    calcarine

    fissure

    is

    the

    lingual

    gyrus.

    The

    cuneus

    receives visual information from the contralateral superior retina representing the inferior

    visual field,and the lingualgyrus receives information from thecontralateral inferior retina

    representing the superior visual field. Lesions of both primary visual cortices result in

    completeblindnessbilaterally. Destructionofoneprimaryvisualcortexresultsinblindnessin

    thecontralateralvisualfield. Lesionsinvisualassociationcortex,whichspareprimaryvisual

    cortex, result invisualagnosia (the inability to identifyanobjectbynameordetermine its

    functionthroughvisualcuesalone).

    5C.LateralVentricles

    The hemisected brain allows you to further understand the relationship between the

    telencephalon,diencephalon andmidbrain (ormesencephalon) and theventricular system.

    Beginby locatingagain thecorpuscallosumwhich forms the roofof the lateral ventricles.

    The lateral ventricles are the largest of the CSF filled ventricular cavities that follow the

    naturalcurvatureofthetelencephalonandare,therefore,essentiallyCshaped(Fig.14). The

    paired lateral ventricles are divided into three branches or horns: the anterior (frontal),

    posterior(occipital)andinferior(temporal)horns,andabodyregion. Youshouldbeableto

    appreciate the size of the lateral ventricles by removing the septum pellucidum, the thin

    membranethatformsthemedialwallofthisventricle(itmaybemissingortorn insomeof

    the hemisected brains). In the floor of this ventricle, you should be able to identify the

    choroidplexus,aseriesofepithelialcells,capillariesandlooseconnectivetissuethatproduce

    theCSF.

    Figure 14. General view of theventricles. The direction of flow of

    CSF in the lateral ventricles is from

    the inferior horn through the body

    andout the interventricular foramen

    into the third ventricle, the cerebral

    aqueduct into the fourth ventricle.

    Please note the location of the

    choroidplexus.

  • 7/28/2019 SMP Neuro Lab Manual

    23/37

    IntrotoNeuroscienceLabManual2013 23

    5D.Diencephalon

    TheCSFof the lateralventricleempties into the third ventricle (Figs.13and14)viaa

    structurecalledtheforamenofMonro(interventricularforamen). Thethirdventriclemarks

    the beginning of the diencephalon, that we previously described containing two major

    structures,thethalamusandhypothalamus. Thethalamusformsthelateralwallsofthethird

    ventricle(Fig.

    13).

    The

    thalamus

    is

    arelay

    center

    for

    sensory

    and

    motor

    signals

    to

    the

    cerebral

    cortex. It also controls sleep and awaken states. Ventrally to it, you will find the

    hypothalamuswhichalsohelpsformingaportionofthelateralwallsandthefloorofthethird

    ventricle. The hypothalamus controls certain homeostatic processes, including hormonal

    releaseandvariousactivitiesoftheautonomicnervoussystem.

    ThethintissueofwhitematterthatformstheroofoftheforamenofMonroisthefornix

    (Fig. 13), an important fiber tract that carries signals from the hippocampus to the

    hypothalamus. Thehippocampal/hypothalamiccircuit,via itsconnectionwiththecingulate

    cortex,isinvolvedinthecontrolofemotions.

    6.

    CORONAL

    BRAIN

    SECTIONS

    6A.Sectionthroughtheoptictract,hypothalamusanduncus

    Wewillnowspendsometimelookingatvariousinternalstructuresofthetelencephalon

    and diencephalon that are visible in the coronal sections of the gross brain specimens

    (sectionsarealreadypreparedbecausewedonothaveenoughbrainspecimenstoallowyou

    todissect themyourself). Theobjectiveof thisportionof the laboratory is toexpandyour

    threedimensionalunderstandingofthebrainbyevaluating internalstructures. Beawareof

    thefactthatthesestructuresareoftendamagedbystroke,tumors,aging,orothertypesof

    lesions. Thus,theknowledgeoftheiranatomyhasaclinicalimportance.

    Locateasectionthat isclosely represented inFig.15. Ask the instructor ifyoucannot

    locateit.

