24
Sparsest Cut S S G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Sparsest Cut S S G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

  • View
    227

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Sparsest Cut

SS G) = min |E(S, S)|

|S|S µ V

G = (V, E)

c- balanced separator

G) = min |E(S, S)| |S|

S µ Vc

|S| ¸ c ¢ |V|Both NP-hard

Page 2: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Why these problems are important

• Arise in analysis of random walks, PRAM simulation, packet routing, clustering, VLSI layout etc.

• Underlie many divide-and-conquer graph algorithms (surveyed by Shmoys’95)

• Related to curvature of Riemannian manifolds and 2nd eigenvalue of Laplacian (Cheeger’70)

• Graph-theoretic parameters of inherent interest (cf. Lipton-Tarjan planar separator theorem)

Page 3: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Previous approximation algorithms

1) Eigenvalue approaches (Cheeger’70, Alon’85, Alon-Milman’85)

2c(G) ¸ L(G) ¸ c(G)2/2 c(G) = minS µ V E(S, Sc)/ E(S)

2) O(log n) -approximation via multicommodity flows (Leighton-Rao 1988)

• Approximate max-flow mincut theorems• Region-growing argument

3) Embeddings of finite metric spaces into l1 (Linial, London, Rabinovich’94)

• Geometric approach; more general result

Page 4: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Our results

1. O( ) -approximation to sparsest cut and conductance

2. O( )-pseudoapproximation to c-balanced separator

(algorithm outputs a c’-balanced separator, c’ < c)

3. Existence of expander flows in every graph

(approximate certificates of expansion)

log n

log n

Page 5: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

LP Relaxations for c-balanced separator

Motivation: Every cut (S, Sc) defines a (semi) metric

1

1

1

0 0

Xij 2 {0,1}

i< j Xij ¸ c(1-c)n2

Xij + Xj k ¸ Xik

0 · Xij · 1

Semidefinite

There exist unit vectors v1, v2, …, vn 2 <n such that Xij = |vi - vj|2 /4

Min (i, j) 2 E Xij

Page 6: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Semidefinite relaxation (contd)

Min (i, j) 2 E |vi –vj|2/4

|vi|2 = 1

|vi –vj|2 + |vj –vk|2 ¸ |vi –vk|2 8 i, j, k

i < j |vi –vj|2 ¸ 4c(1-c)n2

Unit l22 space

Page 7: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

l22 space

Unit vectors v1, v2,… vn 2 <d

|vi –vj|2 + |vj –vk|2 ¸ |vi –vk|2 8 i, j, k

Vi

Vk

Vj

Angles are non obtuse

Taking r steps of length s

only takes you squared distance rs2

(i.e. distance r s)

s ss s

Page 8: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Example of l22 space: hypercube {-1, 1}k

|u – v|2 = i |ui – vi|2 = 2 i |ui – vi| = 2 |u – v|1

In fact, every l1 space is also l22

Conjecture (Goemans, Linial): Every l22 space is l1 up to distortion O(1)

Page 9: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Our Main Theorem

Two subsets S and T are -separated if

for every vi 2 S, vj 2 T |vi –vj|2 ¸

¸

Thm: If i< j |vi –vj|2 = (n2) then there exist two sets S, T of size (n) that are -separated for = ( 1 )

<d

log n

Page 10: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Main thm ) O( )-approximationlog n

v1, v2,…, vn 2 <d is optimum SDP soln; SDPopt = (I, j) 2 E |vi –vj|2

S, T : –separated sets of size (n)

Do BFS from S until you hit T. Take the level of the BFS tree with the fewest edges and output the cut (R, Rc) defined by this level

(i, j) 2 E |vi –vj|2 ¸ |E(R, Rc)| £

) |E(R, Rc)| · SDPopt /

· O( SDPopt) log n

Page 11: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Next 10-12 min: Proof-sketch of Main Thm

Page 12: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Projection onto a random line

<dv

u

<u, v> ??

