38
Soil Cement Roads Richland County MT Russell Huotari, Richland Co Public Works Director Steve Monlux, USFS Retired LVR Consultants, LLC [email protected] William Vischer, USFS Retired 2/29/2016 Copyright Monlux/Vischer 2016 1 20 th Annual NRRA Pavement Conference St. Paul, MN February 18 th , 2016 For Current Report, Google “soil cement montana”

Soil Cement Roads - Minnesota Department of Transportation

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Soil Cement Roads Richland County MT

Russell Huotari, Richland Co Public Works Director

Steve Monlux, USFS Retired  LVR Consultants, LLC 

[email protected] Vischer, USFS Retired 

2/29/2016 Copyright Monlux/Vischer 2016 1

20th Annual NRRA Pavement Conference

St. Paul, MNFebruary 18th, 2016

For Current Report, Google “soil cement montana”

Presentation Topics

• The Problem:  • Structural Design Options• Performance Measurements• Life Cycle Cost Comparisons• Soil Cement Construction & Repair• Conclusions & Recommendations

2/29/2016 Copyright Monlux/Vischer 2016 2

2/29/2016 Copyright Monlux/Vischer 2016 3

The Problem

• Heavy Truck Traffic on Weak Soil Roads– 50,000 ESAL’s per well (development, fracking, crude and produced water haul)

• Truck ADT & Weight Unknown• Over 100 miles of oil field arterials• Limited Budget• Limited Rock Resources

2/29/2016 Copyright Monlux/Vischer 2016 4

Richland Co Road Network & Resource Impacts

Missouri River

Oil Development, Wheat, Gravel Roads

Richland County Border

North DakotaMontana

Population Center, Beet Farms, Gravel Resources

Yellowstone River

56 mi

2/29/2016 Copyright Monlux/Vischer 2016 5

Approach to Problem• Staff a Group to develop options• Design structural sections

– Subgrade strengths – Truck traffic– Available materials

• Build trial sections that have low initial cost– Falling Weight Deflectometer (FWD) Test (Montana Non‐Destructive Test Unit)

– Back calculate ESAL life, develop thickness design process (William Vischer, USFS Retired)

– Develop repair options for problems that develop

2/29/2016 Copyright Monlux/Vischer 2016 6

Weak Soils (CBR of 1 to 3 typical)

5” Asphalt, + 8” Base (15 yrs old)

3” Scoria, old gravel base (after 3 months)

2/29/2016 Copyright Monlux/Vischer 2016 7

Weak Clay/Silt Subgrade Soils

Standard Pavement Design Hot Mix

Crushed Gravel

Fabric Geogrid

Gravel with Fabric & Geogrid

Subgrade

Gravel $ Too High

GravelThin gravel layers mix with subgrade Subgrade

Asphalt & Aggregate Designs ~ 2006 to 2014

Gravel Base –8” Thick (2009) 10” Thick (2010)

Fabric

Structural Layer

2/29/2016 Copyright Monlux/Vischer 2016 8

Standard Hot Mix Designs Structural

Layers 8” Crushed Gravel Base

Subgrade Soil

5” Hot Mix

2006 ($1 M/mi)

Double BST

Structural Layer (4” Lift of gravel

stabilized with BASE 1)

Thin BST on Base Designs

~ Subgrade Soil

2009

2014 ($3 M/mi +)

17” Pit Run Gravel

7” Hot Mix

8” Crushed Gravel Base

2/29/2016 Copyright Monlux/Vischer 2016 9

2010 Designs

$250,000 /mile

12’ 2’Flatter wider shoulder is less of a hazard

Wide impermeable shoulder keeps surface water further away from critical structure support area.

Harder support from soil cement reduces damage from large rock punctures

C

BST over 8” Soil Cement

Clay Subgrade

Critical Structural Support Area

$400,000/mileBST over 10” Gravel Base

1’

Water infiltration to Clay Subgrade is close to structural support area

C

Clay Subgrade

Critical Structural Support Area Edge cracking & break off mtc. problems

What is Soil Cement?

