28
1 Sommario WP5 / UO3 ......................................................................................................................................................... 2 Premessa ....................................................................................................................................................... 2 Risultati .......................................................................................................................................................... 2 Conclusioni sui substrati ................................................................................................................................ 6 WP6 / UO3 ......................................................................................................................................................... 7 Prova n. 1: Allevamento di L. camara............................................................................................................ 7 Risultati prova n.1........................................................................................................................................ 10 Figura 4 - Qualità fisiologica delle piante di Lantana................................................................................... 11 Figura 5- Qualità dell’apparato radicale delle piante di Lantana ................................................................ 12 Conclusioni prova n.1 .................................................................................................................................. 12 Prova n. 2: Allevamento di R . officinalis ......................................................................................................... 13 Risultati prova 2 ........................................................................................................................................... 14 Prova n. 3: Allevamento di L. sellowiana......................................................................................................... 16 Risultati Prova 3 ........................................................................................................................................... 17 Allegato fotografico ......................................................................................................................................... 19 WP7 / UO2 ....................................................................................................................................................... 20 Premessa ..................................................................................................................................................... 20 Redazione del processo produttivo dei substrati dell’azienda Primavita. .................................................. 20 Processo di produzione del compost .......................................................................................................... 21 Risultati del processo produttivo del compost............................................................................................ 22 Sottrazione dei carichi evitati ...................................................................................................................... 22 LCA dei Substrati autoprodotti .................................................................................................................... 23 Analisi dei risultati dello studio di LCA sui substrati .................................................................................... 24 Valutazioni complessive sui substrati autoprodotti ........................................................................................ 27 Conclusioni ...................................................................................................................................................... 28 Bibliografia ....................................................................................................................................................... 28

Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

Embed Size (px)

Citation preview

Page 1: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

1

Sommario WP5 / UO3 ......................................................................................................................................................... 2

Premessa ....................................................................................................................................................... 2

Risultati .......................................................................................................................................................... 2

Conclusioni sui substrati ................................................................................................................................ 6

WP6 / UO3 ......................................................................................................................................................... 7

Prova n. 1: Allevamento di L. camara ............................................................................................................ 7

Risultati prova n.1 ........................................................................................................................................ 10

Figura 4 - Qualità fisiologica delle piante di Lantana................................................................................... 11

Figura 5- Qualità dell’apparato radicale delle piante di Lantana ................................................................ 12

Conclusioni prova n.1 .................................................................................................................................. 12

Prova n. 2: Allevamento di R . officinalis ......................................................................................................... 13

Risultati prova 2 ........................................................................................................................................... 14

Prova n. 3: Allevamento di L. sellowiana ......................................................................................................... 16

Risultati Prova 3 ........................................................................................................................................... 17

Allegato fotografico ......................................................................................................................................... 19

WP7 / UO2 ....................................................................................................................................................... 20

Premessa ..................................................................................................................................................... 20

Redazione del processo produttivo dei substrati dell’azienda Primavita. .................................................. 20

Processo di produzione del compost .......................................................................................................... 21

Risultati del processo produttivo del compost ............................................................................................ 22

Sottrazione dei carichi evitati ...................................................................................................................... 22

LCA dei Substrati autoprodotti .................................................................................................................... 23

Analisi dei risultati dello studio di LCA sui substrati .................................................................................... 24

Valutazioni complessive sui substrati autoprodotti ........................................................................................ 27

Conclusioni ...................................................................................................................................................... 28

Bibliografia ....................................................................................................................................................... 28

Page 2: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

2

Relazione tecnico – scientifica finale del progetto di ricerca industriale

SEABIA “Substrati ecologici a basso impatto ambientale”

WP5 / UO3 Titolo: Programmazione, acquisizione e trasporto delle miscele di residui vegetali per la

produzione di compost; Acquisizione di inerti

Scopo: Produzione di almeno 5 substrati con caratteristiche fisico-chimiche idonee per

l’utilizzazione aziendale

Attività: Analisi chimico fisiche sui compost ottenuti e relativi giudizi agronomici, realizzazione di 5

substrati mediante miscelazione di compost e inerti.

Premessa Nell’attività vivaistica, attuata in contenitore o con sistemi fuori-suolo, il terreno naturale viene

sostituito da vari substrati di coltivazione. Le piante allevate in contenitore, hanno un rapporto

non equilibrato tra parte aerea e radice. Le esigenze in acqua, aria e nutrienti sono maggiori

rispetto alle colture in pieno campo.

Per soddisfare queste esigenze è necessario ricorrere a substrati rappresentati da materiali

organici o inorganici di vario tipo, che da soli o in miscuglio assicurino condizioni chimico-fisiche e

nutrizionali ottimali e stabili nel tempo.

L’impiego di questi substrati ha una lunga tradizione nel vivaismo. Nel corso degli ultimi 10-20 anni

si è assistito ad un aumento del numero di materiali utilizzati, per cui a quelli tradizionali si sono

affiancati e/o sostituiti numerosi altri derivati da processi industriali. Il substrato deve svolgere

diverse funzioni: sostenere la pianta, fornire nutrienti alle radici ed inoltre non deve essere

fitotossico e contenere patogeni

Risultati

Sono stati prodotti cinque substrati: il primo è un compost verde, gli altri quattro sono substrati a

base di compost verde, torba ed inerte.

I risultati del campione di substrato n. 1 relativo all’attività di compostaggio denominato ACQ COA

(Compost verde azienda Primavita) prodotto nella primavera 2014 sono riportati nelle tabelle 1-5

Figura 1- ACQ COA

Page 3: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

3

Tabella 1 Risultati relativi alla determinazione di pH, conducibilità elettrica e umidità.

Campione pH CE (mS/cm) Umidità (%)

Compost Primavita 8,18 0,69 56,19

Tabella 2 Risultati relativi al contenuto di macro e microelementi disponibili nell’estratto acquoso.

Campione Al (ppm) B (ppm) Ca (ppm) Cd (ppm) Cr (ppm) Cu (ppm)

Compost Primavita 0,2582 0,1033 17,3000 0,0002 0,0014 0,0344

Campione Fe (ppm) K (ppm) Mg (ppm)

Mn

(ppm) Na (ppm) Ni (ppm)

Compost Primavita 0,1386 200,1000 5,3210 0,0433 12,6800 0,0019

Campione P (ppm) Pb (ppm) Zn (ppm)

Compost Primavita 19,8600 0,0110 0,0340

Tabella 3 Risultati relativi ai volumi d’acqua a pF1, pF1,7, pF2.

Campione volume acqua a

pF1 (%)

volume acqua a

pF1,7 (%)

volume acqua a

pF2 (%)

Compost Primavita 42,37 31,94 31,69

Tabella n.4: Risultati relativi alla determinazione dei macro-micro elementi e metalli pesanti mediante

spettrometro al plasma (ICP).