    The

    section

    should

    have

    been

    cut

    through

    the

    optic

    tract,

    hypothalamus

    and

    uncus

    and it should contain various structures of the telencephalon (e.g. cortex and caudate

    nucleus)aswellasofthediencephalon(e.g.thalamusandhypothalamus).

    Startattheventrolateralportionofthecortex. Thisisthetemporallobeandtheuncusis

    itsmostmedialportion. Embeddedintheuncusyouwillfindtheamygdala. Theamygdalais

    associatedwithemotions,learningandmemoryfunctions. Thetwoamygdalaeareconnected

    to each other by the anterior commissure. You should be able to see this commissure

    spanningventrallyfromonetemporallobetotheotherone(Fig.15). Nevertheless,itmaybe

    missingon same specimensdue to the angleofdissection. Similarly,dependingupon the

    planeof section, theamydgalamaybemissingandeither thehippocampusor the inferior

    portionof

    the

    lateral

    ventricle

    is

    present

    instead

    of

    it.

    The

    area

    below

    the

    anterior

    commissurebelongstothebasalforebrain. NeuronallossinthisareacanleadtoAlzheimers

    disease.

    Themidventralportionof the sectionjustdorsalof theoptic tract isoccupiedby the

    hypothalamus. The space surroundedby thehypothalamus is the third ventricle. Moving

    superiorlyyoumay find thehypothalamicadhesion (ormassa intermedia)whichmarks the

    beginningofthethalamus. Thethalamusformsthefloorofthelateralventriclesthatinthis

  • 7/28/2019 SMP Neuro Lab Manual

    24/37

    IntrotoNeuroscienceLabManual2013 24

    sectionhaveabutterflyshape. Thechoroidplexus lieontopofthethalamus. Thewallsof

    the lateralventriclesare formedbythecaudatenucleuswhereas the roof is formedbythe

    corpus callosum. You can clearly see that the two lateral ventricles are separatedby the

    septumpellucidumandthefornix.

    Figure15.Coronalsectionthroughthehypothalamus,optictractanduncus.Gobackto thecaudatenucleus. ThecaudatenucleushasaCshapestructurewithan

    enlargementintherostralportion(headofthecaudatenucleus)andatailattheend(tailin

    latiniscauda,thereforethenamecaudatenucleus). ThesectionshowninFig.15isthrough

    thebodyofthecaudate.

    Thewhitematter immediately lateraltothecaudate isthe internalcapsule,agroupof

    fibersthatcarryinformationtoandfromthecerebralcortex. Adjacenttotheinternalcapsule

    slightlyventral to thecaudatenucleus is theputamen. In this section the internalcapsule

    separatesthe

    body

    of

    the

    caudate

    from

    the

    more

    ventral

    putamen

    and

    globus

    pallidus.

    The

    caudate,putamenandglobuspallidusarecomponentsofthebasalganglia,subcorticalnuclei

    thatcontrolvoluntarymovements.

    The caudate nucleus, in its ventral position (ventral striatum), contains a subdivision

    termednucleusaccumbens. Thenucleusaccumbens istheportionoftheCNSthatoften is

    called the pleasure center. When someone craves a substance (including food), neural

    activity increases in this nucleus in anticipation of future pleasure. Thus, it has been

  • 7/28/2019 SMP Neuro Lab Manual

    25/37

    Introt

    sugges

    addicti

    effect.

    section

    Fig

    6B. Cosection

    thecor

    dorsal

    rostral

    ventricl

    putam

    portion

    nuclei

    separa

    limb).

    fiberst

    Neuroscie

    ed that th

    n, includin

    The nucle

    ingthebrai

    ure16. Ho

    ronal sectiismoreca

    puscallosu

    edialport

    to the cores. Atthis

    n from th

    oftheglo

    f the thala

    edfromth

    Insamesp

    hatenterth

    ceLabMan

    e nucleus

    g tobacco

    us accumb

    throughth

    izontalsect

    n throughdalthenth

    andthel

    ion. Thep

    us callosulevelyoush

    caudate n

    uspallidus

    mus. Most

    putamen

    cimensyou

    epons.

