15
South Atlantic deep water circulation Stramma & England 1999

South Atlantic deep water circulation Stramma & England 1999

Embed Size (px)

DESCRIPTION

Antarctic Intermediate Water (AAIW) Stramma & England 1999

Citation preview

Page 1: South Atlantic deep water circulation Stramma & England 1999

South Atlantic deep water circulation

Stramma & England 1999

Page 2: South Atlantic deep water circulation Stramma & England 1999

South Atlantic Central Water (SACW)

Stramma & England 1999

Page 3: South Atlantic deep water circulation Stramma & England 1999

Antarctic Intermediate Water (AAIW)

Stramma & England 1999

Page 4: South Atlantic deep water circulation Stramma & England 1999

The compensating meridional flows

Stramma & England 1999

Page 5: South Atlantic deep water circulation Stramma & England 1999

The light blue shading indicates the high eddy kinetic energy regions in the Brazil/Malvinas Confluence and the Agulhas Retroflection. Light orange shading indicate the regions of convection and subduction. Light green shading areas of upwelling associated to the shallow tropical cells. Red lines depict areas of interest for monitoring the inter-ocean exchanges and the bifurcation of the South Equatorial Current. Purple line near 30°S region for monitoring the meridional mass and heat flux

South Atlantic observations

PIRATA backbone + extensions

GOOD HOPE + BONUS

AX18

AX98ATLAS buoy

GEF

IfM – SIO (Russia)

ifM - INPE

Page 6: South Atlantic deep water circulation Stramma & England 1999

-60 -40 -20 0 20 40 60Latitude

- 2

- 1 . 8

- 1 . 6

- 1 . 4

- 1 . 2

- 1

- 0 . 8

- 0 . 6

- 0 . 4

- 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

Mer

idio

nal H

eat F

lux

(1015

W/m

2 )

TalleyM cD onaghH astenrathH siungO berhuberD a S ilvaEsbesen & KushnirC ayanSO CO R C A25EC C OG arzoli+Barringer

HallR in toulG anachaud & W unschDonnersSchlitzerdelasH erasAdelasH erasBdelasH erasC

Estimates of South Atlantic Meridional Heat Flux

Page 7: South Atlantic deep water circulation Stramma & England 1999

Lat °S Heat Flux (PW) Method Source32 0.16-0.68 Direct Bennett (1978)

30 0.39 Sea-air fluxes Bunker (1980)

32 0.66-0.88 Inverse Fu (1981)

30 0.69 Sea-air fluxes Hastenrath (1982)

32 0.4 Direct Bryan (1982)

30 0.38 Sea-air fluxes Hsiung (1985)

32 0.24 Inverse Rintoul (1991)

30 0.19 model Matano & Philander (1993)

30 0.56 FRAM Saunders &Thompson (1993)

37 0.45 to 0.94 Direct Saunders and King, 1995

37 0.67 FRAM Saunders and King, 1995

30 0.3 Inverse Macdonald & Wunsch (1996)

30 0.29 model Marchesiello et al. (1998)

30 -0.23 Inverse de las Heras & Schlitzer (1999)

30 0.22 Inverse McDonogh and King (2003)

32.5 0.23 Direct Talley (2003)

32.5 0.63 OCCAM Donners (2004)

37 0.28 POCM Matano & Schouten (2004)

30 0.39 ECCO Stammer, Kohl (2007)

30 0.17 ORCA25 Boening, Biastoch (2007)

30-35 0.54 XBT Garzoli and Barringer (2007)

Estimates of South Atlantic Meridional Heat Flux

Page 8: South Atlantic deep water circulation Stramma & England 1999

Median pathways between successive oceanic sections crossed by water parcels. The colors indicate the mean depth of the transfer between two given sections. The North Atlantic overturning is defined here as the thermocline waters (in orange, red and pink) transformed into NADW (blue) in the North Atlantic sector. Numbers quantify the mass transfers between successive control sections (the Atlantic Equator, the Drake Passage, the SO section south of Australia and the Indonesian Throughflow).

