15
Snowmass, August , 2005 P. Colas - InGrid 1 M. Chefdeville a , P. Colas b , Y. Giomataris b , H. van der Graaf a , E.H.M.Heijne c , S.van der Putten a , C. Salm d , J. Schmitz d , S. Smits d , J. Timmermans a , J.L. Visschers a a) NIKHEF Amsterdam, b) DAPNIA Saclay, c) CERN, d) Twente University/MESA+ InGrid, an integrated Micromegas InGrid, an integrated Micromegas made in Silicon wafer post- made in Silicon wafer post- processing technology processing technology •Motivation •Process •First results •Future

Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Embed Size (px)

Citation preview

Page 1: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 1

M. Chefdevillea , P. Colasb, Y. Giomatarisb, H. van der Graafa, E.H.M.Heijnec, S.van der Puttena, C. Salmd, J. Schmitzd, S. Smitsd, J. Timmermansa, J.L. Visschersa

a) NIKHEF Amsterdam, b) DAPNIA Saclay, c) CERN, d) Twente University/MESA+

InGrid, an integrated Micromegas InGrid, an integrated Micromegas made in Silicon wafer post-processing made in Silicon wafer post-processing

technologytechnology

InGrid, an integrated Micromegas InGrid, an integrated Micromegas made in Silicon wafer post-processing made in Silicon wafer post-processing

technologytechnology

•Motivation

•Process

•First results

•Future

Page 2: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 2

Reminder : Micromegas + pixels MICROMEsh GASeous detector

:Amplification region : 50-100 micron

gapAmplification field >> drift field =>

efficient collectionGap small => fast signals

Optimally, anode pad size can be = hole pitch

->VLSI (CMOS) electronics (Medipix2)

65000 pixels on 2cm2

S1

S2

NIKHEF-Saclay CERN Twente Collaboration since early 2004

Page 3: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 3

He/Isobutane80/20Modified MediPix(80% of the pixel is conductive, instead of 20%)

Cluster by clusterMIP detection

δ-ray?

Very successful, but…

Page 4: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 4

Non Modified Modified

•Moiré effect: pitch Micromegas holes: 60 μm pitch MediPix pixels: 55 μm Periodic position of hole w.r.t. pixel: repeats after 12 pixels• The frame has a finite thickness• Difficult to reach a perfect adhesion of the frame to the surface

But…

Page 5: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 5

Integrate GEM/Micromegas and pixel sensor by ‘wafer post-processing’ :

thinness and robustness of the gridaccuracy of the gap (provides excellent resolution and

uniformity)

no frame (no loss of active surface)

possibility to fragment the mesh (provides noise reduction and additional localisation usable for zero-suppression)

First step : try the process on bare Si wafers (without CMOS circuit)

‘GEM’ ‘Micromegas’

InGrid

Page 6: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 6

1) Oxide the Si wafer, insulating SiO2 layer on top

2) Deposition of 0.2 m of Al for anode, and patterning

3) Deposition of 50 m photo- resist and UV exposure

4) Deposition and patterning of the grid: 0.8 m of pure Al

5) Removal of the exposed photoresist

RESULT : a thin mesh (0.8 m compared to 3-5 m with best standard techniques), sustained at an accurate 50 m from the anode.

InGrid process

Page 7: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 7

INGRID: some first trials

Various pitches, shapes

Page 8: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 8

Test setup 55Fe source

740 MBq

Collimated on 1mm diameter

Drift cathode

InGrid wafer

HV connectors to measure mesh, cathode and anode currents, and mesh signal

Page 9: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 9

Result of the process

After 1 year of trials and improvements, a satisfactory InGrid holds the voltage.

Pitch 60 m

Pillars, 40 m diameter

No inefficiency

Al grid

4 ’’ wafer with 19 InGrids

Page 10: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 10

July 2005, first successful test

After 1 year of trials and improvements: first 55Fe signal in an Ingrid detector with He+20%isobutane.

HV=400V

Edrift~1kV/cm

No collimation

Page 11: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 11

Results with Argon + 20% isobutane

55Fe 5.9 keV line and escape line in Ar clearly visible.

Unprecedented resolution: E/E = 6.5%.

(FWHM=15.3%)

K and K (6.5 keV) lines are separated by the fit.

Ar escape

55Fe K

55Fe K

Page 12: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 12

Gain curves

Gains up to O(104) are reached with this first InGrid

Page 13: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 13

Currents

The currents through the cathode, the grid and the anode are measured

This allows a measurement of the ion backflow fraction : O(1%), consistent with the field ratio.

Page 14: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 14

Future

Try various hole size and pitch (19 already available), thinner gaps.

In parallel develop the chip to provide it with time measurement capability (TimePix, Si TPC)

The work on the Si TPC will receive funding from European Community (EUDET project).

~780 k€, plus a commitment of ~1300 k€ from NIKHEF, Saclay and Freiburg in 2006-2009.

Others are welcome to join, even not from Europe.

Page 15: Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm

Snowmass, August , 2005 P. Colas - InGrid 15

Conclusion

The first InGrid shows unprecedented performances

Excellent energy resolution

No need for a frame: the mesh is sustained everywhere.

Easy to segment the mesh (thus lowering the capacitance) and to align mesh and

pads

Once the process will be fully stabilized, post-processing onto Medipix2 and Timepix will give a cluster-resolving TPC, very interesting to

- understand further gas ionization and study how Micromegas works

- make a digital TPC