42
Solutions to CSEC Maths P2 January 2011

Solutions to CSEC Maths P2 January 2011

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Solutions to CSEC Maths P2 January 2011

Solutions to CSEC Maths P2 January 2011

Page 2: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 1a part (i)

Calculate the exact value of

(5.82 + 1.02) Γ— 2.5

= 34.66 Γ— 2.5

= 86.65 to 2 decimal places

Question 1a part (ii)

Calculate the exact value of

πŸπŸ’πŸ—

πŸ’ πŸπŸ‘

βˆ’ πŸ‘

πŸ•

=

229

143

βˆ’ 3

7

= (22

9 Γ—

3

14) βˆ’

3

7

= (66

126) βˆ’

3

7

=11

21βˆ’

3

7

=11 βˆ’ 3(3)

21

=𝟐

𝟐𝟏

Page 3: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 1b part (i)

Data Given

Employee is paid a basic wage of $9.50 per hour for a 40 hour week and one and a half times

this rate for overtime.

Calculate the basic weekly wage of one employee for a 40-hour work week

π΅π‘Žπ‘ π‘–π‘ π‘€π‘’π‘’π‘˜π‘™π‘¦ π‘€π‘Žπ‘”π‘’ = β„Žπ‘œπ‘’π‘Ÿπ‘™π‘¦ π‘Ÿπ‘Žπ‘‘π‘’ Γ—

π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ β„Žπ‘œπ‘’π‘Ÿπ‘  𝑖𝑛 π‘Ž π‘π‘Žπ‘ π‘–π‘ π‘€π‘œπ‘Ÿπ‘˜ π‘€π‘’π‘’π‘˜

= $9.50 Γ— 40

= $380 π‘π‘’π‘Ÿ π‘€π‘’π‘’π‘˜

Question 1b part (ii)

Calculate the overtime wage for an employee who worked 6 hours overtime

π‘‚π‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ π‘…π‘Žπ‘‘π‘’ = 1.5 Γ— $9.50

= $14.25 π‘π‘’π‘Ÿ π‘œπ‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ β„Žπ‘œπ‘’π‘Ÿ

π‘‚π‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ π‘€π‘Žπ‘”π‘’ π‘“π‘œπ‘Ÿ 6 β„Žπ‘œπ‘’π‘Ÿπ‘  = $14.25 Γ— 6

= $85.50

Question 1b part (iii)

Data Given

A total of $12 084.00 in basic and overtime wages were paid to 30 employees by the company in

a certain week.

Calculate the total paid in overtime wages

π΅π‘Žπ‘ π‘–π‘ π‘€π‘Žπ‘”π‘’ π‘œπ‘“ 30 π‘’π‘šπ‘π‘™π‘œπ‘¦π‘’π‘’π‘  π‘“π‘œπ‘Ÿ π‘Ž 40 β„Žπ‘œπ‘’π‘Ÿ π‘€π‘œπ‘Ÿπ‘˜ π‘€π‘’π‘’π‘˜

Page 4: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

= π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘’π‘šπ‘π‘™π‘œπ‘¦π‘’π‘’π‘  Γ— π‘π‘Žπ‘ π‘–π‘ π‘€π‘’π‘’π‘˜π‘™π‘¦ π‘€π‘Žπ‘”π‘’

= 30 Γ— $380

= $11, 400

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Žπ‘”π‘’π‘  π‘π‘Žπ‘–π‘‘ = $12,084 (𝐺𝑖𝑣𝑒𝑛 π·π‘Žπ‘‘π‘Ž)

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘Žπ‘–π‘‘ 𝑖𝑛 π‘œπ‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ π‘€π‘Žπ‘”π‘’π‘ 

= π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Žπ‘”π‘’π‘  π‘π‘Žπ‘–π‘‘ βˆ’ π΅π‘Žπ‘ π‘–π‘ π‘€π‘Žπ‘”π‘’ π‘œπ‘“ 30 π‘’π‘šπ‘π‘™π‘œπ‘¦π‘’π‘’π‘  π‘“π‘œπ‘Ÿ π‘Ž 40 β„Žπ‘œπ‘’π‘Ÿ π‘€π‘œπ‘Ÿπ‘˜ π‘€π‘’π‘’π‘˜

= $12,084 βˆ’ $11, 400

= $12,084 βˆ’ $11, 400

= $684.00

Question 1b part (iv)

Calculate the total number of overtime hours worked by employees

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘œπ‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ β„Žπ‘œπ‘’π‘Ÿπ‘  π‘€π‘œπ‘Ÿπ‘˜π‘’π‘‘ 𝑏𝑦 π‘’π‘šπ‘π‘™π‘œπ‘¦π‘’π‘’π‘  = π‘‡π‘œπ‘‘π‘Žπ‘™ π‘π‘Žπ‘–π‘‘ 𝑖𝑛 π‘œπ‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ π‘€π‘Žπ‘”π‘’π‘ 

π‘‚π‘£π‘’π‘Ÿπ‘‘π‘–π‘šπ‘’ π‘…π‘Žπ‘‘π‘’

= $684.00

$14.25 π‘π‘’π‘Ÿ β„Žπ‘œπ‘’π‘Ÿ

= 48 β„Žπ‘œπ‘’π‘Ÿπ‘ 

Page 5: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 2a

Simplify 2π‘₯

5βˆ’

π‘₯

3

2π‘₯

5βˆ’

π‘₯

3

= 3(2π‘₯) βˆ’ 5(π‘₯)

15

= 6π‘₯ βˆ’ 5π‘₯

15

= π‘₯

15

Question 2b

Factorise π‘Ž2𝑏 + 2π‘Žπ‘

π‘Ž2𝑏 + 2π‘Žπ‘

= π‘Žπ‘(π‘Ž + 2)

Question 2c

Express p as the subject of the formula π‘ž =𝑝2βˆ’π‘Ÿ

𝑑

π‘ž

1 =

𝑝2βˆ’π‘Ÿ

𝑑

π‘žπ‘‘ = (𝑝2 βˆ’ π‘Ÿ) (1)

𝑝2 = π‘žπ‘‘ + π‘Ÿ

𝑝 = βˆšπ‘žπ‘‘ + π‘Ÿ

Page 6: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 2d part (i)

Data Given

Type of Box Number of Donuts per Box

Small box x

Large Box 2x + 3

In total 8 small boxes and 5 large boxes were sold.

