17
Spatial Resolution of a MPGD readout TPC Using the Charge Dispersion Signal Carleton University Carleton University A. Bellerive K. Boudjemline R. Carnegie M. Dixit (P.I.) A. Kochermin J. Miyamoto H. Mes E. Neuheimer E. Rollin K. Sachs Université Université de de Montréal Montréal J.-P. Martin Alain Bellerive Canada Research Chair CAP2005 – Instrumentation for Particle Physics

Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

1

Spatial Resolution of a MPGD

readout TPC Using the Charge

Dispersion Signal

Carleton UniversityCarleton University

A. Bellerive K. BoudjemlineR. Carnegie M. Dixit (P.I.)A. Kochermin J. MiyamotoH. Mes E. NeuheimerE. Rollin K. Sachs

UniversitéUniversité dede MontréalMontréal

J.-P. Martin

Alain BelleriveCanada Research Chair

CAP2005 – Instrumentation for Particle Physics

Page 2: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

2

Detector Design for the ILC

Physics Challenge

R&D on TPC at Carleton

Results from Cosmic Data

Planning Ahead

Summary

Outline

Alain BelleriveCanada Research Chair

CAP2005 – Instrumentation for Particle Physics

Page 3: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

3

Detector Concept Design for the ILC

TPC

Page 4: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

4

Tracking Requirements

Excellent momentum resolution

Precision vertexing (b-tagging)

Measure about 200 track points with a Measure about 200 track points with a resolution of 100 resolution of 100 µµm or less for all tracksm or less for all tracks

Resolution goal near the ultimate limit from Resolution goal near the ultimate limit from diffusion & electron statisticsdiffusion & electron statistics

Hermetic & minimized material

Operate continuously throughout ~1 ms train

Particle flow for overall event reconstruction

Robust, reliable, stable, affordable & long life time

Page 5: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

5

Precision measurements: Higgs Boson

Page 6: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

6

Tracking challenge

Model Independent Higgs reconstruction via the standard reference reaction:

X ZH ll→σ(1/pt) ~ 2 ×10-5 (GeV/c)-1

is necessary for the tracker

σ(1/pt) ~ 1.5 ×10-4 (GeV/c)-1

for the TPC only

Recoil Mass (GeV/c2)

52 2 10t

t

pp

δ −= × 52 8 10t

t

pp

δ −= ×

Recoil Mass (GeV/c2)

1

350500

s GeVL fb−

=

=

2GeV/c 120=HM

Signal

Background

Page 7: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

7

Time-Projection-Chamber (TPC)

cm

cm

Long drift path

E [230 V/cm]→

- 60 kV

B [2 - 4 T]→

Page 8: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

8

Conventional wire/pad TPC readout

x x

QQ

However if the signal on the adjacent

For the GEM readout, the charge may becollected by a single (~mm size) pad due tosuppression of transverse diffusion in highmagnetic field

E

Pad-Plane

Pad-Row

Sense-/ Field-Plane

Gating-Plane

Track

Frisch-Grid

E not parallel to Bnear anodes

Q

Position

E×B and track angle systematic effects cannot be avoided in a wire/pad TPC (wires few mm apart)Even when systematics cancel, the resolution is determined by the width of the pad response function and not by physics of diffusionLarge pad response functionfurther limits the TPC two-track resolving power Positive ion space-charge effect also adds complicationTechnology used at LEPwith σ = 200 µm

E×B effect

inducedsignal

Page 9: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

9

Micro-Pattern-Gas-Detector (MPGD) Readout

MPGD hole

P ~ 140 µm

D ~ 60 µm

E×B effectreduced

~ 10

0 µm

e.g. GEM

Page 10: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

10

Charge Collection on MPGD Readout Pads

Q

Position

MPGD

No preferred direction for tracks Electric field very uniformTiny amplification MPGD holesSmall multiplication gapPositive ion feedback reducedPads dimension 2 × 6 mm2

Limited by charge collection on a single pad for a TPC in high B-fieldDifficult centroid findingResolution σ = 2 mm / √12 ≈ 580 µm

Limitation

_

Optimize readout geometry and diffusion

Study induced signal on neighboring pads

e.g. Micromegas

Page 11: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

11

Drift Gap

Induction Gap

VD

VT

VB

GND

�VGEM

Readout anode pads or strips

MICROMESH

10

0m

ANODE PADS

e-

E(drift)

