26
Snoring / Sleep Apnea Sound Analysis Jacob Zurasky ECE5525 Fall 2010

Snoring / Sleep Apnea Sound Analysis

  • Upload
    tamal

  • View
    40

  • Download
    0

Embed Size (px)

DESCRIPTION

Snoring / Sleep Apnea Sound Analysis . Jacob Zurasky ECE5525 Fall 2010. Snoring / Sleep Apnea Analysis. Goals Determine if the principles of speech processing relate to snoring sounds. Use homomorphic filtering techniques to analyze snoring for pitch and also vocal tract response. - PowerPoint PPT Presentation

Citation preview

Page 1: Snoring / Sleep Apnea Sound Analysis

Snoring / Sleep Apnea Sound

Analysis

Jacob Zurasky ECE5525Fall 2010

Page 2: Snoring / Sleep Apnea Sound Analysis

Goals

◦ Determine if the principles of speech processing relate to snoring sounds.

◦ Use homomorphic filtering techniques to analyze snoring for pitch and also vocal tract response.

◦ Develop a method to distinguish a simple snore from a sleep apnea event.

Snoring / Sleep Apnea Analysis

Page 3: Snoring / Sleep Apnea Sound Analysis

Background

Page 4: Snoring / Sleep Apnea Sound Analysis

Past Research - SRD Store amplitude and frequency spectrum data to SD card

Interface to Sleep Lab polysomnogram equipment

Page 5: Snoring / Sleep Apnea Sound Analysis

Top Figure is the frequency spectrum (0-2kHz)

Bottom figure is the snore amplitude

SRD – Sample Data Output

Page 6: Snoring / Sleep Apnea Sound Analysis

Past Research – iPhone App

Page 7: Snoring / Sleep Apnea Sound Analysis

Assume: s[n] = h[n] * p[n]

FFT -> log( ) -> IFFT, yields the cepstrum

Separate by low quefrency liftering

FFT -> exp( ) -> IFFT, vocal tract response

Homomorphic Filtering – Speech

Page 8: Snoring / Sleep Apnea Sound Analysis

Assume: s[n] = h[n] * p[n] (palatal flow)

Use sliding hamming window, 50% overlap

Analyze different sounds clips for differences in h[n] and p[n] between normal snoring and an apnea event.

Homomorphic Filtering - Snoring

Page 9: Snoring / Sleep Apnea Sound Analysis

Signal - apnea1.wav

0 1 2 3 4 5 6 7 8-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4Sound Signal

Am

plitu

de

Time (s)

Page 10: Snoring / Sleep Apnea Sound Analysis

FFT – apnea1.wavFFT, Window: 45 mS Frame: 11 mS

Freq

uenc

y (h

Z)

Time (s)0 1 2 3 4 5 6 7

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Page 11: Snoring / Sleep Apnea Sound Analysis

Cepstrum – apnea1.wav

0 0.2 0.40.6 0.8 1 1.2 1.4

1.6 1.80

1

2

3

4

5

6

7

8

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Quefrency (mS)

Cepstrum Surface, Window: 45 mS Frame: 11 mS

Page 12: Snoring / Sleep Apnea Sound Analysis

Vocal Tract Response – apnea1

0

0.5

1

1.5

2

2.50

1

2

3

4

5

6

7

8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Vocal Tract Impulse Response, Window: 45 mS Frame: 11 mS

Time (mS)

Page 13: Snoring / Sleep Apnea Sound Analysis

Signal - apnea2.wav

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4Sound Signal

Am

plitu

de

Time (s)

Page 14: Snoring / Sleep Apnea Sound Analysis

FFT – apnea2.wavFFT, Window: 45 mS Frame: 11 mS

Freq

uenc

y (h

Z)

Time (s)0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Page 15: Snoring / Sleep Apnea Sound Analysis

Cepstrum – apnea2.wav

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.5

11.5

2

2.5

3

3.5

4

4.5

5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

Quefrency (mS)

Cepstrum Surface, Window: 45 mS Frame: 11 mS

Page 16: Snoring / Sleep Apnea Sound Analysis

Vocal Tract Response – apnea2

0

0.5

1

1.5

2

2.5 00.5

11.5

22.5

33.5

44.5

5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Vocal Tract Impulse Response, Window: 45 mS Frame: 11 mS

Time (mS)

Page 17: Snoring / Sleep Apnea Sound Analysis

Signal - snore1.wav

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Sound Signal

Am

plitu

de

Time (s)

Page 18: Snoring / Sleep Apnea Sound Analysis

FFT – snore1.wavFFT, Window: 45 mS Frame: 11 mS

Freq

uenc

y (h

Z)

Time (s)0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Page 19: Snoring / Sleep Apnea Sound Analysis

Cepstrum – snore1.wav

00.2

0.40.6

0.81

1.21.4

1.61.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Quefrency (mS)

Cepstrum Surface, Window: 45 mS Frame: 11 mS

Page 20: Snoring / Sleep Apnea Sound Analysis

Vocal Tract Response – snore1

0

0.5

1

1.5

2

2.5 0

0.2

0.4

0.6

0.8

1

1.2

1.4-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Vocal Tract Impulse Response, Window: 45 mS Frame: 11 mS

Time (mS)

Page 21: Snoring / Sleep Apnea Sound Analysis

Signal - snore2.wav

0 0.5 1 1.5 2 2.5 3-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8Sound Signal

Am

plitu

de

Time (s)

Page 22: Snoring / Sleep Apnea Sound Analysis

FFT – snore2.wavFFT, Window: 45 mS Frame: 11 mS

Freq

uenc

y (h

Z)

Time (s)0 0.5 1 1.5 2 2.5

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Page 23: Snoring / Sleep Apnea Sound Analysis

Cepstrum – snore2.wav

0

0.2

0.40.6

0.8

11.2

1.41.6

1.8 0

0.5

1

1.5

2

2.5

3

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Cepstrum Surface, Window: 45 mS Frame: 11 mS

Quefrency (mS)

Page 24: Snoring / Sleep Apnea Sound Analysis

Vocal Tract Response – snore2

0

0.5

1

1.5

2

2.5 0

0.5

1

1.5

2

2.5

3

-0.5

0

0.5

1

1.5

2

2.5

Time (s)

Vocal Tract Impulse Response, Window: 45 mS Frame: 11 mS

Time (mS)

Page 25: Snoring / Sleep Apnea Sound Analysis

Observations p[n], ‘Voicing’, of the sleep apnea files has a

much larger magnitude in the cepstral domain.

Vocal tract response during a simple snore is more stable than during an apnea.

Vocal tract response is slower changing during a simple snore.

Page 26: Snoring / Sleep Apnea Sound Analysis

Redesign the SRD to incorporate the functions of the MATLAB code.

Faster processor, floating point architecture

Continue research to develop a method for in home screening of sleep apnea.

Future Goals