Campione Al (ppm) B (ppm) Ca (ppm) Cd (ppm) Cr (ppm) Cu (ppm)

Compost Primavita 55,59 9,19 7181,00 0,08 0,37 8,24

Campione Fe (ppm) K (ppm) Mg (ppm) Mn (ppm) Na (ppm) Ni (ppm)

Compost Primavita 42,06 3551,00 515,40 10,22 197,50 0,37

Page 4: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

4

Campione P (ppm) Pb (ppm) Zn (ppm)

Compost Primavita 2173,00 1,07 14,72

Tabella n.5: Risultati relativi alla determinazione della percentuale di azoto mediante mineralizzazione

Kjeldahl.

Campione N (%)

Compost Primavita 1,64

Sul substrato convenzionale aziendale (torba bionda di sfagno) sono state effettuate le principali

analisi fisico-chimiche i cui risultati sono riportati nelle tabelle 6-10.

Tabella n.6: Risultati relativi alla determinazione di pH, conducibilità elettrica e umidità.

Campioni pH CE (mS/cm) Umidità (%)

Torba 6,2 0,3 47,93

Tabella n.7: Risultati relativi al contenuto di macro e microelementi disponibili nell’estratto acquoso.

Campioni Al (ppm) B (ppm) Ca (ppm) Cd (ppm) Cr (ppm) Cu (ppm)

Torba 0,0971 0,0248 19,0100 0,0001 0,0002 0,0017

Campioni Fe (ppm) K (ppm) Mg (ppm) Mn (ppm) Na (ppm) Ni (ppm)

Torba 0,1957 20,9800 4,1220 0,0449 2,3730 0,0016

Campioni P (ppm) Pb (ppm) Zn (ppm)

Torba 4,9110 0,0015 0,0371

Tabella n.8: Risultati relativi ai volumi d’acqua a pF1, pF1,7, pF2.

Campioni

Volume

d’acqua pF1

(%)

Volume

d’acqua pF1,7

(%)

Volume d’acqua

pF2 (%)

Torba 47,39 32,34 34,46

Page 5: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

5

Tabella n.9: Risultati relativi alla determinazione dei macro-micro elementi e metalli pesanti mediante

spettrometro al plasma (ICP).

Campioni Al (ppm) B (ppm) Ca (ppm) Cd (ppm) Cr (ppm) Cu (ppm)

Torba 195,80 4,48 8334,00 0,07 0,34 7,02

Campioni Fe (ppm) K (ppm) Mg (ppm) Mn (ppm) Na (ppm) Ni (ppm)

Torba 350,30 1192,20 621,35 26,52 119,15 0,47

Campioni P (ppm) Pb (ppm) Zn (ppm)

Torba 674,25 2,66 21,72

Tabella n.10: Risultati relativi alla determinazione della percentuale di azoto mediante mineralizzazione

Kjeldahl.

Campioni N (%)

Torba 1,99

Sono stati composti quattro substrati a base di dosi crescenti di compost verde la cui composizione

è di seguito riportata (v:v)

1. S0: torba 80% + compost verde 0% + 20% inerte vulcanico

2. S1: torba 60% + compost verde 20% + 20% inerte vulcanico

3. S2: torba 40% + compost verde 40% + 20% inerte vulcanico

4. S3: torba 20% + compost verde 60% + 20% inerte vulcanico

Nelle tabelle 11-13 sono riportati i risultati delle analisi chimico-fisiche sui campioni dei quattro

substrati impiegati nelle prove di allevamento su Lantana camara, L. sellowiana e Rosmarinus

officinalis

Tabella n.11: Risultati relativi alla determinazione di pH, conducibilità elettrica e umidità.

Campioni pH CE (mS/cm) Umidità (%)

S0 6,25 0,3 13,13

S1 6,26 0,83 19,56

S2 6,61 0,38 11,25

S3 6,9 0,41 37,33

Page 6: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

6

Tabella n.12: Risultati relativi ai volumi d’acqua a pF1, pF1,7, pF2.

Campioni

Volume

d’acqua pF1

(%)

Volume

d’acqua pF1,7

(%)

Volume d’acqua

pF2 (%)

S0 42,20 31,38 33,22

S1 39,69 29,30 30,94

S2 35,56 29,01 30,40

S3 35,22 28,75 29,78

Tabella n.13: Risultati relativi alla determinazione della percentuale di azoto mediante mineralizzazione

Kjeldahl e di P, K, Mg e Na mediante spettrometro al plasma (ICP).

Campioni N (%) P (ppm) K (ppm) Mg (ppm) Na (ppm)

S0 2,75 492,60 1174,50 894,45 6,0890

S1 4,03 1140,50 1724,50 1413,00 10,8400

S2 6,02 1449,00 1717,50 1824,00 14,7000

S3 4,45 1070,70 1367,00 1450,50 18,6600

Conclusioni sui substrati L’analisi dei risultati sovra esposti permette di trarre le seguenti conclusioni

I quattro substrati possiedono le caratteristiche ed i requisiti generali che devono indicare un

substrato di buona qualità per la coltivazione:

Capacità di ritenzione idrica, capillarità e drenaggio. Struttura e buona aerazione. Costituzione e stabilità fisica. Potere assorbente o CSC. Proprietà chimiche e pH. Contenuto in elementi nutritivi ed EC. Biologicamente inerte e sano. Basso costo e facilità di realizzazione.

Page 7: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

7

WP6 / UO3 Titolo: Prove agronomiche sui 5 substrati prodotti nel progetto e scelta delle specie vegetali

Scopo: Applicazione di protocolli agronomici qualitativi e quantitativi.

Attività: Espletamento delle prove agronomiche in azienda;

Valutazione: Risultati conseguiti

Prova n. 1: Allevamento di L. camara

Con tre matrici: compost verde da arbusti, torba acida e inerte vulcanico (pomice), sono stati

preparati quattro substrati (v:v):

S0: Compost 0% + torba 80% +20% pomice;

S1: Compost 20% + torba 60% + 20% pomice

S2: Compost 40% + torba 40% + 20% pomice

S3: Compost 60% + torba 20% + 20% pomice

Gli ambienti di coltivazione sono stati: pieno sole (Bari) e mezz’ombra (Molfetta)

Il protocollo ha previsto l'impianto, in ciascun ambiente di coltivazione, di 120 vasi (4 substrati x 3

ripetizioni, ogni ripetizione è costituita da 40 vasi)

Nella seconda decade di febbraio 2014, 120 piantine da talea radicata della specie L. camara cv

Kolibri sono state trapiantate dal vaso di diametro 7 cm al vaso diametro 16 cm (volume L 1.8).

La densità di impianto è stata di 9 vasi/m2

I vasi sono stati sistemati in un’area colturale dotata di impianto di irrigazione a microportata con

gocciolatori 2L/h. Dal trapianto a fine settembre 2014 sono stati previsti interventi irrigui

giornalieri ciascuno della durata di 10 minuti.