2/29/2016 Copyright Monlux/Vischer 2016 10

Concerns with Clay Soil Cement

• Life• Low cost driving surface• Repair methods for semi‐rigid layer• Accurate thickness design process• Clay pulverization • Deep layer compaction• Curing in windy climate

2/29/2016 Copyright Monlux/Vischer 2016 11

Soil Cement Designs – Typical Sections

Soil Cement, 8” to 12” thick

5% to 8% Cement

2010

2/29/2016 Copyright Monlux/Vischer 2016 12

Designs modified after FWD 

testing in spring and fall

Soil Cement, 10” thick,

8% Cement

2011

Soil Cement, 12” thick, 6% to 7% Cement

2012-13

Soft Subgrade Designs

Soft Spot Location2011: (5%) Proof Rolling & DCP2012: (15%)  Intelligent Compaction Roller & DCP2013: (15%) Ground Penetrating Radar & DCP

Soil Modification,18” thick, 3% Cement

2012 & 2013

CBR = 1

2/29/2016 Copyright Monlux/Huotari 2014 13

Soil Stabilization, 12” thick,

6% to 7% Cement

CBR = 1

2011

Soil Stabilization

12” thick, 10% Cement

2/29/2016 Copyright Monlux/Vischer 2016 14

Long Term Strength of Soil Cement

Designs should assume Ep will be reduced by 20% to 40% over time (Bill Vischer, Nov 2014)

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 129W

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 201

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 321

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 143E

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 324

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 146W

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 146E

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 314

50100150200250300

0 1 2 3 4

Ep x 1000, psi

Soil Cement Age, years

CR 143W

Soil Cement Thickness Design (Bill Vischer)

2/29/2016 Copyright Monlux/Vischer 2016 15

ESAL: 1,000,000Subgrade Mr,

psi:3000

FWD Do, mils: 160

Max Subgrade Microstrain: 480

Max Stress Ratio 0.60

Design Option

Thickness, inches Esc, psi

6% min for Frost

8% max for shrinkage cracking

1 16 >100 6% OK Two Layers2 14 >140 6% OK Two Layers3 12 >170 OK No Single Layer4 <12 wont work5

OK at any Esc 8.88" won't work No 8" won't work

Step 9: Recommendations:

Alternative A: Pretreat all known weak areas with 3%

cement to 18" depth to raise the average subgrade

Mr, followed by 12 % treatment @ 8% Cement. Alternative B: Treat 12" depth at 8% Cement and

Lower Design Traffic ESAL value from 1,000,000 to

750,000

Cement content for Lean Clay Soils Maximum One

Layer depth equals 12". Two layers

increase cost

OK at any Esc 5.3OK at any Esc 6.8

Step 3: Use Graph 2 to determine allowable subgrade strain for the design ESAL.

Step 4: Use Graph 3 to determine maximum allowable stress ratio limit for the Soil Cement layer based on design traffic ESAL.

Sep 5: Use Graph 4 and the maximum subgrade strain to

identify options of soil cement layer thicknesses possible for the design

Subgrade Mr. Thicknesses correlating for Esc between 100 and

200 are suggested.

Step 6: Use Graph 5 and the

maximum stress ratio to determine

which options from Step 5 are

acceptable based on the design Subgrade Mr

Step 7: Use Graph 6 to determine

the minimum cement

content for each

acceptable design option

Step 8: Selecting the best option requires engineering judgment

when consideration of the following criteria

Appendix E1 - Thickness Design Curves - Soil Cement with BST Surface (4/2/2014)

Thickness Design Outline: Page one provides and example solution with a step by step process that uses graphs shown on page two and three. Page 4 is a blank form of page one that should help keep the process organized.

Thickness Design Steps with an Example Design DataStep 1: Assume a design traffic ESAL value. Step 2: Determine subgrade modulus. Use either a DCP and charts, or FWD & DCP (preferred option) for the average deflection directly under a 6,000 lb load (Do) from tests conducted in the Spring season. Use Graph 1 to determine Subgrade Mr from FWD maximum deflection, Do

Page 1

Soil Cement Thickness Design (Con’t)

2/29/2016 Copyright Monlux/Vischer 2016 16

y = 0.0208e0.0086xR² = 0.9995

3%

4%

5%

6%

7%

8%

9%

50 70 90 110 130 150 170

Cemen

t %

ESC of Soil Cement , psi x 1000

Graph 6.  Soil Cement (ESC)  VS Cement Content

400

500

600

700

800

900

1000

0 500 1000 1500 2000

Subgrade

 Microstrain 

ESALS X 1000 ( Asphalt Institute Equation)

Graph 2.  Subgrade Strain VS ESALS

0

50

100

150

200

250

0 500 1000 1500 2000

Soil Ce

men

t  Mod

ulus psi

Subgrade Microstrain

Graph 4.  Soil Cement (Esc) VS Subgrade Strain

Mr=6 ; 18Mr=3 ; 18"Mr=9 ; 18"Mr=6 ; 12"Mr=3 ; 12"Mr=9 ; 12"Mr=9 ; 8"Mr=6 ; 8"Mr=3 ; 8"Mr=3 ; 22"Mr=6 ; 22"