    ual2013

    accumbens

    nd alchool.

    ns can als

    eanteriorc

    onthrough

    the supraeprevious

    teralventri

    steriorend

    . The cau

    ouldbeabl

    ucleus. D

    . Caudala

    likely the

    ythemost

    couldseet

    is respons

    This nucl

    o be seen

    ommissure

    theventral

    arginal gyone. Inthi

    cles,severa

    oftheforn

    date nucle

    etoidentif

    pending up

    dmorem

    ulvinarwill

    posteriorp

    hattheint

    ible for m

    us is also

    using hori

    (Fig.16).

    striatuman

    rus, caudalsection,y

    lotherstru

    ix(bodyof

    s still occ

    theintern

    on the cut

    dialtothe

    be themo

    ortionofth

    rnalcapsul

    tivation, r

    responsible

    ontal secti

    danteriorc

    thalamusushouldfi

    tures(Fig.

    thefornix)

    pies the w

    lcapsulet

    , you could

    caudatenu

    stevident.

    einternalccontinues

    25

    ward and

    for the pl

    ns obtain

    mmissure.

    and pons.d,inadditi

    7). Begin

    willbesee

    all of the l

    atseparate

    find the c

    cleusares

    The thala

    psule(pos

    caudallyto

    drug

    cebo

    d by

    This

    onto

    tthe

    just

    teral

    sthe

    audal

    veral

    us is

    erior

    form

  • 7/28/2019 SMP Neuro Lab Manual

    26/37

    IntrotoNeuroscienceLabManual2013 26

    At the dorsocaudal border of the thalamus is located the posterior commissure. The

    posterior commissure is a convenient landmark for localizing the border between the

    diencephalonandthemesencephalon. It isbelievedthatthiscommissureconnectsvarious

    structures involved in bilateral pupillary light reflex. The small opening ventral to the

    posterior commissure is the cerebral aqueductwhich, in turn,marks thebeginningof the

    midbrain.Therefore,

    you

    should

    be

    able

    to

    identify

    the

    substantia

    nigra

    lateral

    to

    the

    cerebralaqueduct. Therednucleusandthecruscerebriwillbejustaboveandlateraltothe

    substantianigra,respectively. Intheventrolateralsurfaceofthetemporallobeyoushouldbe

    abletoseethehippocampus(fromlatinseahorse),cappingtheinferiorportion(horn)ofthe

    lateralventricle.

    Figure17.Coronalsectionthroughthesupramarginalgyrus,caudalthalamusandpons.

    Potentialexamquestionrelatedtothissection.Pleaseseequestion#3inAppendix.6C.MagneticResonanceImaging(MRI).

    Tohelpyou todevelopamoreprecise threedimensional representationof subcortical

    structuresandhowtheyarerelatedtoeachotheranatomically,wehaveincludedMRIfrom

    thesameperspective(additionalMRIscansareondisplayinthelaboratory). MRIisamedical

    imagingtechniqueusedinradiologytovisualizedetailedinternalstructuresofourbody. The

    basicprinciplesofMRIarepresentedintheappendix. MRIisespeciallyusefulinimagingthe

    brainbecauseitprovidesgoodcontrastofthewatercontentbetweengrayandwhitematter.

  • 7/28/2019 SMP Neuro Lab Manual

    27/37

    IntrotoNeuroscienceLabManual2013 27

    Pleasenote thatMRI ismore sensitive tochanges in tissuewatercontent, therefore itcan

    expose subtle pathological changes that escape detectionwith othermethods of analysis.

    You should appreciate the degree of resolution of brain structures availablewith theMRI

    technique. For instance, in Fig. 18, you should be able to locate the following: corpus

    callosum,caudatenucleus,internalcapsule,lateralventricle,putamen,anteriorcommissure,

    hippocampus,thalamus,

    pons.

    Ask

    the

    instructor

    ifyou

    have

    problems!