Write an expression in terms of x to represent the Total number of donuts sold.

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  π‘ π‘œπ‘™π‘‘ = π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘ π‘šπ‘Žπ‘™π‘™ π‘π‘œπ‘₯𝑒𝑠 π‘ π‘œπ‘™π‘‘ + π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ 𝑏𝑖𝑔 π‘π‘œπ‘₯𝑒𝑠 π‘ π‘œπ‘™π‘‘

= 8(π‘₯) + 5(2π‘₯ + 3)

= 8π‘₯ + 10π‘₯ + 15

= 18π‘₯ + 15

Question 2d part (ii)

Data Given

The total number of donuts sold was 195.

(a) Calculate the number of donuts in a small box

Page 7: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  π‘ π‘œπ‘™π‘‘ = 18π‘₯ + 15

195 = 18π‘₯ + 15

18π‘₯ = 195 βˆ’ 15

18π‘₯ = 180

π‘₯ = 10

π΅π‘Žπ‘ π‘’π‘‘ π‘œπ‘› 𝑔𝑖𝑣𝑒𝑛 π‘‘π‘Žπ‘‘π‘Ž: π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  𝑖𝑛 π‘ π‘šπ‘Žπ‘™π‘™ π‘π‘œπ‘₯ = π‘₯

∴ π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  𝑖𝑛 π‘ π‘šπ‘Žπ‘™π‘™ π‘π‘œπ‘₯ = 10

(b) Calculate the number of donuts in a large box

π΅π‘Žπ‘ π‘’π‘‘ π‘œπ‘› 𝑔𝑖𝑣𝑒𝑛 π‘‘π‘Žπ‘‘π‘Ž: π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  𝑖𝑛 π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘π‘œπ‘₯ = 2π‘₯ + 3

∴ π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘‘π‘œπ‘›π‘’π‘‘π‘  𝑖𝑛 π‘™π‘Žπ‘Ÿπ‘”π‘’ π‘π‘œπ‘₯ = 2(10) + 3

= 23

Page 8: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Simplify 7 𝑝5π‘ž3 Γ— 2 𝑝2π‘ž

= 7 Γ— 2 Γ— 𝑝5+2 Γ— π‘ž3+1

= 14 𝑝7π‘ž4

Data Given

One carton of milk measures 6 cm by 4 cm by 10 cm.

Calculate, in cm3, the volume of milk in a carton

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘œπ‘› = 𝐿 Γ— π‘Š Γ— 𝐻

= 6 Γ— 4 Γ— 10

= 240 π‘π‘š3

Data Given

For a recipe to make ice-cream 3 litres of milk are required.

Calculate the number of cartons of milk that should be bought to make the ice-cream

1 π‘™π‘–π‘‘π‘Ÿπ‘’ = 1000 π‘π‘š3

3 π‘™π‘–π‘‘π‘Ÿπ‘’π‘  π‘œπ‘“ π‘šπ‘–π‘™π‘˜ = 3 Γ— 1000

Question 3a

Question 3b part (i)

Question 3b part (ii)

Page 9: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

= 3000 π‘π‘š3 π‘œπ‘“ π‘šπ‘–π‘™π‘˜

π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘Žπ‘Ÿπ‘‘π‘œπ‘›π‘  π‘œπ‘“ π‘šπ‘–π‘™π‘˜ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ = π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘Ž π‘π‘Žπ‘Ÿπ‘‘π‘œπ‘›

= 3000 π‘π‘š3

240 π‘π‘š3

= 12.5

Therefore 13 cartons of milk should be purchased make the ice βˆ’ cream according to its recipe.

Data Given

One carton of milk is poured into a cylindrical cup of internal diameter 5 cm.

πœ‹ = 3.14

Calculate the height of milk in the cup

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘œπ‘›π‘’ π‘π‘Žπ‘Ÿπ‘‘π‘œπ‘› = π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝑐𝑒𝑝

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝑐𝑒𝑝 = πœ‹π‘Ÿ2β„Ž

Where π‘Ÿ = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ 𝑐𝑒𝑝

β„Ž = β„Žπ‘’π‘–π‘”β„Žπ‘‘ π‘œπ‘“ π‘‘β„Žπ‘’ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝑐𝑒𝑝

π‘Ÿ = π‘–π‘›π‘‘π‘’π‘Ÿπ‘›π‘Žπ‘™ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘‘β„Žπ‘’ 𝑐𝑒𝑝

2

= 5 π‘π‘š

2

= 2.5 π‘π‘š

Question 3b part (iii)

Page 10: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ π‘šπ‘–π‘™π‘˜ 𝑖𝑛 π‘‘β„Žπ‘’ 𝑐𝑒𝑝 = πœ‹π‘Ÿ2β„Ž

240 π‘π‘š3 = (3.14) Γ— (2.5 π‘π‘š)2 Γ— β„Ž

β„Ž =240

(3.14) Γ— (2.5 )2

β„Ž = 12.23 π‘π‘š

𝒉 = 𝟏𝟐. 𝟐 π’„π’Ž 𝒕𝒐 πŸ‘ π’”π’Šπ’ˆπ’π’Šπ’‡π’Šπ’„π’‚π’π’• π’‡π’Šπ’ˆπ’–π’“π’†π’”

Page 11: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 4a part (i)

