19
Lesson 13 Solving Definite Integrals

Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Embed Size (px)

Citation preview

Page 1: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Lesson 13

Solving Definite Integrals

Page 2: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

How to find antiderivatives

We have three methods:

1. Basic formulas

2. Algebraic simplification

3. Substitution

Page 3: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Basic Formulas

If f(x) is… …then an antiderivative is…

xn

1

n+1xn+1 except if n = –1

k kx (assuming the variable is x!)cos(kx) sin(kx)/ksin(kx) –cos(kx)/kekx ekx /k

1

x

ln x

ax ax /ln(a)

Page 4: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Algebraic Simplification2 31

3( 1)( 1) 1x x dx x dx x x C! + = ! = ! +" "

212

(1 )1

x xdx x dx x x C

x

+= + = + +! !

2x x

dxx

+=!

2 3 2 3 29 6

3 29 6 1 3 3x x dx x x x C x x x C+ + = + + + = + + +!

( )2

3 1x dx+ =!

Page 5: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Integrals by SubstitutionStart with

Let u = g(x).du

du

dx= ! g (x) so

du = ! g (x)dx

Let u =?

x sin x2( )! dx

2 2 21 1 1sin( ) sin( )2 sin( ) cos( )

2 2 2x x dx x x dx u du x C= = = ! +" " "

u = x2 ! du = 2xdx

Page 6: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Problem 1 Use basic formulas:

Antiderivative Practice

2sin(3t) ! e4 t + 4tdt"

z2

+ 2z

z2! dz

6t

4 + t2! dt

Problem 2 Simplify algebraically first, then integrate.

Problem 3 Make a substitution: Let u=4+t2, so du=2tdt.

2 2

2 2 2

2 2 21 2ln

z z z zdz dz dz z z C

z z z z

+= + = + = + +! ! !

2

2 2

6 2 13 3 3ln 3ln 4

4 4

t tdt dt du u C t C

t t u= = = + = + +

+ +! ! !

2 sin(3t) ! e4 t + 4 t dt" = ! 23 cos(3t) !

14 e

4 t+

1ln(4) 4

t+ C

Page 7: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Antiderivative Practice

2

y ln(ky)dy!

Find the particular function F(x) such that F'(x) = x2 and the graph of F(x) passes through (1, 2).

Problem 4

Problem 5

Make a substitution: u=ln(ky), so du=dy/y.

2 2 1 22ln 2ln ln( )

ln( ) ln( )dy dy du u C ky C

y ky ky y u= = = + = +! ! !

The general antiderivative is

x2! dx =

1

3x3

+ C

Then to find C, we must have

F(1) =1

313

+ C = 2

Thus, C = 5/3, and our function is

F(x) =1

3x3

+5

3

Page 8: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Solving Definite Integrals

Theorem: (Fundamental Theorem I)

Or: If F is an antiderivative for f, then

We determined using Simpson’s Rule :

Now use the fundamental theorem:

An antiderivative for f(x) = 3x + 5 is

So:12

03 5 F(12) - F(0) = 276 - 0 = 276x dx+ =!

Example

Page 9: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Example

We have to• find an antiderivative;• evaluate at 3;• evaluate at 2;• subtract the results.

x3dx =

2

3

! 1

4x4

2

3

=1

434 " 1

424

=81

4" 16

4=65

4=16.25

33

2

x dx!

This notation means:evaluate the function at3 and 2, and subtract the

results.

Don’t need to include “+ C” in ourantiderivative, because anyantiderivative will work.

Page 10: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Examples02sin( ) 3x x dx

!

+"

( )

( )

2 2

00

2 2

3 32sin( ) 3 2cos 2cos 2cos0 0

2 2

3 3 = 2( 1) 2(1) 0 4

2 2

xx x dx x

!! !

!

! !

" #+ = $ + = $ + $ $ +% &

' (

" #$ $ + $ $ + = +% &

' (

)

Alternate notation

= –1 = 1

1

2

1ds

s

!

!"1

s!2

!1

" ds = ln s!2

!1= ln1! ln2 =!! ln2

Page 11: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Practice Examples

ses+1

s!2

!1

" ds

= es+1

s!2

!1

" ds = (es+ ln s )

!2

!1= e

!1+ ln1! (e!2 + ln2)

=!!1

e!1

e2! ln2

3 s ds2

9

! = 3s

1/ 2ds

2

9

! = 2s3/ 2

2

9

= 2 9( )3/ 2

" 2 2( )3/ 2

= 54 " 4 2

1

edx

1

5

!

=4

e

Page 12: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Substitution in Definite Integrals• We can use substitution in definite integrals.• However, the limits are in terms of the original variable.• We get two approaches:

– Solve an indefinite integral first– Change the limits

First solve an indefinite integral to find an antiderivative.

Then use that antiderivative to solve the definite integral.

Note: Do not say that a definite and an indefinite integral are equalto each other! They can’t be.

