29
Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio Brussels – 27-29 June 2012 Software Radio Spectrum Analyzer SUPELEC - Campus de Rennes SCEE – Signal, Communications et Electronique Embarquée IETR – UMR CNRS 6164 Institut d'Electronique et Télécommunications de Rennes Jérôme PARISOT, Emilien LE SUR, Christophe MOY , Daniel LE GUENNEC, Pierre LERAY SUPELEC/IETR 27 June 2012

Software Radio Spectrum Analyzer · 2016-07-29 · Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio Brussels – 27-29 June

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Wireless Innovation Forum European Conference on Communications Technologies and Software Defined Radio

Brussels – 27-29 June 2012

Software Radio

Spectrum Analyzer

SUPELEC - Campus de RennesSCEE – Signal, Communications et Electronique Embarquée

IETR – UMR CNRS 6164Institut d'Electronique et Télécommunications de Rennes

Jérôme PARISOT, Emilien LE SUR, Christophe MOY, Daniel LE GUENNEC, Pierre LERAY

SUPELEC/IETR27 June 2012

Project goal

• Student project– implement real radio on a part-time

3 months project

– evaluate/dimension SDR capabilities for real-time processing

Christophe MOY - SUPELEC – 27 June 2012 2IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– not only for communications

• System– SDR approach

– USRP N210 from Ettus research

– Simulink processing environment

Presentation outline

• Power spectral density

• Simulink implementation on N210 platforms

Christophe MOY - SUPELEC – 27 June 2012 3IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Windows implementation on N210 platforms

• Conclusion

Presentation outline

• Power spectral density

• Simulink implementation on N210 platforms

Christophe MOY - SUPELEC – 27 June 2012 4IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Windows implementation on N210 platforms

• Conclusion

Spectrum analysis

• Spectrum– continuous

– discrete

• but : amplitude and phase

( ) ∫+∞

∞−

π−= dte).t(xfX fti2

( ) fkTi2N

1k

e).k(xTfX̂ π−

=∑=

Christophe MOY - SUPELEC – 27 June 2012 5IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• but : amplitude and phase

• convergence not guaranteed mathematically

• Power Spectral Density– auto-correlation

( ) ∫+∞

∞−

τπ− ττγ=Γ de).(f fi2

xx

{ })t(x).t(xE)(x τ+=τγ

for real signals

Fourrier

transform

Power Spectral Density

• Power Spectral Density– it can be shown that

� periodogram

� instead: (Schuster - 1898)

( ))f(X̂

ˆ

2

( )

=ΓT.N

)f(X̂Elimf

2

x

Christophe MOY - SUPELEC – 27 June 2012 6IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• but: it can be shown that estimation error standard

deviation (hypothesis of White Gaussian Noise)

• error is a the level of the measure!

– necessary to average

• Welch approach

( )T.N

)f(Xfˆ

x =Γ

( ) ( )0xfˆ f0x

Γ≈σΓ

WELCH method (I)

• Discrete PSD by Welch method• based on temporal samples (periodogram-based)

• subdivide the samples in temporal slots

• combine the PSD result of each slot in order to

make a global mean PSD

Christophe MOY - SUPELEC – 27 June 2012 7IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– advantage on precision

– disadvantage

• resolution

( )T.N

)f(X̂fˆ

2

x =Γ

1 M 2.M k.M

( ) ∑=

Γ=Γk

1i

ix )f(ˆk

1fˆ

)f(1Γ )f(2Γ

( ) ( )0i0xffˆ

k

1ΓΓ

σ=σ

1 N t

WELCH method (II)

• Overlap

t

observation horizon

slot )f(iΓ )f(1i+Γ

Christophe MOY - SUPELEC – 27 June 2012 8IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Overlap– avoid loosing effects at the slot border

t

observation horizon

slot overlap

WELCH method (III)

• Windowing– in order to mitigate truncature effect

– Hamming here

t

Christophe MOY - SUPELEC – 27 June 2012 9IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

t

WELCH method (IV)

t

Windowing

FT

| |²

Windowing

FT

| |²

Windowing

FT

| |²

Windowing

FT

| |²

Christophe MOY - SUPELEC – 27 June 2012 10IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Mean

Normalisation

Matlab implementation

• Function for Welch algorithm– input: time samples

– output: PSD

– parameters:

• number of slots

signalOut = zeros(1,sizeFFT);.for i=0:nbSlots-1

offset=doffsetSlot*i+1;% Slot extraction and windowing.slot= signalIn(offset:offset + slotSize-1).*fen;

Christophe MOY - SUPELEC – 27 June 2012 11IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• number of slots

• overlapping ratio

• windowing type

function [ signalOut ] = algoWelch( signalIn , nbSlots , overlapRatio, window)

% Normailze FFT.S = fft(slot, sizeFFT)/slotSize;% SquaresignalOut = signalOut + abs(S).^2;

end

% Mean and normalization.signalOut = signalOut/ nbSlots * slotSize/ norm_win;

Presentation outline

• Power spectral density

• Simulink implementation on N210 platforms

Christophe MOY - SUPELEC – 27 June 2012 12IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Windows implementation on N210 platforms

• Conclusion

• USRP based platform (N210 frome EttusTM)– UHD drivers

– for Simulink environmentreal-time processing

– GBethernet link USRP

Hardware system

2.3 GHzIntel Core i5

Christophe MOY - SUPELEC – 27 June 2012 13IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– GBethernet link

• SDR approach for testand measurements

• Not only for communications

13

USRP

N210

RF

80 MHz -1,4 GHz

ADC

100 MHz ↓↓↓↓256

Spectrum Analyzer

(Simulink)

fS=390 kHzfADC=100 MHz

N210 platform from EttusTM

Christophe MOY - SUPELEC – 27 June 2012 14IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