Data Given

π‘ˆ = {π‘Šβ„Žπ‘œπ‘™π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘“π‘Ÿπ‘œπ‘š 1 π‘‘π‘œ 12}

𝐻 = {𝑂𝑑𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  𝑏𝑒𝑑𝑀𝑒𝑒𝑛 4 π‘Žπ‘›π‘‘ 12}

𝐽 = {π‘ƒπ‘Ÿπ‘–π‘šπ‘’ π‘π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘“π‘Ÿπ‘œπ‘š 1 π‘‘π‘œ 12}

List the members of 𝐻

𝐻 = {𝑂𝑑𝑑 π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  𝑏𝑒𝑑𝑀𝑒𝑒𝑛 4 π‘Žπ‘›π‘‘ 12}

= {5, 7, 9, 11}

Question 4a part (ii)

List the members of 𝐽

𝐽 = { π‘ƒπ‘Ÿπ‘–π‘šπ‘’ π‘π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘“π‘Ÿπ‘œπ‘š 1 π‘‘π‘œ 12}

= {2, 3, 5, 7, 11}

Page 12: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 4a part (iii)

Draw a Venn diagram to represent π‘ˆ,𝐻 and 𝐽

Question 4b part (i)

Construct a triangle LMN with angle 𝐿𝑀𝑁 = 60Β° ,𝑀𝑁 = 9 π‘π‘š π‘Žπ‘›π‘‘ 𝐿𝑀 = 7 π‘π‘š

Page 13: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 4b part (ii)

Measure and state the size of 𝑀�̂�𝐿

Using a protractor 𝑀�̂�𝐿 was found to be 48Β°.

Question 4b part (iii)

Show the point, K, such that KLMN is a parallelogram

Since the opposite sides of a parallelogram are equivalent in length;

𝑀𝐿 = 𝑁𝐾 = 7 π‘π‘š

𝑀𝑁 = 𝐿𝐾 = 9 π‘π‘š

Page 14: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 5a (i)

Data Given

Equation of a straight line is 3𝑦 = 2π‘₯ βˆ’ 6

Determine the gradient of the line

3𝑦 = 2π‘₯ βˆ’ 6

In the form 𝑦 = π‘šπ‘₯ + 𝑐, where the gradient of the line is given by β€œm”.

𝑦 =2

3π‘₯ βˆ’ 2

πΊπ‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ (π‘š1) = 2

3

Question 5a (ii)

Determine the equation of the line perpendicular to 3𝑦 = 2π‘₯ βˆ’ 6 that passes through the point

(4, 7)

πΊπ‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘ π‘œπ‘“ 𝐿𝑖𝑛𝑒 = π‘š2

π‘š1 Γ— π‘š2 = βˆ’1 ; 𝑠𝑖𝑛𝑐𝑒 π‘‘β„Žπ‘’ 𝑙𝑖𝑛𝑒𝑠 π‘Žπ‘Ÿπ‘’ π‘π‘’π‘Ÿπ‘π‘’π‘›π‘‘π‘–π‘π‘’π‘™π‘Žπ‘Ÿ

π‘š2 = βˆ’1

π‘š1

= βˆ’1

23

= βˆ’3

2

πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ 𝐿𝑖𝑛𝑒: (𝑦 βˆ’ 𝑦1) = π‘š (π‘₯ βˆ’ π‘₯1)

(𝑦 βˆ’ 7) = βˆ’3

2 (π‘₯ βˆ’ 4)

Page 15: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

(𝑦 βˆ’ 7) = βˆ’3

2 π‘₯ +

12

2

2𝑦 βˆ’ 14 = βˆ’3 π‘₯ + 12

2𝑦 = βˆ’3 π‘₯ + 26

Question 5b part (i)

Data Given: Diagram showing 𝑓: π‘₯ β†’ π‘₯2 βˆ’ π‘˜ where π‘₯ πœ– {3, 4, 5, 6, 7, 8, 9, 10}

Calculate the value of π‘˜

Using the data given where 4 is mapped onto 11.

π‘₯2 βˆ’ π‘˜ = 11

π‘˜ = π‘₯2 βˆ’ 11

π‘˜ = (4)2 βˆ’ 11

π‘˜ = 16 βˆ’ 11

π‘˜ = 5

Page 16: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 5b part (ii)

Calculate the value of 𝑓(3)

𝑓(π‘₯) = π‘₯2 βˆ’ π‘˜

Substituting π‘₯ = 3 and π‘˜ = 5 gives

𝑓(3) = (3)2 βˆ’ 5

𝑓(3) = 9 βˆ’ 5

= 4

Question 5b part (iii)

Calculate the value of π‘₯ when 𝑓(π‘₯) = 95

𝑓(π‘₯) = π‘₯2 βˆ’ π‘˜

π‘₯2 βˆ’ π‘˜ = 95

π‘₯2 = 95 + π‘˜

π‘₯2 = 95 + 5

π‘₯2 = 100

π‘₯ = √100

π‘₯ = Β±10

Based on given data the value of x would be 10 when f(x) = 95.

Page 17: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 6 part (i)

Data Given: Line graph showing the monthly sales, in thousands of dollars, at a school cafeteria

for the period January to May 2010.