    Figure18.T1weightedMRIobtainedapproximatelyatthelevelofthebrainillustratedinFigs15and17. White=fiberstracts,gray=nuclei,black=spaces.MRI isapoverful technique todetectabnormalities inhumanbrain. The followingpicture

    (Fig.19)illustratesthekeyfeaturesofaneurologicaldiseaseobservedina45yearoldmale

    individual with impaired cognitive function. Can you identify at least three major

    abnormalitiesbylookingatthefollowingT1weighetdMRI?

  • 7/28/2019 SMP Neuro Lab Manual

    28/37

    IntrotoNeuroscienceLabManual2013 28

    Figure19. CoronalMRIofapatientwith???..showingatrophyof..???.....

    7.SPINALCORD

    7A.Generalanatomy.

    Theclosedmedullaendsatthe levelofthepyramidaldecussationbutfibersandnuclei

    continueandhelpformthespinalcord. Intheaverageadultthespinalcordisapproximately

    4245cminlengthandoccupiesabouttheupper2/3ofthevertebralcanal. Itscaudalendis

    usually located at the levelof the intervertebraldiscbetween the firstand second lumbar

    vertebrae(Fig.20).Thespinalcord isanchoredtothemeningealsheathcoveringthespinal

    cordbyafinethreadcalledthefilumterminale(Fig.20).

    Thespinalcordisthemainpathwayforinformationconnectingthebrainandperipheral

    nervoussystembythespinalnerves.Thereare31pairsofspinalnervesand31spinalcord

    segmentsas

    follows:

    8cervical

    (C1

    8),

    12

    thoracic

    (T1

    12),

    5lumbar,

    5sacral,

    1coccygeal.

    Theanatomical relationshipbetween spinal levels and vertebral levels is an importantone

    clinically. The spinal nerves leave the vertebral canal through the intervertebral foramina

    accordingtothefollowingpattern: ThefirstcervicalnerveemergesABOVEthefirstcervical

    vertebra. The8thcervicalnerveemergesfromtheintervertebralforamenbetweenvertebrae

    C7andT1. Alloftheremaining(morecaudal)spinalnervesemergefromthe intervertebral

    foramenBELOWthevertebraofthesamenumber. Inspiteofthefactthatthespinalcordis

  • 7/28/2019 SMP Neuro Lab Manual

    29/37

    IntrotoNeuroscienceLabManual2013 29

    notas long as thevertebral column, the rootsof the spinalnervesexit from thevertebral

    canal through the intervertebral foramen at the proper vertebral level. This makes it

    necessary for the roots to become longer and longer at more caudal levels of the cord

    resultinginthelargenumberofnerverootsbelowthelevelofthecordthatformastructure

    showninFig.20calledthecaudaequina(fromtheLatin,meaninghorse'stail). Thus,atthe

    levelsof

    lumbar

    vertebra

    4/5,

    clinicians

    can

    insert

    aneedle

    without

    worrying

    about

    puncturing the spinal cord. This iswhy the lumbar puncture is the preferredmethod of

    injectingmedicationsintotheCNSorwithdrawingCSFforanalysis.

    Figure20.Spinalcordcaudaequina. Themeningiescoveringthespinalcordwerecutopentorevealthespinalcordandnerves,andthefilumterminale.

    To better comprehend the importance of the spinal cordwewill review some of the

    anatomicalpathways

    using

    across

    section.

    More

    sections

    are

    available

    in

    the

    laboratory.

    7B.SpinalCordWhiteMatter

    Thespinalcordisdividedintoanouterregionofwhitematter,calledfuniculi,containing

    longitudinallyrunningnervefibers(myelinatedaxons)surroundinganHshapedcentralregion

    of graymatter (Fig. 21). The vertical limbs of theHshaped graymatter form dorsal and

    ventralhorns. Thesehornshelpseparatethefuniculi intothreeregions:dorsal (posterior),

    lateral,andtheventral(anterior)funiculi(Fig.21).