14

fADC

DCR

IF ADC DDC Buffer

input

buffer

Welch

algorithm

USRP N210 platform

GBethernet

System functional view

Christophe MOY - SUPELEC – 27 June 2012 15IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

data re-ordering

Spectrum anayzer

Spectrogram

Persistance

PC for

processing

and

display

-

Simulink™data re-ordering

• Spectrum analyzer

Simulink processing (I)

t

Amplitude

Christophe MOY - SUPELEC – 27 June 2012 16IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

16

Spectral

EstimationDisplay

Spectral

EstimationDisplay

Spectral

Estimation…

Acquisition

n-1 n

Acquisition

n+1

• Spectrum analyzer performance– bandwidth

• DCR: undersampling factor

– display frequency (of PSD)

• nf: number of samples per frame

Simulink processing (I)

DCR2

ff ADCMax ⋅

=

ADC 1ff ⋅=

Christophe MOY - SUPELEC – 27 June 2012 17IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• nf: number of samples per frame

• nb: number of frames

– real time (2.3 GHz Intel Core i5)

bf

ADCdisp

nnDCRf

⋅⋅=

Fc(center freq.)

Decim bandwidth Frame Length

SampleTime(s)

Output data type

80 Mhz –1.4 GHz

256 195 kHz 362 2,56.10-6 double

• Spectrum analyzer in Simulink

Simulink processing (I)

Christophe MOY - SUPELEC – 27 June 2012 18IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Spectrum analyzer – FM 10 kHz

signal

Simulink processing (I)

Christophe MOY - SUPELEC – 27 June 2012 19IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– DCR = 256

– DCR = 128

– DCR = 64

• Spectrogram– overlapping ratio = 0.5, Nb slots = 8

• display refresh frequency � 5.7Hz

– overlapping ratio = 0.8, Nb slots = 16

• display refresh frequency � 2.6Hz

Simulink processing (II)

frequency

Christophe MOY - SUPELEC – 27 June 2012 20IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• display refresh frequency � 2.6Hz frequency

time

carrier jumping

FM modulation

FM

jumpingcarrier

• Remanence– overlapping ratio = 0.5, Nb slots = 8

• display refresh frequency � 8.33 Hz

– overlapping ratio = 0.8, Nb slots = 16

• display refresh frequency � 3.86 Hz

Simulink processing (III)

Christophe MOY - SUPELEC – 27 June 2012 21IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• display refresh frequency � 3.86 Hz

• Trade-off: quality / execution duration

PSD variance estimate

2

2.5

Relative delay for a input of 14480 samples

1.6

1.8

Relative delay for a input of 14480 samples

Variance for an input of 43440 samples

Variance/E

nerg

y /

variance f

or

r=0,

nb=

1

Christophe MOY - SUPELEC – 27 June 2012 22IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

0

5

10

15

20

0

5000

100001

1.5

Number of slicesSize of each slice

dela

y

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of slicesOverlapping Ratio

dela

y

2 4 68 10

12 14 16 0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

Overlapping Ratio

Number of slices

Variance/E

nerg

y /

variance f

or

r=0,

nb=

1

• FM broadcast– 256

– 512

screen shots

Christophe MOY - SUPELEC – 27 June 2012 23IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– 64 (delayed)

– 16 (delayed)

Presentation outline

• Power spectral density

• Simulink implementation on N210 platforms

Christophe MOY - SUPELEC – 27 June 2012 24IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Windows implementation on N210 platforms

• Conclusion

Windows implementation

• Development Environment– SUPELEC proprietary environment (Windows)

• UHD library– from Ettus Research

• Supporting HDCRAM– Hierarchical and Distributed Cognitive Radio

Christophe MOY - SUPELEC – 27 June 2012 25IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

– Hierarchical and Distributed Cognitive Radio Architecture Management [1]

– HDCRAM is an architecture for the management of reconfiguration and cognitive facilities (metrics capture and decision/learning)

– for real-time auto-adaptation[1] Christophe MOY, "High-Level Design Approach for the Specification of Cognitive Radio Equipments

Management APIs", Journal of Network and System Management - Special Issue on Management Functionalities for Cognitive Wireless Networks and Systems, vol. 18, number 1, pp. 64-96, Mar. 2010

• Spectrum analyzer is a kind of cognitive radio– carrier frequency adjustment � sensor

– DCR factor (undersampling) � sensor

– display parameters � data processing to be reconfigured

HDCRAM management

Christophe MOY - SUPELEC – 27 June 2012 26IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

reconfigured

• FM 10 kHz

Presentation outline

• Power spectral density

• Simulink implementation on N210 platforms

Christophe MOY - SUPELEC – 27 June 2012 27IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• Windows implementation on N210 platforms

• Conclusion

Conclusion

• Teaching level (project benefit for students)– power spectrum density study

– fast and easy to implement

– very motivating for students compared to

• analytical analysis

• simulations more or less deconnected from reality

Christophe MOY - SUPELEC – 27 June 2012 28IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

• simulations more or less deconnected from reality

• writing a paper for a conference

• SDR for other stuff than communications– channel sounder last year

– spectrum analyzer here

• Sensor for cognitive radio

• Thank you to/This is the work of students:

Emilien LE SURJérôme PARISOT

Christophe MOY - SUPELEC – 27 June 2012 29IETR - INSTITUT D’ÉLECTRONIQUE ET DE TÉLÉCOMMUNICATIONS DE RENNES

Thanks for your attention

http://www.rennes.supelec.fr/ren/perso/cmoy/SCEE-SERI/