Sono stati condotti, al termine della coltivazione i seguenti rilievi:

A fine prova (seconda decade di settembre) sono stati rilevati i seguenti rilievi morfo-biometrici

della pianta come indicatori di qualità:

Altezza e diametro pianta (cm)

Foglie pianta-1 (n)

Area fogliare pianta-1 (cm2); l’analisi della superficie fogliare è stata determinata mediante

l’apparecchio Licor LI-3100 Area meter

Peso fresco (g): Epigeo, Ipogeo

Peso secco (g): Epigeo, Ipogeo

Inoltre sono state condotte misure non distruttive del contenuto di clorofilla SPAD. Chioma e

radici furono pesate per determinare il peso fresco e poi essiccate in stufa ventilata a 65°C, sino al

raggiungimento della massa costante, per determinarne il peso secco.

Page 8: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

8

I rilievi dell’architettura radicale hanno riguardato

Lunghezza cumulata (cm)

Diametro medio (mm)

Volume medio (cc)

Punte (n)

Biforcazioni (n)

Incroci (n)

Ugualmente le radici delle stesse piante furono lavate con acqua distillata per allontanare le

particelle di substrato, scannerizzate ed analizzate utilizzando il software di analisi d'immagine

WINRhizo Scanner STD4800 (Reagent instruments, Canada) per misurare i parametri

descriventi la root morfology.

Questa strumentazione, dotata di uno scanner su cui viene poggiata una vaschetta d'acqua (Fig. 2)

in cui si immerge l'apparato radicale permette di ottenere attraverso l'analisi della fotografia i

diversi valori dei parametri morfologici della radice.

Il sistema WinRHIZO consente così di valutare:

Analisi delle connessioni: studia la morfologia e le connessioni di base tra i vari segmenti di

radici

Analisi topologica: una estesa analisi delle ramificazioni, di cui valuta dimensioni, quantità,

percorsi, profondità, ascendenza, discendenza, etc…

Classificazione evolutiva: cerca di creare l'ordine di insorgenza delle ramificazioni, a partire

da quelle di base, nel corso della crescita della pianta.

Figura 2 - strumento WINRHIZO

CV1 Dose 0 Rad CV1 Dose 1 Rad

Rilievo di immagine dell'architettura radicale con lo

scanner dello strumento WINRHIZO.

Page 9: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

9

I rilievi fisiologici degli scambi gassosi hanno riguardato:

Fotosintesi netta (Pn) (µmol CO2 m-2 s-1)

Conduttanza stomatica per l'acqua (gs) (mmol m-2 s-1)

Concentrazione di CO2 negli spazi intercellulari (Ci) (µmol mol-1)

Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione

sottostomatica sono state condotte utilizzando un analizzatore di gas ad infrarossi (IRGA) LI-6400

St (Li-Cor, Inc) operando ad un flusso di 300 µmol s-1. Le misurazioni sono state effettuate tra le

09.00 e le 11.00 h e tra le 13.00 e le 15.00 h CET Time. La temperatura all'interno della camera

fogliare è stata posta uguale a quella ambientale ed è stata mantenuta costante durante le

misurazioni mediante il regolatore di temperatura automatico dello strumento. La luce è stata

settata ad una PAR (Photosynthetic Active Radiation) di 1000 µmol m-2 s-1 mentre l’area di foglia

analizzata per ogni foglia è stata di 2 cm2. Ogni misurazione è stata registrata dopo che i valori di

concentrazione di CO2 ed H2O hanno raggiunto la stabilità all’interno della camera (steady state).

Page 10: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

10

Risultati prova n.1

La qualità morfologica delle piante di Lantana è descritta nella figura 3

Figura 3 - Qualità morfologica in Lantana

0

20

40

60

80

100

120

S0 S1 S2 S3

Altezza pianta (cm)

30

32

34

36

38

40

42

S0 S1 S2 S3

Diametro pianta (cm)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

S0 S1 S2 S3

Rami secondari (n)

250

260

270

280

290

300

310

S0 S1 S2 S3

Lunghezza cumulata rami (cm)

0

50

100

150

200

S0 S1 S2 S3

Foglie (n)

1200

1600

2000

2400

S0 S1 S2 S3

Area fogliare (cm2)

0

10

20

30

40

S0 S1 S2 S3

Indice di clorofilla (SPAD)

250 260 270 280 290 300 310

S0 S1 S2 S3

Lunghezza cumulata rami (cm)

Page 11: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

11

La qualità fisiologica delle piante di Lantana è descritta nella figura 4

Figura 4 - Qualità fisiologica delle piante di Lantana

Page 12: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

12

La qualità dell’apparato radicale delle piante di Lantana è descritta nella figura 5

Figura 5- Qualità dell’apparato radicale delle piante di Lantana

Conclusioni prova n.1

Dall’esame delle caratteristiche morfofisiologiche di L. camara è emerso che le piante allevate

nel substrato S2= Compost 40% + torba 40% + 20% pomice, hanno mostrato una qualità

globale più elevata rispetto a quelle allevate negli altri substrati.

0

5000

10000

15000

S0 S1 S2 S3

Lunghezza (cm)

0

1000

2000

3000

S0 S1 S2 S3

Surface area (cm2)

0

200

400

600

800

1000

S0 S1 S2 S3

Proj. area (cm2)

0,0

2,0

4,0

6,0

8,0

S0 S1 S2 S3

Average diameter (mm)

0

10

20

30

40

50

S0 S1 S2 S3

Root volume (cm3)

0

10000

20000

30000

40000

S0 S1 S2 S3

Punte (n)

0

20000

40000

60000

80000

100000

S0 S1 S2 S3

Biforcazioni (n)

0

5000

10000

15000

S0 S1 S2 S3

Incroci (n)

Page 13: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

13

Prova n. 2: Allevamento di R . officinalis Con tre matrici: compost verde, torba acida e inerte vulcanico (pomice), sono stati preparati

quattro substrati (v:v):

S0: Compost 0% + torba 80% +20% pomice;

S1: Compost 20% + torba 60% + 20% pomice

S2: Compost 40% + torba 40% + 20% pomice

S3: Compost 60% + torba 20% + 20% pomice

Il protocollo ha previsto l'impianto di 120 vasi (4 substrati x 3 ripetizioni, ogni ripetizione è

costituita da 40 vasi)

Nella seconda decade di febbraio 2014, 120 piantine da talea radicata della specie R. officinalis

sono state trapiantate dal vaso di diametro 7 cm al vaso diametro 16 cm (volume L 1.8). La densità

di impianto è stata di 9 vasi/m2. I vasi sono stati sistemati in un’area colturale dotata di impianto di

irrigazione a microportata con gocciolatori 2L/h. Dal trapianto a fine settembre 2014 sono stati

previsti interventi irrigui giornalieri ciascuno della durata di 10 minuti.