    These funiculi contain three types of fiber tracts: ascending (sensory), descending

    (motor) and segmental (providing sensorymotor connectionswithin the spinal cord). The

    whitematter

    in

    the

    region

    of

    the

    central

    canal

    is

    subdivided

    into

    anterior

    (ventral)

    and

    posterior (dorsal)whitecommissuresoverlying thegraycommissuralareas. Inaddition to

    these longascendinganddescendingpathways,all funiculiwithin thespinalcordcontaina

    propriospinal tract that is located immediatelyexternal to the graymatter. Thispathway

    contains axons that form the short intersegmental projections arising from interneurons

    withinthegraymatter.

    Majorascendingpathwaysarethedorsalcolumnmediallemniscalsystem(MLF)andthe

  • 7/28/2019 SMP Neuro Lab Manual

    30/37

    IntrotoNeuroscienceLabManual2013 30

    anterolateral system (ALS). TheMLFmediates anumberofproprioceptive and cutaneous

    sensations including two point discrimination, stereognosis and limb position sense. The

    dorsalcolumnsareformedbythefasciculusgracilis(gracilefasciculus,Fig.21)whichcontrols

    the lowerhalfof thebodyand the fasciculus cuneatus (cuneate fasciculus,Fig.21),which

    controlstheupperhalfofthebody. TheALScarriesinformationonpainandtemperatureas

    wellas

    some

    varieties

    of

    touch

    for

    the

    body.

    Motor descending pathways are localized in the lateral funiculus (lateral corticospinal

    and rubrospinal tracts)aswellas in theventral funiculus (reticulospinalandvestibulospinal

    tracts). The lateralcorticospinalandrubrospinaltractscontaindecussatedfibersthathave

    generatedinthemotorcortexandrednucleus,respectivelythatinnervatemotorneuronsin

    the gray matter (see below). These are themost important fibers controlling voluntary

    movementsinhumans. Reticulospinalandvestibulospinaltractsoriginatefromnucleiinthe

    ponsandmedullaandarethemainsourcescontrolling involuntarymovements,equilibrium

    andmuscletone.

    Figure21.Coronalsectionofcervicalspinalcord.7C.SpinalCordGrayMatter

    Lookattheslidesorpicturesofspinalcordsections(Fig.21). Notethatthegraymatter

    ofthespinalcordhastheshapeofabutterfly,centeredatthecentralcanal. Thedorsal(or

    posterior)columns

    ("horns")

    of

    the

    gray

    matter

    are

    usually

    smaller

    than

    the

    ventral

    (or

    anterior) columns ("horns"). This isbecause theventralhorncontains largemotorneurons

    that innervate themuscles. This isparticulary true in thecervicaland lumbarenlargement

    portionsofthespinalcordastheycontainneuronsthatinnervatetheupperandlowerlimbs,

    respectively. Theareabetween the twohornsandsurrounding thecentralcanal is further

    termedtheanteriorandposteriorgraycommissures.

    Potentialquestionrelatedtothissection.Pleaseseequestion#4inAppendix.

  • 7/28/2019 SMP Neuro Lab Manual

    31/37

    Introt

    Questi

    Th

    A.

    B.

    C.

    D.

    E.

    Neuroscie

    n#1

    structurei

    superiorfro

    iddletem

    uperiorte

    postcentral

    oneofthe

    ceLabMan

    ndicatedby

    ntalgyrus

    oralgyrus

    poralgyru

    gyrus

    above

    ual2013

    PPENDI

    thestar

    is

    t

    (examq

    he:

    estions)

    31

  • 7/28/2019 SMP Neuro Lab Manual

    32/37

    Introt

    Th

    A.

    B.

    C.

    D.

    E.

    Neuroscie

    structure

    Superiorcol

    Mammillary

    mygdala

    Uncus

    lfactorybu

    ceLabMan

    ointedbyt

    liculus

    body

    lb

    ual2013

    hebluearr

    wisthe:

    32

  • 7/28/2019 SMP Neuro Lab Manual

    33/37

    Introt

    Th

    A.

    B.

    C.

    D.

    E.