E

50

kV

/cm

Conversion

ga

pAmplification

3 m

m

12

PARTICLE TRACKELECTRONICS

AMPLIFIER

The Gas Electron Multiplier (GEM) Micromegas

GEM: Two copper foils separated by kapton, multiplication takes place in holes, uses 2 or 3 (and even 4) stages, maximize diffusion within the gap

Micromegas: thin metallic micromesh sustained by 50µm pillars, multiplication between anode and mesh, one stage, rebust to discharge

MPGDs achieve excellent ≈ 40 µm resolution with 200 µm wide pads This implies a VERY large number of channels and high cost

ILC TPC channel count is already ~ 1.5x106 with 2 mm wide padsNot practical to use pads much narrower than 2 mm

Maximize diffusion & multiple gap (GEM) – resistive anode (Micromegas)

Gas Electron Multiplier (GEM) and Micromegas

Page 12: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

12

The Concept of Charge Dispersion

Modified GEM anode with a high resistivity film bonded to a readout plane with an insulating spacer2-dim continuous RC network defined by material properties and geometryPoint charge at r=0 & t=0disperses with timeTime dependent anode charge density sampled by readout pads:

∂ρ∂t

=1

RC

∂2ρ∂r2 +

1r

∂ρ∂r

⇒ ρ(r, t) =RC

2t

−r 2RC4 te

ρ(r,t) integral over pads

ρ(r) Q

r / mmmm ns

Page 13: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

14

Cosmic Ray Resolution of a MPGD-TPC

Instrumentation lab at Carleton15 cm drift length TPC: GEM & Micromegas readout [B=0]Ar:CO2/90:10 chosen to simulate low transverse diffusion in a magnetic field.DAQ: 200 MHz custom 8 bit FADCs [UdeM]Aleph preamps τ Rise= 40 ns τ Fall = 2 µs 60 tracking pads2 x 6 mm2

2 trigger pads 24 x 6 mm2

Page 14: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

15

GEM with direct charge readout

GEM with charge dispersion readout

Compared to direct charge readout, charge dispersion gives better resolution for GEM with Z dependence close to the diffusion limit. For Micromegas, the resolution is also better than for direct charge GEM readout.

Micromegas with charge dispersion readout

TPC transverse resolution for Ar:CO2 (90:10)

R.K.Carnegie et.al., NIM A538 (2005) 372

R.K.Carnegie et.al., to be published

σ 02 +

CD2

Nez (Diffusion limit of resolution)

Page 15: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

16

Goals of the Upcoming Test Beam

Location: KEK 1-4 GeV/c hadron beam

Superconducting Jacee magnet: 1.2 Tesla

New readout pads with 128 channels

Test the resolution of GEM and Micromegaswith resistive foils within a magnetic fieldInvestigate two-track reconstruction

Study concept of new fast-electronics

Page 16: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

17

Future & International Detector Design

Strong collaboration on TPC R&D between:- UVIC/Carleton/UdeM (Canada)- Aachen/Hamburg/Karlsruhe/MPI-Munich (Germany)- Orsay/Saclay (France)- Berkeley/Cornel/Purdue (USA)- KEK & DESYThe ILC detector Conceptual Design Report ~2007/8 Strong commitments to be part of these activitiesLarge prototype at DESY with the Jacee magnet:- Simulation and two-track pattern recognition- Field cage and investigation of non-uniformity- Design of the end plate readout and electronicsGood timing to join the ILC/Canada effort

Page 17: Spatial Resolution of a MPGD A. Bellerive K. Boudjemline R. …alainb/research/tpc/CAP05_TPC_Carleton.pdf · The Gas Electron Multiplier (GEM) Micromegas GEM: Two copper foils separated

18

TPC with MPGD readout is a very well suited technology for the ILC Better space point resolution has been achieved for GEM & Micromegas readout TPC with a resistive anode than for the conventional direct charge readout TPCMeasured resolution near the diffusion limit in cosmic tests with no magnetic field for MPGD with resistive anodesWith suitable choice of technology, gas, & electronics for a resolution of ~100 µm for all tracks (2.5 m drift) appears within reach for the ILC tracking systemThe diffusion limit will be lower in a magnetic field: cosmic & beam tests planned to confirm the diffusion limit of resolution for a TPC in a magnet [KEK and DESY]Future large scale prototype: Canada is engaged in the design and construction of a large international prototype with MPGD readout

Alain BelleriveCanada Research Chair

CAP2005 – Instrumentation for Particle Physics

Summary & outlook