Sono stati condotti, al termine della coltivazione i seguenti rilievi:

A fine prova (seconda decade di settembre) sono stati rilevati i seguenti rilievi morfo-biometrici

della pianta come indicatori di qualità:

Altezza e diametro pianta (cm)

Foglie pianta-1 (n)

Area fogliare pianta-1 (cm2); l’analisi della superficie fogliare è stata determinata mediante

l’apparecchio Licor LI-3100Area meter

Peso fresco (g): Epigeo, Ipogeo

Peso secco (g): Epigeo, Ipogeo

Chioma e radici furono pesate per determinare il peso fresco e poi essiccate in stufa ventilata a

65°C, sino al raggiungimento della massa costante, per determinarne il peso secco.

Per lo studio dell'apparato radicale la metodologia di analisi di immagine è quella del software

WinRHIZO.

Il disegno sperimentale è stato a blocchi randomizzati con tre ripetizioni, ciascuna ripetizione

costituita da 40 piante. I dati sono stati sottoposti ad ANOVA, il confronto tra le medie è stato

effettuato con il test S.N.K.

Page 14: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

14

Risultati prova 2

Tabella 44- Influenza del substrato sui caratteri morfologici

Substrati Altezza

Pianta (cm)

Diametro

Pianta(cm)

Assi

(n)

Lunghezza

Radice (cm)

S0 68,7 26,7 4,3 40,2

S1 74,3 27,7 6,3 48,4

S2 65,0 26,0 6,0 44,2

S3 64,1 25,4 7,2 45,3

Tabella 15- Influenza del substrato sul peso fresco pianta (g)

Peso fresco (g)

Substrati Rami Foglie Totale

epigeo

Radice Totale pianta

S0 26,0 35,5 61,5 53,3 114,8

S1 34,0 51,9 85,9 88,3 174,2

S2 37,3 53,8 91,1 85,1 176,2

S3 29,7 42,6 72,2 75,7 147,9

Tabella 16 - Influenza del substrato sul peso secco pianta (g)

Peso secco (g)

Substrati Rami Foglie Totale Parte

epigea

Radice Totale pianta

S0 17,9 15,9 33,8 9,7 43,5

S1 21,7 22,1 43,7 19,6 63,3

S2 23,4 22,0 45,4 15,1 60,5

S3 18,5 18,7 37,1 14,2 51,3

Page 15: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

15

Tabella 17 - Influenza del substrato sul Root/shoot

Tabella 18- Influenza del substrato sull'architettura dell'apparato radicale.

Substrati Lunghezza

cumulata

(cm)

Proiezione

area

(cm2)

Superficie

area

(cm2)

Diametro

medio

(mm)

Volume

(cc)

Punte

(n)

Biforca-

zioni

(n)

Incroci

(n)

S0 20346 993 3119 6 38 38785 128117 23181

S1 34660 1778 5586 9 72 67812 255469 43828

S2 24814 1299 4080 7 53 65687 194476 29012

S3 26871 1390 4368 6 57 47898 217745 36101

I risultati sulla prestazione della chioma nel rosmarino hanno evidenziato che l'aggiunta di

compost verde sino alla dose del 40% (substrati S1 e S2), rispetto alle altre tesi, induce un maggior

peso fresco e secco della parte aerea. Questo risultato è dovuto ad un miglior accestimento della

pianta, ad un più elevato peso fresco e secco delle foglie e dei rami. La qualità della pianta (altezza

e diametro) in S2 si è mostrata sempre superiore alle altre tesi oggetto del confronto.

I risultati sui principali parametri dell'apparato radicale nel rosmarino hanno evidenziato che

l'aggiunta di compost alla dose del 20% (substrato S1), rispetto alle altre tesi, determina maggiori

valori per lunghezza, superficie, volume, punte, biforcazioni ed incroci.

Substrati Root/shoot

S0 0,29

S1 0,35

S2 0,43

S3 0,38

Page 16: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

16

Prova n. 3: Allevamento di L. sellowiana Con tre matrici: compost verde, torba acida e inerte vulcanico (pomice), sono stati preparati

quattro substrati (v:v):

S0: Compost 0% + torba 80% +20% pomice;

S1: Compost 20% + torba 60% + 20% pomice

S2: Compost 40% + torba 40% + 20% pomice

S3: Compost 60% + torba 20% + 20% pomice

Il protocollo ha previsto l'impianto di 120 vasi (4 substrati x 3 ripetizioni, ogni ripetizione è

costituita da 40 vasi)

Nella seconda decade di febbraio 2014, 120 piantine da talea radicata della specie L. sellowiana

sono state trapiantate dal vaso di diametro 7 cm al vaso diametro 16 cm (volume L 1.8). La densità

di impianto è stata di 9 vasi/m2. I vasi sono stati sistemati in un’area colturale dotata di impianto di

irrigazione a microportata con gocciolatori 2L/h. Dal trapianto a fine settembre 2014 sono stati

previsti interventi irrigui giornalieri ciascuno della durata di 10 minuti.

Sono stati condotti, al termine della coltivazione i seguenti rilievi:

A fine prova (seconda decade di settembre) sono stati rilevati i seguenti rilievi morfo-biometrici

della pianta come indicatori di qualità:

Altezza e diametro pianta (cm)

Foglie pianta-1 (n)

Area fogliare pianta-1 (cm2); l’analisi della superficie fogliare è stata determinata mediante

l’apparecchio Licor LI-3100Area meter

Peso fresco (g): Epigeo, Ipogeo

Peso secco (g): Epigeo, Ipogeo

Chioma e radici furono pesate per determinare il peso fresco e poi essiccate in stufa ventilata a

65°C, sino al raggiungimento della massa costante, per determinarne il peso secco.

Per lo studio dell'apparato radicale la metodologia di analisi di immagine è quella del software

WinRHIZO.

Il disegno sperimentale è stato a blocchi randomizzati con tre ripetizioni, ciascuna ripetizione

costituita da 40 piante. I dati sono stati sottoposti ad ANOVA, il confronto tra le medie è stato

effettuato con il test S.N.K.

Page 17: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

17

Risultati Prova 3

Tabella 19- Influenza del substrato sui caratteri morfologici della pianta

Substrati Altezza pianta

(cm)

Diametro pianta

(cm)

Assi

(n)

Lunghezza

Media

Radice (cm)

S0 73,8 81,9 9,5 46,0

S1 79,1 92,4 12,6 47,5

S2 78,4 90,4 14,6 49,2

S3 77,2 87,2 14,5 45,1

Tabella 20- Influenza del substrato sul peso fresco pianta (g)

Substrati Peso fresco (g)

Rami Foglie Fiori Totale Parte

epigea

Radice Totale

pianta

S0 16,4 20,9 0,9 38,1 78,0 116,2

S1 29,0 39,3 2,3 70,5 94,7 165,2

S2 27,6 36,7 3,4 67,8 84,8 152,6

S3 30,4 40,4 4,4 75,2 101,2 176,5

Tabella 21- Influenza del substrato sul peso secco pianta (g)

Substrati Peso secco (g)

Rami Foglie Fiori Totale Parte

epigea

Radice Totale

pianta

S0 9,6 8,9 0,3 18,8 17,7 36,5

S1 16,0 16,7 0,8 35,5 22,3 55,8

S2 16,1 15,8 1,2 33,1 21,6 54,7

S3 17,9 18,1 1,7 37,6 24,7 62,3

Page 18: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

18

Tabella 22 - Influenza del substrato sul Root/shoot

Tabella 5- Influenza del substrato sull'architettura dell'apparato radicale.