    Neuroscie

    structurei

    dienchepha

    esenceph

    ortex

    basalgangli

    asalforebr

    ceLabMan

    ndicatedby

    lon

    lon

    a

    ain

    ual2013

    thestarbel

    ongstothe:

    33

  • 7/28/2019 SMP Neuro Lab Manual

    34/37

    Introt

    Al

    A.

    B.

    C.

    D.

    E.

    Neuroscie

    sioninthe

    Lossoftwo

    Lossoftwo

    Lossof

    mot

    Lossofmot

    naesthesia

    ceLabMan

    structurein

    pointdiscri

    pointdiscri

    rcontrol

    o

    rcontrolo

    inthelowe

    ual2013

    dicatedbyt

    inationin

    inationin

    upperlimb

    lowerlimb

    rbody

    hearrowwi

    helowerli

    heupperli

    s

    s

    illmostlikel

    bs

    bs

    yresultin:

    34

  • 7/28/2019 SMP Neuro Lab Manual

    35/37

    IntrotoNeuroscienceLabManual2013 35

    APPENDIXII(Independentstudiesofmajorpathways)

    Because all ascending and descending pathways are funneled into the spinal cord,

    lesionsinthespinalcordproduceseveremotorandsensorydeficits. Basedonthesiteofthe

    lesion (levelofthespinalcord)apatientmay loosetheabilityofmovingandsensing inthe

    upperor

    lower

    part

    of

    the

    body.

    However,

    motor

    and

    sensory

    abnormalities

    can

    also

    be

    seen

    inlesionsofthebrain. Thebestwaytodiagnoseaneurologicaldiseaseistoobservewhether

    deficitsofmotorandsensoryfunctionsarepresentandwhichportion(s)ofthebodyhasbeen

    affected. Abasicunderstandingofthemajormotorandsensorypathwaysisnecessaryfora

    properdiagnosis. The following isanappendixthatreviewstheoriginsandterminationsof

    twopathways:thedorsalcolumnmediallemniscalsystemandthelateralcorticospinaltract.

    The dorsal columnmedial lemniscal system originates with the central processes of

    dorsalrootgangliathatenterthedorsalrootsinthemedialdivision. Theygiveoffcollaterals

    that synapse in the dorsal horn and others that ascend in the ipsilateral dorsal funiculus

    towards thebrainstem. Fibers from the lowerhalfof thebody give rise to the fasciculus

    gracilis(gracile

    fasciculus,

    Fig.

    20);

    axons

    from

    upper

    thoracic

    and

    cervical

    ganglia

    form

    the

    fasciculuscuneatus(cuneatefasciculus,Fig.20). Theaxonsformingbothofthesepathways

    terminateonnucleibearing thesamenames,nucleusgracilisandnucleuscuneatus, in the

    caudalmedulla(Fig.12).

    Axonsofprojectionneuronsinthesenuclei(thesecondorderneuronsforthispathway)

    formtheinternalarcuatefibersthatcrosstothecontralateralsideofthebrainstemtoform

    themediallemniscus. Attheleveloftheopenmedulla,themediallemniscuscanbeseenas

    averticallyelongatedmassofheavilymyelinatedaxonsadjacenttothemidline inthe lower

    tegmentum,justabovethepyramidsandmedialtotheinferiorolivarynuclei(Fig.11). Inthe

    pons, the medial lemniscus is seen as a horizontally elongated fiber mass in the lower

    tegmentumextending

    laterally

    from

    the

    midline

    (Fig.

    9).

    Axons

    representing

    the

    lower

    portion of the body are in themost lateral portion of the lemniscus. At the level of the

    superiorcolliculusinthemidbrain,themediallemniscusliesjustlaterallytotherednucleus.

    At thejunctionof themidbrainwith thediencephalon,axonsof themedial lemniscuspass

    into the thalamus and synapse on the third order neurons of this system. Axons from

    projectionneuronsofthethalamustravelintheinternalcapsuletoreachthesomatosensory

    cortexofthepostcentralgyrus.

    The lateral corticospinal tract arises from axons of neurons located in layer V of the

    motorcortex. Axonsarecollectedandfunnelledwithintheposteriorportionoftheinternal

    capsule.