Copy and complete the table

Month Jan Feb Mar Apr May

Sales in

$Thousands

38 35 27 15 10

Question 6 (ii)

Find the two months in between which there was the greatest decrease in sales

π·π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π½π‘Žπ‘› π‘Žπ‘›π‘‘ 𝐹𝑒𝑏 = $38,000 βˆ’ $35,000

= $3,000

π·π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 𝐹𝑒𝑏 π‘Žπ‘›π‘‘ π‘€π‘Žπ‘Ÿ = $35,000 βˆ’ $27,000

= $8,000

π·π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘€π‘Žπ‘Ÿ π‘Žπ‘›π‘‘ π΄π‘π‘Ÿ = $27,000 βˆ’ $15,000

= $12,000

π·π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π΄π‘π‘Ÿ π‘Žπ‘›π‘‘ π‘€π‘Žπ‘¦ = $15,000 βˆ’ $10,000

= $5,000

∴ π‘‡β„Žπ‘’ π‘™π‘Žπ‘Ÿπ‘”π‘’π‘ π‘‘ π‘‘π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘’ π‘œπ‘π‘π‘’π‘Ÿπ‘’π‘‘ 𝑏𝑒𝑑𝑀𝑒𝑒𝑛 π‘‘β„Žπ‘’ π‘šπ‘œπ‘›π‘‘β„Žπ‘  π‘œπ‘“ π‘€π‘Žπ‘Ÿπ‘β„Ž π‘Žπ‘›π‘‘ π΄π‘π‘Ÿπ‘–π‘™.

Page 18: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 6 part (iii)

Calculate the mean monthly sales for the period January to May 2011

π‘‡π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘›π‘‘β„Žπ‘™π‘¦ π‘ π‘Žπ‘™π‘’π‘  π‘“π‘Ÿπ‘œπ‘š Jan to May = $ (38,000 + 35,000 + 27,000 + 15,000 + 10,000)

= $125,000

π‘€π‘’π‘Žπ‘› π‘šπ‘œπ‘›π‘‘β„Žπ‘™π‘¦ π‘ π‘Žπ‘™π‘’π‘  π‘“π‘Ÿπ‘œπ‘š Jan to May = π‘‡π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘›π‘‘β„Žπ‘™π‘¦ π‘ π‘Žπ‘™π‘’π‘  π‘“π‘Ÿπ‘œπ‘š Jan to May

π‘π‘’π‘šπ‘π‘’π‘Ÿ π‘œπ‘“ π‘šπ‘œπ‘›π‘‘β„Žπ‘ 

= $125,000

5

= $25,000

Question 6 part(iv)

Data Given: Total sales for the period January to June was $150,000.

Calculate the sales for the month of June

π‘†π‘Žπ‘™π‘’π‘  π‘“π‘œπ‘Ÿ π‘‘β„Žπ‘’ π‘šπ‘œπ‘›π‘‘β„Ž π‘œπ‘“ 𝐽𝑒𝑛𝑒 = π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘Žπ‘™π‘’π‘  π‘“π‘œπ‘Ÿ π½π‘Žπ‘› π‘‘π‘œ 𝐽𝑒𝑛𝑒 βˆ’ π‘‡π‘œπ‘‘π‘Žπ‘™ π‘ π‘Žπ‘™π‘’π‘  π‘“π‘Ÿπ‘œπ‘š π½π‘Žπ‘› π‘‘π‘œ π‘€π‘Žπ‘¦

= $ (150,000 βˆ’ 125,000)

= $25,000

Question 6 part(v)

Comment on the sales in June compared to the sales for the months January to May

The sales showed an increase when compared to the two previous months; April and May.

The sales were equivalent to the mean monthly sales for the period January to May 2010.

The month of June sales was the only month that displayed an increase since January.

Page 19: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 7 (i)

Data Given: Diagram showing the triangle RST and its transformation R’S’T’ after undergoing a

transformation.

Write the coordinates of R and R’

πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ 𝑅 = (2, 4)

πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ 𝑅′ = (2, 0)

Question 7 (ii)

Describe the transformation which maps triangle RST onto triangle R'S'T'

If the line y = 2 is drawn, it can be seen the vertices of RST and R’S’T’ are located the same

distance away from the line on opposite sides.

RST and R’S’T’ are also identical and R’S’T’ is a lateral inversion of RST.

Therefore the triangle RST was reflected along the line y = 2 to give the triangle R’S’T’.

Question 7 (iii) part (a)

Data Given: RST undergoes an enlargement, centre (0, 4), scale factor, 3.

Draw triangle R’’S’’T’’, the image of triangle RST under the enlargement

For the enlargement; centre C = (0, 4)

πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ 𝑅′′ = 3 Γ— 𝐢𝑅

= [(3 Γ— 2), (3 Γ— 0 + 4)]

= (6, 4)

πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ 𝑆′′ = 3 Γ— 𝐢𝑆

= [(3 Γ— 3), (3(7 βˆ’ 4) + 4)]

= (9, 13)

Page 20: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

πΆπ‘œπ‘œπ‘Ÿπ‘‘π‘–π‘›π‘Žπ‘‘π‘’π‘  π‘œπ‘“ 𝑇′′ = 3 Γ— 𝐢𝑇

= [(3 Γ— 5), (3(1) + 4)]

= (15, 7)

Page 21: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 7 (iii) part b

Data Given: Area of triangle RST = 4 square units

Calculate the area of triangle R’’S’’T’’

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ 𝑅’’𝑆’’𝑇’’ = (π‘ π‘π‘Žπ‘™π‘’ π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿ )2 Γ— π‘Žπ‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘‘π‘Ÿπ‘–π‘Žπ‘›π‘”π‘™π‘’ 𝑅𝑆𝑇

= (3 )2 Γ— 4

= 36 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠

Question 7 (iii) part c

State two geometrical relationships between triangles RST and R’’S’’T’’

Triangles RST and R’’S’’T’’ similar where RST is the object and R’’S’’T’’ is an enlargement of the

object.

Regarding the sides of RST and R’’S’’T’’:

𝑅′′𝑆′′

𝑅𝑆=

𝑆′′𝑇′′

𝑆𝑇=

𝑅′′𝑇′′

𝑅𝑇= 3 which is the scale factor

Page 22: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 8a part (i)

Data Given: An answer sheet showing a rectangle, A, of area 20 square units and perimeter 24

units.