Method I:

Page 13: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Example

First: Solve an indefinite integral.u = t2 + 4

du = 2t dt

3t

t2

+ 4

! dt

3t

t2

+ 4dt

! =3

2

2t

t2

+ 4dt

! =3

2

1

udu

! =3

2ln t

2+ 4 + C

3t

t2+ 41

2

! dt = 3

2ln t

2+ 4( )

1

2

= 3

2ln 8( ) " 3

2ln 5( ) = 3

2ln

8

5

Pull out the 3,and put in a 2.

2t dtbecomes du

Here’s anantiderivative!

Second: Use the antiderivative to solve the definite integral.

Here’s the antiderivativewe just found.

Page 14: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

ExampleWhen discussing population growth, we worked backwards to find outwhat we got from evaluating

Let’s find an antiderivative using substitution.

! P ( t)

P( t)" dt =

1

udu = ln u + C = ln P(t) + C"

! P ( t)

P(t)dt

a

b" = ln P( t)( )a

b

= ln P(b)( )# ln P(a)( ) = lnP(b)

P(a)

$

% &

'

( )

u = P(t)

du = P'(t) dt( )

( )

P tdt

P t

!"

Of course, P(t) is always non-negative, so we don’t need absolutevalues…

So we get:

Page 15: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Method II: Convert the LimitsWe start with x = a and x = b, and a substitution formula u = …

Just put a and b into the substitution formula and get new limits.

Note: You do not have to go back to x then!

3t

t2

+ 41

2

! dt

2 2

2 21 1

3 3 12

4 2 4

tdt t dt

t t=

+ +! !

Example Start with the same substitutionu = t2 + 4

du = 2t dt

becomes u becomes du

( )8 8

3 3 8

2 2 555

3 1ln ln

2du uu

= = =!

What happens to t = 1?

u = t2 + 4 = 1^2 + 4 = 5.And when t = 2,u =  t2 + 4 = 2^2 + 4 = 8.

When t = 1, u = 5.

When t = 2, u = 8.

Page 16: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Example

( ) ( ) ( )

320

4

11 1 38 8 8 3202 2 23 33 3

1 1 1 5

5

4 4

3 3

1 1 15 5 5 10

410 10 10

3

3 320 5 163.5

40

uy y dy y y dy y y dy u du= = = =

! "= # $% &

' (

) ) ) )

( )8

23

1

5y y dy!u = 5y2

du = 10y dy

y = 1: u = 5

y = 8: u = 320

y 5y23( )1

8

! dy = y 5y2( )1

3

1

8

! dy = 5

1

3 y

2

3"

#$%

&'1

8

! y dy = 5

1

3 y

5

3

1

8

! dy

= 5

1

3y

5

3+1

5

3+1

1

8

= 5

1

33

8(8

8

3 (1

8

3 ) ) 163.5

Note that we can also dothis problem without u-sub--try algebraic simplification

Page 17: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Practice Example

e4x

1+ e4x0

1

! dx

e4x

1+ e4x

dx!Method I: Firstly compute

u = 1+ e4x

du = 4e4x

dx

e4x

1+ e4x

dx! =1

4

4e4x

1+ e4x

dx! =1

4

1

u

du =!1

4u"

1

2 du =!1

4

u"

1

2+1

"1

2+1

+ C

=1

2u

1

2 + C =1+ e

4x

2+ C

e4x

1+ e4x0

1

! dx =1

21+ e

4x |0

1=

1

21+ e

4 "1

21+ e

0=

1

21+ e

4 "1

22

Method II:

e4x

1+ e4x

dx0

1

! =1

4

4e4x

1+ e4x

dx0

1

! =1

4

1

u

du =2

1+e4

!1

4u"

1

2 du =2

1+e4

!1

4

u"

1

2+1

"1

2+1

|2

1+e4

=1

2u

1

2 |2

1+e4

=1+ e

4

2"

2

2

u = 1+ e4x

u(0) = 1+ e4*0

= 2,u(1) = 1+ e4*1

= 1+ e4

Page 18: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Using Definite IntegralsWe can now evaluate many of the integrals that we have been ableto set up.

Find area between y = sin(x) and thex–axis from x = 0 to x = π, and fromx = 0 to x = 2π.

The area from 0 to π is clearly:

Example

0 0sin( ) cos( ) 1 1 2x dx x

!!

= " = + =#The area from 0 to 2π is more complicated. We note that

But this is obviously not the area!

2

0sin( ) 0x dx

!

="

The area from 0 to 2π can be found by:

( ) ( )2 2

00sin( ) sin( ) cos( ) cos( ) 4x dx x dx x x

! ! ! !

!!" = " + =# #

Page 19: Solving Definite Integrals - VT Math - Virginia Tech · PDF fileProblem 1 Use basic formulas: Antiderivative Practice "2sin(3t)!e4t+4tdt z2+2z! z2 dz 6t 4+t2! dt Problem 2 Simplify

Summary

• Used the fundamental theorem to evaluatedefinite integrals.

• Made substitutions in definite integrals– By solving an indefinite integral first– By changing the limits

• Used the fundamental theorem to evaluateintegrals which come from applications.