18
SMPS design from system SMPS design from system to component: to component: shortening the cycle with simulation shortening the cycle with simulation March 2008 Madrid [email protected] Universidad Polit Universidad Polit é é cnica de Madrid cnica de Madrid CentrodeElectrónicaIndustrial(CEI)

SMPS design from system - CEI

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

SMPS design from systemSMPS design from systemto component: to component:

shortening the cycle with simulation shortening the cycle with simulation

March 2008Madrid

ce

i@u

pm

.es

Universidad PolitUniversidad Politéécnica de Madridcnica de Madrid

Centro de Electrónica Industrial (CEI)

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Outline

The application: Interleaved

converters

Design of magnetic components for

power converters using PExprt

Advantages of Integrated magnetics

in Interleaved Converters

Integrated magnetics component

design using PExprt

Digital control implementation with

Simplorer

System design: from the circuit level

to the system level

Simplorer + SMPS

PExprt

Simplorer + SMPS

PExprt

Simplorer

Simplorer + PTool

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Advantages of Interleaved Converters

Advantages:Power distributionDynamic response improvesOutput current ripple cancellationComponent size reduction

Limitations:One magnetic component for each phaseDynamic response may not be good enoughPhase current ripple may be quite large

Vs = 9V, Is = 10AVs = 9V, Is = 10A

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Application of Interleaved Converters

AmpRF

Pow

erC

onve

rter

Filte

r

Control

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Interleaved Converters design with Simplorer

0

1.00

500.00m

0 10.005.00

Efficiency ~86%Efficiency ~86%Efficiency ~86%

2.00

5.00

3.00

4.00

9.95m 10.00m9.96m 9.98m

Current at each phase (1.6A p-p)Current at each phase (1.6A Current at each phase (1.6A pp--pp))

2.00

6.00

0

2.50

5.00

0 1.02m500.00u

Output VoltageOutput VoltageOutput VoltageVin = 12 V; Vin = 12 V; VoutVout = 3.3 V= 3.3 V

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Magnetic Component design with PExprt

0

3.00

1.00

2.00

1.95m 2.00m1.96m 1.98m

Phase Currents

AM1.I ... AM2.I ... AM3.I ...

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Comparison of models at circuit level with Simplorer

0

1.00

500.00m

50.00m 10.005.00

Efficie...

Efficie...

0

3.00

1.00

2.00

4.87m 4.92m4.88m 4.90m

Phase Currents

AM1.I ... AM2.I ... AM3.I ...

85%

0

1.00

500.00m

0 10.005.00

2.00

5.00

3.00

4.00

9.95m 10.00m9.96m 9.98m

1.6A p-p1.6A p-p

86%

EfficiencyEfficiencyEfficiency

Current at each phaseCurrent at each phaseCurrent at each phase

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Integrated Magnetics vs Discrete Components

-12.27

13.98

0

10.00

360.05u 400.00u370.00u 380.00u 390.00u

Phase Currents

-2.00

2.00

0

360.08u 400.00u370.00u 380.00u 390.00u

Phase Currents

0

4.94

2.00

4.00

0 800.00u500.00u

Output Voltage

0

5.23

2.00

4.00

0 800.00u500.00u

Output Voltage

Discrete ComponentsDiscrete ComponentsDiscrete Components Integrated MagneticsIntegrated MagneticsIntegrated Magnetics

5x Faster

20x Less ripple

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Design of Integrated Magnetics with PExprt

FeaturesFrequency dependentCapacitive effectsNonlinear core

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Comparison of models at circuit level with Simplorer

0

3.00

1.00

2.00

4.87m 4.92m4.88m 4.90m

Phase Currents

AM1.I ... AM2.I ... AM3.I ...

0

1.00

500.00m

50.00m 10.005.00

Efficie...

Efficie...