Draw and label

(a) rectangle B of area 27 square units and perimeter 24 units

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 𝑙 Γ— 𝑀 = 27 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠

π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 2𝑙 + 2𝑀 = 24 𝑒𝑛𝑖𝑑𝑠

𝑙 Γ— 𝑀 = 27 ………………. Equation 1

2𝑙 + 2𝑀 = 24 .………….. Equation 2

From Equation 2

𝑙 = 12 βˆ’ 𝑀………………Equation 3

Substituting Equation 3 into Equation 1

(12 βˆ’ 𝑀)𝑀 = 27

𝑀2 βˆ’ 12𝑀 + 27 = 0

(𝑀 βˆ’ 9)(𝑀 βˆ’ 3) = 0

∴ 𝑀 = 9 π‘œπ‘Ÿ 𝑀 = 3

Taking w=3;

𝑙 = 12 βˆ’ 𝑀

𝑙 = 12 βˆ’ 3 = 9

Therefore for Rectangle B; length = 9 units and width = 3 units

Page 23: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

(b) rectangle C of area 32 square units and perimeter 24 units

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 𝑙 Γ— 𝑀 = 32 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠

π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 2𝑙 + 2𝑀 = 24 𝑒𝑛𝑖𝑑𝑠

𝑙 Γ— 𝑀 = 32 ………………. Equation 1

2𝑙 + 2𝑀 = 24 .………….. Equation 2

From Equation 2

𝑙 = 12 βˆ’ 𝑀………………Equation 3

Substituting Equation 3 into Equation 1

(12 βˆ’ 𝑀)𝑀 = 32

𝑀2 βˆ’ 12𝑀 + 32 = 0

(𝑀 βˆ’ 8)(𝑀 βˆ’ 4) = 0

∴ 𝑀 = 8 π‘œπ‘Ÿ 𝑀 = 4

Taking w=4;

𝑙 = 12 βˆ’ 𝑀

𝑙 = 12 βˆ’ 4 = 8

Therefore for Rectangle B; length = 8 units and width = 4 units

Page 24: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 8a part (ii)

Complete the table to show the dimensions of Rectangles B and C

Rectangle Length Width Area

(square units)

Perimeter

(units)

A 10 2 20 24

B 9 3 27 24

C 8 4 32 24

D

E

Page 25: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Data Given

Rectangle D has a perimeter of 24 cm, with length, 𝑙, and width, 𝑀.

Determine the values of 𝑙 and 𝑀 for the area of the rectangle D to be as large as possible

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’, 𝐴 = 𝑙 Γ— 𝑀

π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 2𝑙 + 2𝑀 = 24 𝑒𝑛𝑖𝑑𝑠

𝐴 = 𝑙 Γ— 𝑀 ………………. Equation 1

2𝑙 + 2𝑀 = 24 .………….. Equation 2

From Equation 2

𝑙 = 12 βˆ’ 𝑀………………Equation 3

Substituting Equation 3 into Equation 1

𝐴 = (12 βˆ’ 𝑀) Γ— 𝑀

𝐴 = 12𝑀 βˆ’ 𝑀2

At Maximum

𝑑𝐴

𝑑𝑀= 0

12 βˆ’ 2𝑀 = 0

2𝑀 = 12

𝑀 = 6

When w = 6;

𝑙 = 12 βˆ’ 𝑀

= 12 βˆ’ 6

Question 8b

Page 26: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

= 6

Since the maximum area occurs at l = 6 and w = 6 rectangle D is actually a square.

π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π΄π‘Ÿπ‘’π‘Ž = 𝑆 Γ— 𝑆

= 6 Γ— 6

= 36 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠

Question 8c

Data Given

Rectangle E has a perimeter of 36 cm, with length, 𝑙, and width, 𝑀.

Determine the values of 𝑙 and 𝑀 for the area of the rectangle E to be as large as possible For rectangle E to have a maximum value then it is also a square. Therefore 𝑙 = 𝑀 = 𝑆

π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘Ÿπ‘’π‘π‘‘π‘Žπ‘›π‘”π‘™π‘’ = 4𝑀 = 36 𝑒𝑛𝑖𝑑𝑠

𝑀 = 9 𝑒𝑛𝑖𝑑𝑠

𝑙 = 9 𝑒𝑛𝑖𝑑𝑠

π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π΄π‘Ÿπ‘’π‘Ž = 𝑆 Γ— 𝑆

= 9 Γ— 9

= 81 π‘ π‘žπ‘’π‘Žπ‘Ÿπ‘’ 𝑒𝑛𝑖𝑑𝑠

Rectangle Length Width Area

(square units)

Perimeter

(units)

A 10 2 20 24

B 9 3 27 24

Page 27: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

C 8 4 32 24

D 6 6 36 24

E 9 9 81 36

Page 28: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 9a part (i)

Data Given

𝑓(π‘₯) = 2π‘₯ βˆ’ 7

π‘₯ π‘Žπ‘›π‘‘ 𝑔(π‘₯) = √π‘₯ + 3

Evaluate 𝑓(5)

𝑓(π‘₯) = 2π‘₯ βˆ’ 7

π‘₯

𝑓(5) = 2(5) βˆ’ 7

5

= 3

5

Question 9a part (ii)

(a) Write an expression in terms of x for π‘“βˆ’1(π‘₯)

𝐿𝑒𝑑 𝑦 = 𝑓(π‘₯)

𝑦 =2π‘₯ βˆ’ 7

π‘₯

π‘†π‘€π‘–π‘‘π‘β„Ž π‘₯ π‘Žπ‘›π‘‘ 𝑦

π‘₯ = 2𝑦 βˆ’ 7

𝑦

π‘₯𝑦 = 2𝑦 βˆ’ 7

2𝑦 βˆ’ π‘₯𝑦 = 7

𝑦(2 βˆ’ π‘₯) = 7

𝑦 = 7

2 βˆ’ π‘₯

Page 29: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

∴ π‘“βˆ’1(π‘₯) = 7

2βˆ’π‘₯, π‘₯ β‰  2

(b) Write an expression in terms of π‘₯ for 𝑔𝑓(π‘₯)