    In

    the

    midbrain

    these

    fibers

    help

    forming

    the

    central

    portion

    of

    the

    cerebral

    peduncles(Fig.8). Atthelevelofthepons,thesefiberscanbeseenaslongitudinalfibersat

    thebasisofthepons(Fig.9). Inthemedulla,theselongitudinalfibersbecomethepyramids.

    The lateral corticospinal tract decussates at the level of the pyramidal decussation and

    occupiesthe lateralfuniculus inthespinalcord(Fig.20)wheretheygiveoffcollateralsthat

    synapsewithmotorneuronswithintheventralhorns.

  • 7/28/2019 SMP Neuro Lab Manual

    36/37

    IntrotoNeuroscienceLabManual2013 36

    APPENDIXIII(PrinciplesofMRI)

    WrittenbyJ.VanMeter

    Themagnetic field inanMRIscanner isgeneratedbysurroundingacoilofsuperconductive

    wire with super cooling fluids (liquid helium) lowering the temperature to about 10oK.

    Medical MRI takes advantage of the high prevalence of hydrogen in the body and the

    magneticpropertiesoftheprotoninahydrogenatom.Protonsinduceasmallmagneticfield

    duetotheirspinthatcanbemeasuredinMRI.

    TheMRImeasurementconsistsofthefollowingprocesses:

    1. Alignmentof theprotons in thebodywith the largemagnetic fieldof theMRIscanner.

    After a few seconds in the scanner the protons in the patient are aligned with the

    magneticfield.

    2. Aradiofrequency(RF)pulseisusedtotiptheprotonsoutofalignmentwiththescanners

    magneticfield.

    3. OnceoutofalignmentthemagneticmomentofthehydrogenprotonscanbemeasuredastheyrotatepastmeasurementRFcoils(loopsofwire)inducinganelectricalcurrent.

    4. Theprotonsarepulledback intoalignmentwiththemainmagnetic fielddecreasing the

    measurablesignal. TherateatwhichthisoccursdeterminestheT1propertiesofatissue.

    Iftheprotonsinatissuereturntoalignmentfasterthanallothertissuesthenthistissue

    willbebrightestonaT1weightedscan.

    5. While rotating theprotonsgraduallybecomeoutofphasewithoneanotherdecreasing

    the measurable signal. The rate at which this dephasing occurs determines the T2

    propertiesofatissue. Iftheprotons inatissueremain inphasewithoneanother longer

    thanallothertissuesthenthistissuewillbebrightestonaT2weightedscan.

    6. Aproton

    density

    (PD)

    scan

    minimizes

    both

    T1

    and

    T2

    contrast

    to

    produce

    an

    image

    in

    whichbrightnessisdeterminedbythenumberofprotonsinavoxel.

    Twocontrolsdetermine tissuecontrast:TR (repetition time)andTE (echo time)of the

    scan.RepetitiontimeisthetimebetweensuccessiveRFpulses.Alongrepetitiontimeallows

    theprotons in allof the tissues to relaxback into alignmentwith themainmagnetic field

    minimizingT1contrast.Ashort repetition timewill result in theprotons fromsome tissues

    nothavingfullyrelaxedbackintoalignmentbeforethenextmeasurementismadedecreasing

    thesignalfromthistissue.Echotimeisthetimeatwhichtheelectricalsignalinducedbythe

    spinningprotonsismeasured.Alongechotimeresultsinreducedsignalintissueslikewhite

    matter

    and

    gray

    matter

    since

    the

    protons

    are

    more

    likely

    to

    become

    out

    of

    phase.

    Protons

    in

    a

    fluidwillremaininphaseforalongertimesincetheyarenotconstrainedbystructuressuch

    asaxonsandneurons.Ashortechotimereducestheamountofdephasingthatcanoccurin

    tissue like white matter and gray matter thus minimizing T2 contrast. The relationship

    betweenTRandTEandtissuecontrastareshowninthefigurebelow.

  • 7/28/2019 SMP Neuro Lab Manual

    37/37