Substrati Lunghezza

cumulata

(cm)

Proiezione

area

(cm2)

Superficie

area

(cm2)

Diametro

medio

(mm)

Volume

(cc)

Punte

(n)

Biforca-

zioni

(n)

Incroci

(n)

S0 18246 902 2918 5 35 35502 120465 20180

S1 22501 1252 3384 5 45 40562 157125 25621

S2 22607 1144 3915 7 46 41458 172694 27147

S3 24583 1235 4157 6 51 45798 197647 33085

I risultati sulla qualità nella lantana tappezzante hanno evidenziato che l'aggiunta di compost

verde alla dose del 60% (substrato S3), rispetto alle altre tesi, si riflette sul maggior peso fresco e

secco della parte aerea. Questo risultato è dovuto ad un miglior accestimento della pianta, ad un

più elevato peso fresco e secco delle foglie, dei rami e dell'apparato radicale. La qualità della

pianta (altezza, diametro) in S3 si è mostrata sempre superiore alle altre tesi oggetto del

confronto.

I risultati sui principali parametri dell'apparato radicale nella lantana tappezzante hanno

evidenziato che l'aggiunta di compost al 60% (substrato S3), ha permesso di raggiungere qualità

superiore

Substrati Root/shoot

S0 0,29

S1 0,35

S2 0,43

S3 0,38

Page 19: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

19

Allegato fotografico

Page 20: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

20

WP7 / UO2 Titolo: Analisi Ambientale delle produzioni vivaistiche realizzate con substrati a base di compost

Scopo Redazione di uno studio di LCA (Life Cycle Assessment) sul ciclo produttivo vivaistico e

confronto tra produzioni convenzionali e produzioni mediante compost auto-prodotti

Attività: Redazione di uno studio di LCA (Life Cycle Assessment) sul ciclo produttivo vivaistico e

confronto tra produzioni convenzionali e produzioni mediante compost auto-prodotti

Premessa Con la finalità di redigere uno studio di LCA (Life Cycle Assessment) sulla produzione del compost e

dei substrati di coltivazione a scopo ornamentale, nel II anno della ricerca l'U.O. 2 ha utilizzato i

dati aziendali dell’azienda Primavita (dati primari) raccolti mediante questionari nel semestre

precedente. Questi dati sono confluiti nel software Gabi6 per la redazione di plans che

riproducano i carichi ambientali di tutte le fasi del processo produttivo e riportano in maniera

quantitativa gli input e gli output di ciascun processo analizzato. In ciascun plan redatto, ai dati

primari sono stati aggiunti i dati secondari cioè quelli relativi ai carichi ambientali generati da

prodotti provenienti dalla tecnosfera, come (l'energia elettrica utilizzata, l'acciaio, il calcestruzzo,

ecc.). L'unione di questi plans ha consentito di valutare il processo produttivo dei compost con il

metodo CML2001 che esprime i carichi ambientali rispetto agli indici ADP (Potenziale di consumo

delle risorse abiotiche, kg Sb-Equiv.), AP (potenziale di acidificazione, kg SO2-Equiv.), EP

(potenziale di eutrofizzazione, kg Phosphate-Equiv.), GWP (potenziale di emissione di gas serra, kg

CO2-Equiv.), ODP (potenziale di riduzione dello strato di ozono, kg R11-Equiv.), POPC (potenziale di

ossidazione fotochimica, kg Ethene-Equiv.). A questi indici si è aggiunta la richiesta di energia

primaria PED (MJ). Tali indici consentono di redigere il profilo ambientale dei substrati prodotti.

Redazione del processo produttivo dei substrati dell’azienda Primavita. Per semplificare il lavoro di redazione dei plans prodotti l’attività di raccolta e preparazione delle

matrici organiche è stata ripartita in sette fasi:

1. Trasporto dei rifiuti verdi in azienda (15km).

2. Triturazione dei residui verdi.

3. Miscelazione.

4. Disposizione nel compostatore, e avvio del processo. In questa fase avvengono le fasi mesofila

di latenza e termofila di bio-stabilizzazione, durante le quali è effettuato il controllo delle

temperature per mezzo di aria insufflata proveniente dal ventilatori.

5. Svuotamento del compostatore con rivoltamento della biomassa.

6. Maturazione della biomassa, con durata di 120 giorni, in piazzali all’aperto. Consiste nel

rivoltamento dei cumuli di biomassa per permetterne un miglior contatto con l’ossigeno

atmosferico. Al termine dei 120 giorni si ottiene la sostanza organica stabilizzata, definita compost.

7. Stoccaggio: il compost ottenuto viene stoccato in un’area sotto tettoia per il successivo

confezionamento dei substrati.

Page 21: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

21

Per il compost autoprodotto sono stati valutati i consumi energetici del compostatore, e il suo

peso. Che sono stati valutati per mezzo del processo “macchina agricola generica” con vita utile di

15 anni

Processo di produzione del compost L’analisi condotta ha avuto lo scopo di valutare il processo di autocompostaggio svolto

nell’azienda Primavita e in seguito di valutare il profilo ambientale dei substrati realizzati e

utilizzati nelle prove agronomiche. Per il processo del compost l’unità funzionale è stata definita

da 1kg di compost prodotto, mentre per i substrati, denominati in base al loro rapporto in volume,

ci si è riferiti ad un 1kg di substrato prodotto. I risultati sono stati valutati mediante il metodo

CML2001 che esprime i carichi ambientali rispetto agli indici ADP (Potenziale di consumo delle

risorse abiotiche, kg Sb-Equiv.), AP (potenziale di acidificazione, kg SO2-Equiv.), EP (potenziale di

eutrofizzazione, kg Phosphate-Equiv.), GWP (potenziale di emissione di gas serra, kg CO2-Equiv.),

ODP (potenziale di riduzione dello strato di ozono, kg R11-Equiv.), POPC (potenziale di ossidazione

fotochimica, kg Ethene-Equiv.). A questi indici si è aggiunta la richiesta di energia primaria PED

(MJ).