Replacing π‘₯ in 𝑔(π‘₯ ) with 𝑓(π‘₯)

𝑔𝑓(π‘₯) = √2π‘₯ βˆ’ 7

π‘₯+ 3

= √2π‘₯ βˆ’ 7

π‘₯+

3

π‘₯

= √2π‘₯ βˆ’ 7 + 3π‘₯

π‘₯

= √5π‘₯ βˆ’ 7

π‘₯

= √5 βˆ’7

π‘₯ , π‘₯ β‰  0

Question 9b part (i)

Express the quadratic function 1 βˆ’ 6π‘₯ βˆ’ π‘₯2, in the form π‘˜ βˆ’ π‘Ž(π‘₯ + β„Ž)2

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ π‘˜ βˆ’ π‘Ž(π‘₯ + β„Ž)2

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ π‘˜ βˆ’ [π‘Ž (π‘₯ + β„Ž)(π‘₯ + β„Ž)]

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ π‘˜ βˆ’ [π‘Ž (π‘₯2 + 2β„Žπ‘₯ + β„Ž2)]

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ π‘˜ βˆ’ π‘Žπ‘₯2 βˆ’ 2π‘Žβ„Žπ‘₯ βˆ’ π‘Žβ„Ž2

Equating coefficients

Page 30: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘₯2; βˆ’π‘Ž = βˆ’1

π‘Ž = 11

π‘₯; βˆ’2π‘Žβ„Ž = βˆ’6

βˆ’2(1)β„Ž = βˆ’6

βˆ’2β„Ž = βˆ’6

β„Ž = 3

π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘; π‘˜ βˆ’ π‘Žβ„Ž2 = 1

π‘˜ βˆ’ (1)(3)2 = 1

π‘˜ βˆ’ 9 = 1

π‘˜ = 10

∴ 1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ 10 βˆ’ (π‘₯ + 3)2 in the form π‘˜ βˆ’ π‘Ž(π‘₯ + β„Ž)2 where π‘˜ = 10, π‘Ž = 1 π‘Žπ‘›π‘‘ β„Ž = 3.

Question 9b part (ii)

(a) State the maximum value of 1 βˆ’ 6π‘₯ βˆ’ π‘₯2

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ 10 βˆ’ (π‘₯ + 3)2

π‘€π‘Žπ‘₯π‘–π‘šπ‘’π‘š π‘£π‘Žπ‘™π‘’π‘’ π‘œπ‘“ 1 βˆ’ 6π‘₯ βˆ’ π‘₯2 = 10 βˆ’ 0

= 10

Page 31: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

(b) State the equation of the axis of symmetry

𝐿𝑒𝑑 𝑦 = 1 βˆ’ 6π‘₯ βˆ’ π‘₯2

Rearranging gives

𝑦 = βˆ’π‘₯2 βˆ’ 6π‘₯ + 1 π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š 𝑦 = π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐

πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘Žπ‘₯𝑖𝑠 π‘œπ‘“ π‘ π‘¦π‘šπ‘šπ‘’π‘‘π‘Ÿπ‘¦; π‘₯ = βˆ’π‘

2π‘Ž

= βˆ’(βˆ’6)

2(βˆ’1)

= 6

βˆ’2

= βˆ’3

πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› π‘œπ‘“ π‘‘β„Žπ‘’ π‘Žπ‘₯𝑖𝑠 π‘œπ‘“ π‘ π‘¦π‘šπ‘šπ‘’π‘‘π‘Ÿπ‘¦ 𝑖𝑠 π‘₯ = βˆ’3

Question 9b part (iii)

Determine the roots of 1 βˆ’ 6π‘₯ βˆ’ π‘₯2

1 βˆ’ 6π‘₯ βˆ’ π‘₯2 = 0

π‘…π‘’π‘π‘Žπ‘™π‘™ 1 βˆ’ 6π‘₯ βˆ’ π‘₯2 ≑ 10 βˆ’ (π‘₯ + 3)2

10 βˆ’ (π‘₯ + 3)2 = 0

(π‘₯ + 3)2 = 10

π‘₯ + 3 = ±√10

π‘₯ = ±√10 βˆ’ 3

π‘₯ = +√10 βˆ’ 3 π‘œπ‘Ÿ π‘₯ = βˆ’βˆš10 βˆ’ 3

Page 32: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘₯ = 3.162 βˆ’ 3 π‘œπ‘Ÿ π‘₯ = βˆ’3.162 βˆ’ 3

π‘₯ = 0.162 π‘œπ‘Ÿ π‘₯ = βˆ’6.162

π‘₯ = 0.16 π‘œπ‘Ÿ βˆ’ 6.16 𝒕𝒐 𝟐 π’…π’†π’„π’Šπ’Žπ’‚π’ 𝒑𝒍𝒂𝒄𝒆𝒔

Page 33: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 10a part (i)

Data Given

Calculate < 𝑂𝐺𝐹

Triangle OGF is an isosceles triangle since the radius of a circle is constant;

πΏπ‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑂𝐺 = πΏπ‘’π‘›π‘”π‘‘β„Ž π‘œπ‘“ 𝑂𝐹 = π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘–π‘Ÿπ‘π‘™π‘’

Therefore the base angles would be equivalent;

𝑂�̂�𝐹 = 𝑂�̂�𝐺

=180Β° βˆ’ 118Β°

2 since the total sum of angles in a triangle = 180Β°

=62Β°

2

= 31Β°

Question 10a part (ii)

Calculate < 𝐷𝐸𝐹

SGH is a tangent to the circle so an angle of 90Β° is created where it comes into contact with the

circle.