Speich et al. 2007, submitted

Lagrangian reconstruction of the global Thermohaline Circulation

Page 9: South Atlantic deep water circulation Stramma & England 1999

Lat °S Heat Flux (PW) Method Source32 0.16-0.68 Direct Bennett (1978)

30 0.39 Sea-air fluxes Bunker (1980)

32 0.66-0.88 Inverse Fu (1981)

30 0.69 Sea-air fluxes Hastenrath (1982)

32 0.4 Direct Bryan (1982)

30 0.38 Sea-air fluxes Hsiung (1985)

32 0.24 Inverse Rintoul (1991)

30 0.19 model Matano & Philander (1993)

30 0.56 FRAM Saunders &Thompson (1993)

37 0.45 to 0.94 Direct Saunders and King, 1995

37 0.67 FRAM Saunders and King, 1995

30 0.3 Inverse Macdonald & Wunsch (1996)

30 0.29 model Marchesiello et al. (1998)

30 -0.23 Inverse de las Heras & Schlitzer (1999)

30 0.22 Inverse McDonogh and King (2003)

32.5 0.23 Direct Talley (2003)

32.5 0.63 OCCAM Donners (2004)

37 0.28 POCM Matano & Schouten (2004)

30 0.39 ECCO Stammer, Kohl (2007)

30 0.17 ORCA25 Boening, Biastoch (2007)

30-35 0.54 XBT Garzoli and Barringer (2007)

Estimates of South Atlantic Meridional Heat Flux

Page 10: South Atlantic deep water circulation Stramma & England 1999

High-resolution XBT line AX18 (14 sections)

Courtesy Garzoli & Baringer 2007, submitted

Page 11: South Atlantic deep water circulation Stramma & England 1999

Meridional heat flux – meridional structureIntegrated from 80ºN

Courtesy Garzoli & Baringer 2007, submitted

Page 12: South Atlantic deep water circulation Stramma & England 1999

1990 1995 2000 2005

-0 .4

0

0.4

0.8

1.235

ºS M

erid

iona

l Hea

t Flu

x (P

W)

ORCA 30ºS

1990 1995 2000 2005

-0 .4

0

0.4

0.8

1.235

ºS M

erid

iona

l Hea

t Flu

x (P

W)

ECCO 35ºS

ORCA 30ºS

1990 1995 2000 2005

-0 .4

0

0.4

0.8

1.235

ºS M

erid

iona

l Hea

t Flu

x (P

W)

ECCO 35ºS

ORCA 30ºS

AX18 35ºS

Meridional heat flux – model comparisons

Page 13: South Atlantic deep water circulation Stramma & England 1999

Structure of meridional flow(some) error sources

Courtesy from Baher, Stroup & Marotzke, in prep.

“observed” thermal wind

ECHAM5/MPI-OM forced with IPCC scenario A1B

Page 14: South Atlantic deep water circulation Stramma & England 1999

MOC Transport variability

MOC

RECONSTRUCTION

Page 15: South Atlantic deep water circulation Stramma & England 1999

• • MOC monitoring based on a RAPID/MOCHA like array MOC monitoring based on a RAPID/MOCHA like array can cover the main characteristics of the MOC, can cover the main characteristics of the MOC, including a possible change in the mean strength, at including a possible change in the mean strength, at various latitudes throughout the South Atlantic.various latitudes throughout the South Atlantic.

• • MOC monitoring in the South Atlantic faces similar MOC monitoring in the South Atlantic faces similar problems as MOC monitoring in the North Atlantic.problems as MOC monitoring in the North Atlantic.

• • Direct observations of boundary currents seem of Direct observations of boundary currents seem of secondary importance, while basin-wide coverage of the secondary importance, while basin-wide coverage of the bottom velocities is crucial if bottom velocities are not bottom velocities is crucial if bottom velocities are not small everywhere.small everywhere.