1

d

1

d

e-t

2/2

d

log nPru[ projection exceeds 2 ] < 1/n2

Page 13: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Algorithm to produce two –separated sets

<d

u

Su

Tu

0.01

d

Check if Su and Tu have size (n)

If any vi 2 Su and vj 2 Tu satisfy

|vi –vj|2 ·

and repeat until no such vi, vj can be found

delete them

If Su, Tu still have size (n), output them

Main difficulty: Show that whp only o(n) points get deleted

d

“Stretched pair”: vi, vj such that |vi –vj|2 · and | h vi –vj, u i | ¸ 0.01

Obs: Deleted pairs are stretched and they form a matching.

Page 14: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

“Matching is of size o(n) whp” : trivial argument fails

d

“Stretched pair”: vi, vj such that |vi –vj|2 · and | h vi –vj, u i | ¸ 0.01

O( 1 ) £ standard deviation

) PrU [ vi, vj get stretched] = exp( - 1 )

= exp( - )log n

E[# of stretched pairs] = O( n2 ) £ exp(- ) log n

Page 15: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Suppose with probability (1) there is a matching of (n) stretched pairs

Vi

Ball (vi , )u

Vj

0.01

d

Page 16: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

The walk on stretched pairs

u

Vi

Vj

0.01

d

0.01

d

r steps

0.01

d

r

|vfinal - vi| < r

| <vfinal – vi, u>| ¸ 0.01r

d

= O( r ) x standard dev.

vfinal

Contradiction!!

Page 17: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Measure concentration (P. Levy, Gromov etc.)

<d

A

A : measurable set with (A) ¸ 1/4

A : points with distance · to A

AA) ¸ 1 – exp(-2 d)

Reason: Isoperimetric inequality for spheres

Page 18: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Expander flows: Motivation

G = (V, E)

S S

Idea: Embed a d-regular (weighted) graph such that

8 S w(S, Sc) = (d |S|)

Cf. Jerrum-Sinclair, Leighton-Rao(embed a complete graph)

“Expander”

Graph w satisfies (*) iff L(w) = (1) [Cheeger]

(*)

Our Thm: If G has expansion , then a d-regular expander flow can be routed in it where d=

log n

(certifies expansion = (d) )

Page 19: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Example of expander flow

n-cycle

Take any 3-regular expander on n nodes

Put a weight of 1/3n on each edge

Embed this into the n-cycle

Routing of edges does not exceed any capacity ) expansion =(1/n)

Page 20: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Formal statement : 9 0 >0 such that following LP is feasible for d = (G)

log n

fp ¸ 0 8 paths p in G

8i j p 2 Pij fp = d (degree)

Pij = paths whose endpoints are i, j

8S µ V i 2 S j 2 Sc p 2 Pij fp ¸ 0 d |S| (demand graph is

an expander)

8e 2 E p 3 e fp · 1 (capacity)

Page 21: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

New result (A., Hazan, Kale; 2004)

O(n2) time algorithm that given any graph G finds for some d >0

• a d-regular expander flow • a cut of expansion O( d )log n

Ingredients: Approximate eigenvalue computations; Approximate flow computations (Garg-Konemann; Fleischer) Random sampling (Benczur-Karger + some more)

Idea: Define a zero-sum game whose optimum solution is an expander flow; solve approximately using Freund-Schapire approximate solver.

)d) · (G) · O(d )log n

Page 22: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

Open problems

• Improve approximation ratio to O(1); better rounding??(our conjectures may be useful…)

• Extend result to other expansion-like problems (multicut, general sparsest cut; MIN-2CNF deletion)

• Resolve conjecture about embeddability of l22 into l1

• Any applications of expander flows?

Page 23: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

A concrete conjecture (prove or refute)

G = (V, E); = (G)

For every distribution on n/3 –balanced cuts {zS} (i.e., S zS =1)

there exist (n) disjoint pairs (i1, j1), (i2, j2), ….. such that for each k,

• distance between ik, jk in G is O(1/ )

• ik, jk are across (1) fraction of cuts in {zS}

(i.e., S: i 2 S, j 2 Sc zS = (1) )

Conjecture ) existence of d-regular expander flows for d =

Page 24: Sparsest Cut S S  G) = min |E(S, S)| |S| S µ V G = (V, E) c- balanced separator  G) = min |E(S, S)| |S| S µ V c |S| ¸ c ¢ |V| Both NP-hard

log n