Il compost autoprodotto dalla ditta Primavita ha come componenti gli input riportati in tab.24 per

kg di compost prodotto. Le matrici legnose e i residui di potatura aziendali subiscono una

riduzione in peso pari al 35% dovuta al processo di compostaggio. In base ai rapporti C/N

riscontrati dalle analisi (tab. 2,3 relazione del I anno) pari in media a C/N = 88, si rende necessario

additivare le matrici iniziali con un componente ricco di azoto che porti il valore della miscela

compostabile a valori ottimali pari a C/N = 30. Nelle aziende di compostaggio ciò avviene

additivando fanghi residuali di processi depurativi e/o industriali o FORSU alle matrici vegetali.

Come procedura da applicare nelle aziende vivaistiche potrebbero essere utilizzati i fanghi ottenuti

da vasche Imoff per le acque reflue aziendali trattate attualmente con fitodepurazione in quanto

l’azienda è in aperta campagna e non è servita dal servizio fognario. Nelle attività del progetto

SEABIA questa additivazione è stata effettuata mediante l’aggiunta di Urea Ammonium Nitrate alle

matrici a base di residui vegetali per ovvie esigenze procedurali. Nello studio di LCA realizzato si è

considerato un consumo di elettricità necessario per il funzionamento del trituratore dei residui

legnosi e per il funzionamento del compostatore in base alle potenze delle due macchine e ai

tempi di utilizzo pari a 0,21 kwh per kg di compost prodotto. Per l’urea si è utilizzato il process

“Urea ammonium nitrate a distributore locale” e pertanto si è considerato un trasporto 30km. Le

emissioni del processo di autocompostaggio sono state considerate simili a quelle del processo

ordinario svolto in impianto all’aperto ad eccezione del percolato causato dalle piogge, e pertanto

non si è considerato il trattamento del percolato poiché il compostatore domestico utilizzato

riutilizza il percolato sulle nuove masse immesse.

Componente Trasporto Quantità in ingresso kg

Potatura dell’olivo 15 km 0,675

Potature aziendali 0 km 0,675

Urea (46,0,0) 30 km 0,086 Tab.24: quantità e trasporto delle matrici organiche utilizzate per il processo di autocompostaggio

Page 22: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

22

Risultati del processo produttivo del compost In tab.25 sono riportati i risultati dello studio di LCA sull’autoproduzione del compost della ditta

Primavita (Compost_pr). I risultati sono stati messi a confronto con un normale processo di

compostaggio svolto in un impianto con bio-celle all’aperto. Si osserva come per l’indice ADP,

ODP, e per l’energia primaria PED si abbia un carico ambientale maggiore per il compost

autoprodotto. Ciò è imputabile all’uso del fertilizzante chimico urea che grava su tali indici. Per gli

indici AP, EP, GWP, ODP e POPC il compost autoprodotto comporta una riduzione dei carichi

ambientali rispetto al compost convenzionale. Si evince come, nonostante l’uso del fertilizzante, si

riscontrino dei notevoli vantaggi ambientali che l’uso di fanghi aziendali potrebbe incrementare.

Compost_op Compost_pr

ADP 3,30E-08 1,08E-06

AP 2,71E-03 1,35E-03

EP 5,16E-04 3,84E-04

GWP 8,88E-01 3,92E-01

ODP 2,80E-09 4,34E-08

POCP 9,57E-05 1,05E-04

PED 4,14E-01 7,35E+00

Tab.25: Confronto degli indici ambientali tra il compost prodotto in maniera convenzionale

(compost_op) e compost autoprodotto dalla ditta Primavita (compost_pr) per i suoi substrati.

Sottrazione dei carichi evitati Nei processi in cui si riutilizzano biomasse di scarto (sostanza organica) che avrebbero un destino

ambientale diverso dal ritorno al suolo, come ad esempio la combustione o il conferimento in

discarica, è possibile effettuare detrazioni dei carichi ambientali evitati. Tali detrazioni sono lecite

perché, nelle analisi di LCA, differenti autori valutano come quantificare gli innumerevoli vantaggi

che fornisce l’applicazione del compost al suolo (Martínez-Blanco et al., 2009). Le detrazioni

apportate in questo studio si basano sulla capacità di accumulo della sostanza organica nel suolo e

sul potere fertilizzante che le biomasse di scarto possono avere (Russo et al 2015; Martinez -

Blanco et al. 2009; White 2012; Blengini 2009). I carichi evitati impiegati in questo studio

provengono dall’estensione dei confini del sistema all’impiego che il compost ha come

ammendante o costituente di substrati. Infatti il compost ha un potere fertilizzante grazie alla

presenza di nutrienti ormai mineralizzati presenti in esso.

Questo comporta una riduzione dei fertilizzanti impiegati nei successivi processi di coltivazione. Un

altro vantaggio è il sequestro di anidride carbonica nei suoli o nei substrati (carbon sink), che evita

ulteriori emissioni in atmosfera (White E., 2012). A questi vantaggi dell’uso del compost si può

aggiungere la riduzione dell’uso di acqua di irrigazione, il miglioramento della struttura e del

drenaggio dei suoli e aumento della sostanza organica, ma questi ulteriori vantaggi sono

difficilmente quantificabili in uno studio di LCA (Martínez-Blanco et al., 2013).

Nel lavoro svolto dall'U.O.2 si è pertanto adottato il secondo approccio e si è realizzato uno

scenario in cui è possibile considerare il compost con i carichi evitati Compost_ab (compost avoid

Page 23: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

23

burns). Tale scenario è stato realizzato perché, nelle successive valutazioni dei substrati di

coltivazione delle piante ornamentali, considerare il solo processo produttivo del compost o il

processo del compost con i carichi evitati può portare a notevoli differenze nell'analisi dei carichi

inquinanti generati dalla produzione di 1kg di substrato. La detrazione causata dal non

conferimento dei rifiuti organici in discarica non è stata applicata perché è ormai proibito dalle

normative europee sui rifiuti. La prima detrazione, basata sul potere fertilizzante del compost,

ipotizza un contenuto di azoto pari al 1,9 kg tC-1, un contenuto di fosforo espresso come P2O5 pari a

3,3 kg tC-1 e un contenuto di potassio espresso come K2O pari a 5,2 kg tC

-1 (White E., 2012). Queste

quantità di macro-elementi sono state ipotizzate essere equivalenti al contenuto in azoto dell’urea

(82%), di un mix di rocce fosfatiche (32,4%) e del Potassium chloride (60%).

Questi componenti sono stati impiegati per la formazione di un fertilizzante fittizio F (0,19; 0,33;

0,52) che ha identico potere fertilizzante del compost. Tale fertilizzante è stato portato in

detrazione nel processo di produzione dei substrati rapportato alle quantità di compost impiegato.

Questa detrazione è applicata alla produzione dei substrati e non al successivo ciclo di coltivazione

delle piante pertanto risulta superflua questa ulteriore analisi. La seconda detrazione applicata è

basata sul fenomeno del “carbon sink” causato dal compost e dipende da numerosi fattori tra i

quali la qualità del compost, le quantità applicate, i fattori climatici, il tipo di suolo ecc..