85%

1.6A p-p

2.00

6.00

0

2.50

5.00

0 1.02m500.00u

0

1.00

500.00m

0 10.005.00

Efficiency

84%

2.00

2.00

0

949.27u 999.90u960.00u 980.00u

The currents are in phase

2.2A p-p

2.00

6.00

0

2.50

5.00

0 1.02m500.00u

5x Faster than the uncoupled version

p

n

mMOSFET_LEG

M1

M2

pwm

pwm1

p

n

mMOSFET_LEG

M1

M2pwm

pwm2

p

n

mMOSFET_LEG

M1

M2pwm

pwm3E1

PEX

PExprtLink1

R1

A

AM1

A

AM2

A

AM3

C1

STEP1

DiscreteDiscreteDiscrete IntegratedIntegratedIntegrated

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Control: Simplorer Implementation Alternatives

G(sG(s))Continuous time blocks: S-Transfer function

Discrete time blocks: Z-Transfer function

Discrete Fixed-Point : Synthesized VHDL code

11

AnalogAnalogAnalog

DigitalDigitalDigital

33

44

G(zG(z))

Discrete_PID

22 Continuous time electrical elements

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Digital Control Implementation

Output Voltage

Duty Cycle

Soft Start(Electric circuit)

Discrete PID(VHDL-AMS block)

Simplorer blocks

DigitalImplementationDigitalImplementation

Mixed simulation:Electric circuitsDigital blocksContinuous blocks

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Digital Control Implementation: Simplorer Results

2.50

3.50

3.00

250.00u 450.00u300.00u 400.00u

Output Voltage

-10.00

20.00

0

10.00

250.00u 450.00u300.00u 400.00u

Phase Currents

2.50

3.50

3.00

250.00u 450.00u300.00u 400.00u

Output Voltage

-10.00

20.00

0

10.00

250.00u 450.00u300.00u 400.00u

Phase Currents

Continuous time PID (Analog)Continuous time PID (Analog)Continuous time PID (Analog)

Discrete time PID (Digital): sampling = 600kHzDiscrete time PID (Digital): sampling = 600kHzDiscrete time PID (Digital): sampling = 600kHz

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

System and Sub-System levels

Complete systemComplete system Power systemPower system

The power system involves:LossesDynamic limitationsTemperature issuesFailures

The power system can not The power system can not be modeled as an ideal be modeled as an ideal

system system

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Simulation time

Voutn

Voutp

Vinn

VinpHalf BridgeRegulado

28V/1.8VVom

Vop

Vinm

Vinp BuckRegulado

42V/28V

+ V

VM28

Voutn

Voutp

Vinn

VinpHalf BridgeRegulado

28V/1.8V

Voutn

Voutp

Vinn

VinpHalf BridgeRegulado

28V/1.8V

Vom

Vop

Vinm

Vinp BuckRegulado

42V/28VVinm

Vinp

SubsistemaBaterias

Vm

Vp

SubsistCargasReg2

Vm

Vp

SubsistemaGenerad

Vm

Vp

SubsistemaCargasNoRe

Vm

Vp

SubsistCargasReg

Vm

Vp

SubsistemaCargasNoReg2

+ V

VMc2

+ VVMc

+ V

VMbat

A

AMbat

+ V

VMin

0

43.00

10.00

20.00

30.00

0 150.00m25.00m 50.00m 75.00m 100.00m

Simulation time

-Averaged models -> 157 seconds-Behavioral models -> 29 seconds

5 times faster!!!

Simulation levels:Switch levelAveragedBehavioral

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

SMPS Library: PTool

Problems designing power systemsThe lack of models for each DC/DC converterThe lack of information on commercial convertersDifficulty to develop the modelsLong simulation timeAll above problems multiplied by the number of converters

Get optimized VHDLGet optimized VHDL--AMS models for DC/DC AMS models for DC/DC converters in minutesconverters in minutes

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

SMPS Library: PTool

PToolPTool converterconverter’’s features:s features:

Input characteristicsOutput characteristicsDynamic responseStatic responseRemote controlThermal behaviorProtectionsPower sharingCross regulation

Ce

ntr

o d

eE

lec

tró

nic

aIn

du

stri

al

March 2008

Simplorer System Level Models

vi_n

vi_p

vo1_n

vo1_p

Behavioral

0

100.00

50.00

0 10.005.00

Efficiency comparison

Behavioral

Switch level

0

3.40

2.00

0 520.00u200.00u 400.00u

System Level and Switch

Total simulation time: 700us

Behavioral: 1second

Switch level: 6 minutes

Output voltage

Load step