Page 34: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Based on the given diagram; 𝑂𝐺𝑆 = 90Β°

𝑂𝐺𝐷 = 𝑂𝐺𝑆 βˆ’ 65Β°

𝑂𝐺𝐷 = 90Β° βˆ’ 65Β°

= 25Β°

𝐷𝐺𝐹 = 𝑂𝐺𝐷 + 𝑂𝐺𝐹

𝐷𝐺𝐹 = 25° + 31°

= 56Β°

𝐷�̂�𝐹 = 180Β° βˆ’ 𝐷𝐺𝐹

𝐷�̂�𝐹 = 180Β° βˆ’ 56Β°

= 124Β°

Question 10b part (i)

Data Given

J, K and L are three sea ports.

A ship began its journey at L, sailed to K, then to L and returned to J.

The bearing of K from J is 54Β° and Z is due east of K.

𝐽𝐾 = 122 π‘˜π‘š and 𝐾𝐿 = 60 π‘˜π‘š

Page 35: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Draw a clearly labelled diagram to represent the data given

Question 10b part (ii)

(a) Calculate the measure of angle JKL

𝐽�̂�𝐿 = 90Β° + 54Β°

= 144Β°

(b) Calculate the distance JL

Applying cosine rule π‘Ž2 = 𝑏2 + 𝑐2 βˆ’ 2𝑏𝑐 cos𝐴

Page 36: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Where

π‘Ž = 𝐽𝐿, 𝑏 = 𝐽𝐾, 𝑐 = 𝐾𝐿 π‘Žπ‘›π‘‘ 𝐴 = 𝐽�̂�𝐿

π‘Ž2 = 𝑏2 + 𝑐2 βˆ’ 2𝑏𝑐 cos𝐴

𝐽𝐿2 = 𝐽𝐾2 + 𝐾𝐿2 βˆ’ 2 (𝐽𝐾)(𝐾𝐿) cos( 𝐽�̂�𝐿)

𝐽𝐿2 = (122)2 + (60)2 βˆ’ 2 (122)(60) cos( 144Β°)

𝐽𝐿2 = 14884 + 3600 βˆ’ (βˆ’11844)

𝐽𝐿2 = 30328

𝐽𝐿 = √30328

𝐽𝐿 = 174.149

Distance JL = 174. 15 to 2 decimal places

(c) Calculate the bearing of J from L

Applying sine rule to triangle JKL

π‘Ž

sin𝐴=

𝑏

sin𝐡

Where

π‘Ž = 𝐽𝐾, 𝐴 = 𝐾�̂�𝐽, 𝑏 = 𝐽𝐿 and 𝐡 = 𝐽�̂�𝐿

π‘Ž

sin𝐴=

𝑏

sin𝐡

𝐽𝐾

sin(𝐾�̂�𝐽)=

𝐽𝐿

sin( 𝐽�̂�𝐿 )

Page 37: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

122

sin(𝐾�̂�𝐽)=

174.15

sin( 144Β° )

sin(𝐾�̂�𝐽) =122

174.15sin( 144Β° )

sin(𝐾�̂�𝐽) =122

296.282

𝐾�̂�𝐽 = sinβˆ’1 (122

296.282)

𝐾�̂�𝐽 = 24.31Β°

π΅π‘’π‘Žπ‘Ÿπ‘–π‘›π‘” π‘œπ‘“ 𝐽 π‘“π‘Ÿπ‘œπ‘š 𝐿 = 270Β° βˆ’ 𝐾�̂�𝐽

= 270Β° βˆ’ 24.31Β°

= 245.7Β°

Page 38: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Question 11a part (i)

Data Given

Under a matrix transformation 𝑀 = (π‘Ž 𝑏𝑐 𝑑

), the points V and W were mapped onto V’ and W’:

𝑉 (3, 5) β†’ 𝑉′(5,βˆ’3)

π‘Š (7, 2) β†’ 𝑉′(2,βˆ’7)

Determine the values of π‘Ž, 𝑏 , 𝑐 π‘Žπ‘›π‘‘ 𝑑

𝑀 Γ— 𝑉 = 𝑉′

(π‘Ž 𝑏𝑐 𝑑

) Γ— (35) = (

5βˆ’3

)

(3π‘Ž + 5𝑏3𝑐 + 5𝑑

) = ( 5βˆ’3

)

Equating terms gives

3π‘Ž + 5𝑏 = 5……………………… .πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 1

3𝑐 + 5𝑑 = βˆ’3…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 2

𝑀 Γ— π‘Š = π‘Šβ€²

(π‘Ž 𝑏𝑐 𝑑

) Γ— (72) = (

2βˆ’7

)

(7π‘Ž + 2𝑏7𝑐 + 2𝑑

) = ( 2βˆ’7

)

Equating terms gives

7π‘Ž + 2𝑏 = 2……………………… .πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 3

7𝑐 + 2𝑑 = βˆ’7…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 4

3π‘Ž + 5𝑏 = 5…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 1

7π‘Ž + 2𝑏 = 2…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 3

Page 39: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

Solving simultaneously

From Equation 1

π‘Ž =5βˆ’5𝑏

3

Substituting into Equation 3

7 (5 βˆ’ 5𝑏

3 ) + 2𝑏 = 2

35 βˆ’ 35𝑏

3+ 2𝑏 = 2

Multiplying throughout by 3

35 βˆ’ 35𝑏 + 6𝑏 = 6

βˆ’29𝑏 = βˆ’29

𝑏 = 1

π‘Ž =5 βˆ’ 5𝑏

3=

5 βˆ’ 5(1)