Tra i numerosi studi sull’argomento, in questa analisi si è scelto il valore medio proposto da

Blengini (Blengini, 2009; White, 2012) pari a 173 kgCO2-Eq t -1 di compost. Pertanto in base alle

quantità di compost impiegato nel substrato una corrispondente quantità di anidride carbonica è

stata ipotizzata essere sottratta all’atmosfera perché immagazzinata nel substrato stesso. Questa

detrazione influenza in particolare l’indice GWP.

LCA dei Substrati autoprodotti I substrati analizzati sono stati i seguenti utilizzati anche nelle prove agronomiche espressi come

percentuale in volume:

1. S0: torba 80% + compost verde 0% + 20% inerte vulcanico T80C0P20

2. S1: torba 60% + compost verde 20% + 20% inerte vulcanico T60C20P20

3. S2: torba 40% + compost verde 40% + 20% inerte vulcanico T40C40P20

4. S3: torba 20% + compost verde 60% + 20% inerte vulcanico T20C60P20

5. S4: torba 90% + perlite 10% + 0,55 kg per m3 F(11,10,18) Substrato Primavita

Il substrato S4 è quello normalmente utilizzato dalla Primavita, acquistato già pronto come

prodotto commerciale, che è stato posto a confronto con quelli a base di compost autoprodotto

per il progetto. Nello studio di LCA eseguito l’unità funzionale di riferimento è stato 1 kg di

substrato prodotto. Con le lettere ab (avoid burdens, carichi evitati) si sono indicati i substrati

calcolati con detrazione dei carichi evitati. Per la torba è stato considerato un trasporto di 800km

in treno e di 300km mediante autoarticolato, per la pomice e la perlite è stato considerato un

trasporto di 400km mediante autoarticolato. Poiché il compost è autoprodotto in azienda il suo

trasporto non è stato considerato. Queste distanze sono quelle presumibili per la posizione

Page 24: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

24

geografica della ditta Primavita rispetto ai luoghi di approvvigionamento di questi componenti

(Paesi Baltici, Campania). L’uso di combustibili con frazione di biocombustibili presenti in Europa

comporta un carico negativo per l’indice POPC.

Analisi dei risultati dello studio di LCA sui substrati In tab.23 sono riportati i carichi ambientali dei substrati analizzati

Tab.23: risultati dell’analisi LCA sui substrati autoprodotti nell’azienda Primavita.

In figg.6,7,8,9,10,11,12 sono riportati i risultati, suddivisi per ciascun indice ambientale, con

evidenziati i valori normali (colonne colore nero) e quelli ottenuti con sottrazione dei carichi

ambientali (colonne a righe oblique), il substrato Primavita (colore grigio). Si rammenta che valori

negativi degli indici ambientali corrispondono a vantaggi ambientali mentre valori positivi

corrispondono a carichi ambientali. Per tutti gli indici ambientali i substrati T80C0P20 e

T80C0P20ab sono uguali a causa dell’assenza di compost nella composizione. La sottrazione dei

carichi per l’indice ODP (fig.10) non ha alcuna influenza perché le sottrazioni coinvolte non hanno

emissioni influenti su questo indice. Per i substrati convenzionali (nero) e per l’indice ADP (fig.6) e

per il consumo di energia primaria PED (fig.12), si osserva come al crescere della percentuale di

compost diminuiscano le risorse impiegate e l’energia utilizzata rispettivamente. Analizzando le

tesi con sottrazione dei carichi (righe), per l’indice ADP si sottolinea come le riduzioni crescano al

crescere della presenza di compost fino al 22% per la tesi S3. Infine è da sottolineare la grande

differenza con il substrato commerciale (colore grigio) rispetto a quelli autoprodotti anche per

l’energia primaria richiesta PED. Per gli indici AP, EP, e POPC (figg. 7,8, 11) si osserva come i carichi

ambientali crescano con l’aumentare del tenore di compost dei substrati in quanto legati alle

emissioni del processo di produzione del compost. Per l’indice AP le tesi con presenza di compost

risultano avere un carico ambientale superiore al substrato commerciale così come per l’indice EP

fatta eccezione per il substrato T60C20P20. L’indice GWP (fig.9) che è probabilmente l’indice più

importante poiché determina l’impronta carbonica (carbon footprint) dei substrati, è quello che

risente maggiormente della sottrazione dei carichi evitati. Se si osservano le tesi convenzionali

(nero) si osserva come le emissioni aumentino con la percentuale di compost ma permangono

sempre inferiori al valore del substrato commerciale (grigio). Analizzando le tesi con riduzione dei

carichi evitati (righe) si osserva come si ottenga una forte riduzione delle emissioni di CO2, fino ad

avere un substrato a emissioni di CO2 pressoché nulla per la tesi T20C60P20ab (fig.9). Volendo fare

un’analisi ambientale complessiva dell’uso di compost nei substrati per le tesi convenzionali, si

osserva, all’aumentare del tenore di compost, un effetto positivo per gli indici ADP, GWP e per

l’energia impiegata PED, un effetto negativo per gli indici AP, EP, POPC. L’indice ODP non è

influenzato dalla presenza del compost nei substrati ma è molto inferiore alla tesi del substrato

commerciale. L’analisi con sottrazione dei carichi evitati consente di ribadire la possibilità di avere

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

ADP 1,70E-07 2,60E-08 2,03E-08 2,88E-08 2,45E-08 3,23E-08 2,99E-08 3,68E-08 3,68E-08 kg Sb-Equiv.

AP 6,63E-04 1,59E-03 1,58E-03 1,22E-03 1,21E-03 7,54E-04 7,52E-04 1,55E-04 1,55E-04 kg SO2-Equiv.

EP 1,74E-04 3,06E-04 3,06E-04 2,37E-04 2,36E-04 1,50E-04 1,50E-04 3,71E-05 3,71E-05 kg Phos.-Equiv.

GWP 8,60E-01 5,77E-01 9,58E-03 5,37E-01 1,16E-01 4,87E-01 4,45E-01 4,22E-01 4,22E-01 kg CO2-Equiv.

ODP 3,74E-08 2,64E-09 2,64E-09 2,22E-09 2,22E-09 1,69E-09 1,69E-09 1,01E-09 1,01E-09 kg R11-Equiv.

POPC 3,80E-05 4,34E-05 4,27E-05 2,57E-05 2,52E-05 3,44E-06 3,15E-06 -2,54E-05 -2,54E-05 kg Ethe.-Equiv.

PED 9,86E+00 1,16E+00 1,10E+00 2,02E+00 1,97E+00 3,09E+00 3,07E+00 4,48E+00 4,48E+00 MJ

Page 25: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

25

substrati con vantaggio ambientale per quanto riguarda gli indici ADP, GWP impronta carbonica

quasi nulla per tenore di compost dal 60% in volume e consumo di energia primaria PED molto

basso se confrontato con il substrato commerciale.