8"22" 18" 12"

y = 480035x‐0.997R² = 0.9999

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 50 100 150 200

Subg

rade

 Mr p

si

Do‐Max Deflection‐Mils

Graph 1.  Subgrade Mr vs Max Deflections                ( From CR 351 Tests on Subgrade)

Load 5.‐6.7k MrNorm 6k MrPower (Norm 6k Mr)

0

50

100

150

200

250

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Soil

Cem

ent

Mod

ulus

psi

Stabilized Layer Stress Ratio

Graph 5.  Soil Cement (Esc) VS Soil  Cement  Stress RatioMr=6 ; 18

Mr=3 ; 18"

Mr=9 ; 18"

Mr=6 ; 12"

Mr=3 ; 12"

Mr=9 ; 12"

Mr=9 ; 8"

Mr=6 ; 8"

Mr=3 ; 8"

Mr=3 ; 22"

Mr=6 ; 22"

Mr=9 ; 22"

8"22" 18" 12"

y = 1.4723x-0.134

R² = 0.9857

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 500 1000 1500 2000

Stre

ss R

atio

18 kip ESALs ( x 1000 )

Graph 3. Stress Ratio vs ESALs

Calc Values

Estimated Annual Cost Comparisons

2/29/2016 Copyright Monlux/Vischer 2016 17

Road Surface

Support Structure

 ESAL Life Years (b)Construc‐

tionAverage 

Annual MtcAnnual Cost 

5" Hot Mix 8" Base 1,150,000 8 $900,000 $16,000 $149,000

Road Design OptionAverage Estimated Life from FWD Data  

Approximate Cost per Mile (a)

(a) Costs are very project specific(b) Based on 200 trucks/day, 50,000/yr (150,000 ESAL/yr)

Double BST 10" Base 100,000 1 $400,000 $20,000 $606,000 (c)

(c) Classic case of under designed structural section for the selected ESAL/year traffic

Double BST12" Soil Cement

500,000 3 $300,000 $18,000 $115,000

Double BST3" Gravel on 12" Soil Cement

2,000,000 13 $350,000 $16,000 $48,000

4" Treated Gravel

12" Soil Cement

2,000,000 13 $400,000 $26,000 (d) $63,000

(d) Primarily gravel replacement ‐ WAG

Consider other issues with the Soil Cement option

2/29/2016 Copyright Monlux/Vischer 2016 18

Soil Cement Construction• Road Preparation• Cement Spreading• Mixing Cement & Water• Compaction• Final Shaping & Compaction• Curing & Surface Construction

Road Prep  & Cement Spread

2/29/2016 Copyright Monlux/Huotari 2014 19

1.  Rebuild Crown

2.  Blade up shoulder & center line berm

3.  Rip Surface to control cement flow

4.  Spread cement

Mixing, Compaction & Finishing

2/29/2016 Copyright Monlux/Vischer 2016 20

Water to Hydrate Cement

Reclaimer to pulverize soil and mix soil, water 

& cement

Pad Foot Roller for Compaction

25 Ton Rubber Roller for Finish

Blade Rebuilds Crown

Spread Cement

Uneven Moisture/Compaction

Problem solved in 2013 by mix chamber cleaning after each cement spread

2/29/2016 Copyright Monlux/Vischer 2016 21

Clay Pulverization Problems

Pulverization increased by:slower ground speed,multiple passes, higher drum speeds, and closing mix chamber doors

Good Pulverization

Poor Pulverization

2/29/2016 Copyright Monlux/Vischer 2016 22

Double Chip Seal (2011‐12)

2/29/2016 Copyright Monlux/Vischer 2016 23

First Seal on Soil Cement

Second Seal on top of First Seal

Surfacing on Soil Cement

2/29/2016 Copyright Monlux/Vischer 2016 24

Build $ Low Moderate Highest Moderate

Est. Mtc. $ Moderate Low Lowest Moderate(Blading, Chloride, Rock)

Estimated Life Cycle $

Moderate? Low? Low? Moderate?