3= 0

3𝑐 + 5𝑑 = βˆ’3…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 2

7𝑐 + 2𝑑 = βˆ’7…… .… . . . . …… .β€¦πΈπ‘žπ‘’π‘Žπ‘‘π‘–π‘œπ‘› 4

Solving simultaneously

From Equation 2

𝑐 =βˆ’3βˆ’5𝑑

3

Substituting into Equation 4

7 (βˆ’3 βˆ’ 5𝑑

3 ) + 2𝑑 = βˆ’7

Page 40: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

βˆ’21 βˆ’ 35𝑑

3+ 2𝑑 = βˆ’7

Multiplying throughout by 3

βˆ’21 βˆ’ 35𝑑 + 6𝑑 = βˆ’21

βˆ’29𝑑 = 0

𝑑 = 0

𝑐 =βˆ’3 βˆ’ 5𝑑

3=

βˆ’3 βˆ’ 5(0)

3= βˆ’1

Therefore, 𝑀 = (π‘Ž 𝑏𝑐 𝑑

) = ( 0 1βˆ’1 0

)

Question 11a part (ii)

State the coordinates of Z such that 𝑍 (π‘₯, 𝑦) β†’ 𝑍′(5, 1) under the transformation, M

𝑍 (π‘₯, 𝑦) β†’ 𝑍′(5, 1)

( 0 1βˆ’1 0

) (π‘₯𝑦) = (

51)

( 0π‘₯ + 1π‘¦βˆ’1π‘₯ + 0𝑦

) = (51)

( π‘¦βˆ’π‘₯

) = (51)

Since the matrices are both 2 Γ— 1, we can equate terms

𝑦 = 5

βˆ’π‘₯ = 1

Page 41: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘₯ = βˆ’1

𝑍 (π‘₯, 𝑦) = (βˆ’1, 5).

Question 11a part (iii)

Describe the geometric transformation, M

The transformation matrix, 𝑀 = ( 0 1βˆ’1 0

) rotates the matrix it is applied to in a clockwise

manner about the origin O at an angle of 90Β°.

Question 11b part (i)

Data Given

𝑂𝑃⃗⃗⃗⃗ βƒ— and 𝑂𝑅⃗⃗⃗⃗ βƒ— are position vectors with respect to the origin,𝑂.

Point, P = (2, 7) and 𝑃𝑅⃗⃗⃗⃗ βƒ—βƒ— = ( 4βˆ’3

)

(a) Write 𝑂𝑃⃗⃗ βƒ—βƒ— βƒ—βƒ— 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š (π‘Žπ‘)

Point, P = (2, 7)

Hence

𝑂𝑃⃗⃗ βƒ—βƒ— βƒ—βƒ— = (27)

π‘Šβ„Žπ‘–π‘β„Ž 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š (π‘Žπ‘) π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž = 2 π‘Žπ‘›π‘‘ 𝑏 = 7.

(b) Write 𝑂𝑅⃗⃗ βƒ—βƒ— βƒ—βƒ— 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š (π‘Žπ‘)

𝑂𝑅⃗⃗ βƒ—βƒ— βƒ—βƒ— = 𝑂𝑃⃗⃗ βƒ—βƒ— βƒ—βƒ— + 𝑃𝑅⃗⃗⃗⃗ βƒ—βƒ—

𝑂𝑅⃗⃗⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— = (27) + (

4βˆ’3

)

= (64)

Page 42: Solutions to CSEC Maths P2 January 2011

www.kerwinspringer.com

Whatsapp +1868 784 0619 to register for premium online classes @ The Student Hub

π‘Šβ„Žπ‘–π‘β„Ž 𝑖𝑠 𝑖𝑛 π‘‘β„Žπ‘’ π‘“π‘œπ‘Ÿπ‘š (π‘Žπ‘) π‘€β„Žπ‘’π‘Ÿπ‘’ π‘Ž = 6 π‘Žπ‘›π‘‘ 𝑏 = 4.

Question 11b part (ii)

Data Given

Point, 𝑆 = (14,βˆ’2)

(a) Find 𝑅𝑆⃗⃗⃗⃗⃗⃗

𝑆 = (14,βˆ’2)

𝑂𝑆⃗⃗⃗⃗ βƒ— = ( 14βˆ’2

)

𝑅𝑆⃗⃗⃗⃗⃗⃗ = 𝑅𝑂⃗⃗⃗⃗ βƒ— + 𝑂𝑆⃗⃗⃗⃗⃗⃗

𝑂𝑅⃗⃗ βƒ—βƒ— βƒ— = βˆ’ (64) + (

14βˆ’2

)

= ( 8βˆ’6

)

(b) Show P, R and S are collinear.

𝑃𝑆⃗⃗ βƒ—βƒ— = 𝑃𝑅⃗⃗⃗⃗ βƒ—βƒ— + 𝑅𝑆⃗⃗⃗⃗⃗⃗

R is a common point as 𝑃𝑅⃗⃗⃗⃗ βƒ— π‘Žπ‘›π‘‘ 𝑅𝑆⃗⃗⃗⃗ βƒ— are parallel to each other and will lie on the line PS.

Using 𝑃𝑅⃗⃗⃗⃗ βƒ— π‘Žπ‘›π‘‘ 𝑅𝑆⃗⃗⃗⃗ βƒ— ; in order for the points to be collinear

𝑃𝑅⃗⃗⃗⃗ βƒ— = 𝐀 (𝑅𝑆⃗⃗⃗⃗ βƒ—) π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ 𝑖𝑠 π‘Ž π‘ π‘π‘Žπ‘™π‘Žπ‘Ÿ π‘šπ‘’π‘™π‘‘π‘–π‘π‘™π‘’

𝑃𝑅⃗⃗⃗⃗ βƒ—βƒ— = ( 4βˆ’3

)

𝑅𝑆⃗⃗⃗⃗⃗⃗ = ( 8βˆ’6

) = 2 ( 4βˆ’3

) π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜ = 2

Therefore P, R and S are collinear.