Fig.6: Indice ADP per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

Fig.7: Indice AP per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

1,70E-07

2,60E-082,03E-08

2,88E-082,45E-08

3,23E-08 2,99E-083,68E-08 3,68E-08

0,00E+00

2,00E-08

4,00E-08

6,00E-08

8,00E-08

1,00E-07

1,20E-07

1,40E-07

1,60E-07

1,80E-07

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

ADP

6,63E-04

1,59E-03 1,58E-03

1,22E-03 1,21E-03

7,54E-04 7,52E-04

1,55E-04 1,55E-04

0,00E+00

2,00E-04

4,00E-04

6,00E-04

8,00E-04

1,00E-03

1,20E-03

1,40E-03

1,60E-03

1,80E-03

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

AP

Page 26: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

26

Fig.8: Indice EP per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

Fig.9: Indice GWP per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

Fig.10: Indice ODP per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

1,74E-04

3,06E-04 3,06E-04

2,37E-04 2,36E-04

1,50E-04 1,50E-04

3,71E-05 3,71E-05

0,00E+00

5,00E-05

1,00E-04

1,50E-04

2,00E-04

2,50E-04

3,00E-04

3,50E-04

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

EP

8,60E-01

5,77E-01

9,58E-03

5,37E-01

1,16E-01

4,87E-014,45E-01

4,22E-01 4,22E-01

0,00E+00

1,00E-01

2,00E-01

3,00E-01

4,00E-01

5,00E-01

6,00E-01

7,00E-01

8,00E-01

9,00E-01

1,00E+00

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

GWP

3,74E-08

2,64E-09 2,64E-09 2,22E-09 2,22E-09 1,69E-09 1,69E-09 1,01E-09 1,01E-09

0,00E+00

5,00E-09

1,00E-08

1,50E-08

2,00E-08

2,50E-08

3,00E-08

3,50E-08

4,00E-08

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

ODP

Page 27: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

27

Fig.11: Indice POPC per i substrati autoprodotti dall’azienda Primavita. (nero produzione

convenzionale; righe produzione con conteggio dei carichi evitati)

Fig.12: PED per i substrati autoprodotti dall’azienda Primavita. (nero produzione convenzionale;

righe produzione con conteggio dei carichi evitati)

Valutazioni complessive sui substrati autoprodotti

Dall’esame delle caratteristiche morfofisiologiche di L. camara è emerso che le piante allevate nel

substrato S2= T4040P20, hanno mostrato una qualità globale più elevata rispetto a quelle allevate

negli altri substrati. I risultati su rosmarino hanno evidenziato che il substrato S2= T4040P20

produce le migliori prestazioni per la qualità della pianta e un miglior accestimento della pianta, un

più elevato peso fresco e secco delle foglie e dei rami; il substrato S1= T60C20P20 risulta più

efficace per l’apparato radicale e proprietà simili al substrato S1 per peso fresco e secco delle

foglie e dei rami. Dall’esame delle caratteristiche morfofisiologiche di lantana tappezzante è

emerso che le piante allevate nel substrato S3= T2060P20, hanno mostrato una qualità globale più

elevata rispetto a quelle allevate negli altri substrati. Le analisi ambientali effettuate consentono di

affermare che il substrato S2= T4040P20ab manifesta un consumo di energia che è il 20% di quella

3,80E-05

4,34E-05 4,27E-05

2,57E-05 2,52E-05

3,44E-06 3,15E-06

-2,54E-05 -2,54E-05-3,00E-05

-2,00E-05

-1,00E-05

0,00E+00

1,00E-05

2,00E-05

3,00E-05

4,00E-05

5,00E-05

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

POPC

9,86E+00

1,16E+00 1,10E+00

2,02E+00 1,97E+00

3,09E+00 3,07E+00

4,48E+00 4,48E+00

0,00E+00

2,00E+00

4,00E+00

6,00E+00

8,00E+00

1,00E+01

1,20E+01

sub. PRIMAVITA T20C60P20 T20C60P20ab T40C40P20 T40C40P20ab T60C20P20 T60C20P20ab T80C0P20 T80C0P20ab

PED

Page 28: Sommario - manageweb.ict.uniba.it · Le misurazioni di tasso fotosintetico netto, conduttanza stomatica e concentrazione sottostomatica sono state condotte utilizzando un analizzatore

28

del substrato commerciale, ha impronta carbonica del 13% rispetto al substrato commerciale;

pertanto è auspicabile il suo impiego tra i vivaisti. Il substrato T20C60P20 manifesta in maniera più

accentuata i vantaggi ambientali con uso di PED pari all’11% del substrato commerciale e impronta

carbonica pressoché nulla. IL substrato S1= T60C20P20 manifesta in maniera meno accentuata i

vantaggi ambientali rispetto ai precedenti con maggiore tenore di compost ma risulta ugualmente

più favorevole all’ambiente per gli indici GWP, ADP e per la PED rispetto al substrato commerciale

Conclusioni L’attività di ricerca svolta nel progetto SEABIA ha dimostrato che la pratica dell’auto-compostaggio

è realizzabile per le aziende vivaistiche con procedure abbastanza semplici e poco dispendiose

basate sull’approvvigionamento di matrici di scarto reperibili sul territorio e sugli scarti di potatura

aziendali. Le prove morfofisiologiche sulle specie analizzate mettono in evidenza che la qualità

delle produzioni non è pregiudicata dalla parziale sostituzione della torba con compost e le analisi

ambientali effettuate consentono di avere substrati autoprodotti con impronta carbonica bassa o

nulla, basso consumo di energia primaria e modesto ricorso a materie prime abiotiche se

confrontate con il substrato commerciale utilizzato nelle convenzionali produzioni della ditta

Primavita. La procedura dell’autocompostaggio nelle aziende vivaistiche utilizzando i fanghi

prodotti per l’autodepurazione delle acque reflue aziendali invece che fertilizzanti chimici azotati

potrebbe migliorare ulteriormente i risultati conseguiti. La procedura del compostaggio di

prossimità e l’autoproduzione dei substrati è pertanto applicabile e conveniente per le aziende

vivaistiche.

Bibliografia Blengini, G.A. 2009. Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy. Resources, Conservation and Recycling, 52, 1373-1381.

Martinez - Blanco, J., Munoz, P., Anton, A., Rieradevall, J. (2009). Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resources, Conservation and Recycling, 53, 340-351.

Russo G., Vivaldi G.A., De Gennaro B., Camposeo S. (2014). Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod., 30, 1-11 http://dx.doi.org/10.1016/j.jclepro.2014.06.064

White E. (2012) A life cycle assessment of a standard Irish composting process and agricultural use of compost. rx3, West Pier Business Campus, Dún Laoghaire, Co. Dublin. http://www.cre.ie/web/wp-content/uploads/2010/12/Compost-Life-Cycle.pdf

Bari, Febbraio 2016 Il Responsabile del progetto

(Ing. Giovanni Russo)