YearSurfacing Type, Miles

Double BST

BST on 3” Gravel

3” HMA on 3”  Base

4” Treated Gravel(Bentonite & CaCl2)

2010 1.75 0 0 32011 24 0.8 0 02012 12 0 0.4 122013 0 4.8 0 8

Treated Gravel Surfacing (1 yr. old)

Close‐up photo of road surface in wheel track

Treated Gravel (3% Bentonite, 1.5% Calcium Chloride)

2/29/2016 Copyright Monlux/Vischer 2016 25

Bentonite reduces chloride leaching, chloride reduces Bentonite dusting

2/29/2016 Copyright Monlux/Vischer 2016 26

Soil Cement Quality Assurance

• Cement application rate• Pulverization• Depth of mixing• Moisture content during mixing• Compaction• Surface finish crown and profile• Curing

QA Costs depend on Contractor, site conditions, weather, etc

Extent of Soil Cement Structural Repairs

2011 (24 miles)

2012 & 13 (30 Miles)

Total Surface Area, SY 394,240 SY 492,800 SY

Total Repair Surface Area 9,878 SY 1,418 SY% of Total work (1) 2.5 % 0.3%

2/29/2016 Copyright Monlux/Vischer 2016 27

(1) Note that the relative amounts of truck traffic are unknown

Repairs for 2012 & 2013 work is less because• Better control of cement flow/content• Better control of pulverization and moisture content• Increased design thickness – 10” vs. 12”• Soft Spot Treatment  ~ more treated (15% vs 5% of road area), 

deeper treatment (12” vs. 18”)

Problems with 2011 Work

Low cement content on 5 ft shoulder

12 inch stabilization depth inadequate for very soft subgrade

Soil cement compression failure due to excessive flexure

2/29/2016 Copyright Monlux/Vischer 2016 28

Otta Seal Bleeding

Compression Failures

QA/QC – Soil Pulverization & Cement Uniformity

Note:  Repair patch of 5” Hot mix & 15” Base rutted after 6 months

BST “Pick‐up” Problems (2011)(caused by stopping vehicles on bleeding BST)

Solution:  Spray patch, UPM or Omega Mix patch

2/29/2016 Copyright Monlux/Vischer 2016 29

Cold UPM Patch 

Material 

Problem Area

Road 321 BST Shoving/Tearing (2011)

Repair Methods:No Depression Area: Remove BST & fabric, new BST full widthDepression Area:  Re‐soil cement, 3” Gravel & BST Full width2/29/2016 Copyright Monlux/Vischer 2016 30

Damage by 200 Ton Oil Rig Movement (2011)

2/29/2016 Copyright Monlux/Vischer 2016 31

Re soil cement or cover with 3” gravel & BST 

full width

Pot Hole at Soil Cement Transverse Joint (2011) (Caused by low cement content)

1 yr. Fix? (UPM Type cold mix patch)Long Term Fix (Re‐mix with Portland 

Cement, add 3” Base & BST)

2/29/2016 Copyright Monlux/Vischer 2016 32

Depressed/Rutted Areas (2011)(Caused by low cement content)

Full Depth Reclamation with additional Portland Cement

2/29/2016 Copyright Monlux/Vischer 2016 33

Use Pick Axe to determine FDR area

Repair Options for Structural Problems

2/29/2016 Copyright Monlux/Vischer 2016 34

Compression Failures from Flexure

Soil Cement

Very Weak Subgrade

Depressions caused by low cement content

Soil CementFull Depth & Width Reclamation with more cement, gravel base and BST

FDR Soil Cement Repair

Reinforce with 4” Gravel Base & BST

Proposed Strategy for Improving Unpaved Arterial Roads

• Year 1:  Cement stabilize soft spot areas on gravel roads – 18 inch treatment depth– 3 inch gravel surfacing

• Year 2:  After all soft spots stabilized– Cement stabilize 12 inch depths,– Add 3 inch base – Double chip seal or 3 inch hot mix asphalt

• Re‐stabilize any failed areas with at least 5% more cement 

2/29/2016 Copyright Monlux/Vischer 2016 35

50 to 300 ft.

Conclusions/Recommendations

2/29/2016 Copyright Monlux/Vischer 2016 36

Design Design thicknesses 

based on truck traffic, subgrade strength, etc.

Costs:  Soil Cement cost effective where:Rock costs are high, Soils are suitable, Road widths are marginal

MarginalBetter

Best

Conclusions/Recommendations

• Construction and MaintenanceGoogle: “Soil Cement – Montana”

2/29/2016 Copyright Monlux/Vischer 2016 37

Wirtgen Cold Recycling Technology Manual

TRB – “Recommended Practice for Stabilization of Subgrade Soils and Base Materials”

Soil Stabilization for Pavements UFC 3‐250‐11 (TM 5‐822)Transportation Research Board publications

Non‐Standard Stabilizers(FS):  “Stabilization Selection Guide for Aggregate and Native Surfaced Low Volume Roads”

• Other Resources

Thank You!

2/29/2016 Copyright Monlux/Vischer 2016 38

Questions or Comments?