26
Spatio-Temporal Chaos in Pattern-Forming Systems: Defects and Bursts with Santiago Madruga, MPIPKS Dresden Werner Pesch, U. Bayreuth Yuan-Nan Young, New Jersey Inst. Techn. DPG Frühjahrstagung 31.3.2006 supported by NASA and DOE

Spatio-Temporal Chaos in Pattern-Forming Systems: Defects ...people.esam.northwestern.edu/~riecke/research/Talks/dpg06.pdf · Defect Chaos Phase Chaos Frozen Vortices L BF T Stable

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Spatio-Temporal Chaos

    in Pattern-Forming Systems:

    Defects and Bursts

    with

    Santiago Madruga, MPIPKS Dresden

    Werner Pesch, U. Bayreuth

    Yuan-Nan Young, New Jersey Inst. Techn.

    DPG Frühjahrstagung 31.3.2006 supported by NASA and DOE

  • Pattern Formation

    Symmetry-breaking instabilities ⇒ patterns

    Rayleigh-Bénard convection of a

    fluid layer heated from below

    T+dT

    T

    (Plapp & Bodenschatz, 1996) (Bodenschatz, de Bruyn, Ahlers, Cannell, 1991)

  • Spatio-Temporal Chaos

    Spiral-Defect Chaos

    (Morris, Bodenschatz, Cannell, Ahlers, 1993)

    • Small Prandtl number:

    large-scale flows

    Küppers-Lortz Chaos

    (Hu, Ecke, Ahlers, 1997) ··

    • Rotation:

    Küppers-Lortz Instability

  • Goals:

    • Quantitative characterization

    of spatio-temporally chaotic states

    and of transitions between them

    (HR & Madruga, 2006)

    • Origin of temporal and spatial chaos

    and the mechanisms maintaining it

    Microscopic

    equations

    Reduction

    ⇐⇒

    Order parameters

    Symmetries

    Macroscopic

    equations

  • Non-Boussinesq Convection

    (Bodenschatz, de Bruyn, Ahlers, Cannell, 1991)

    T+dT

    T

  • Hexagons in Rotating Systems

    • Weakly nonlinear description of hexagons

    without rotation

    γ=0Rolls

    µ

    Steady Hexagons

    with rotation

    γ>0

    µ

    Steady Hexagons

    Rolls

    Whirling Hexagons

    (J.W. Swift, 1984; Soward, 1985)

    • Hopf bifurcation to whirling hexagons

    • weak non-Boussinesq effects:

    coupled Ginzburg-Landau equations ⇒ CGL defect chaos(Echebarria & HR, 2000)

  • Rotating Non-Boussinesq Convection

    - Navier-Stokes equation for momentum Vi

    1

    Pr

    (

    ∂tVi + Vj∂j

    (

    Vi

    ρ

    ))

    = −∂ip+ δi3

    (

    1 + γ1(−2z +Θ

    R)

    )

    Θ +

    +∂j

    [

    νρ

    (

    ∂i(Vj

    ρ) + ∂j(

    Vi

    ρ)

    )]

    + 2Ωǫij3Vj

    - Heat equation and continuity equation

    - Weakly temperature-dependent fluid parameters

    ρ(T ) = 1 − γ0T − T0R

    (1 + γ1T − T0R

    ) ν(T ) = 1 + γ2T − T0R

    .....

  • Rotating Non-Boussinesq Convection

    - Navier-Stokes equation for momentum Vi

    1

    Pr

    (

    ∂tVi + Vj∂j

    (

    Vi

    ρ

    ))

    = −∂ip+ δi3

    (

    1 + γ1(−2z +Θ

    R)

    )

    Θ +

    +∂j

    [

    νρ

    (

    ∂i(Vj

    ρ) + ∂j(

    Vi

    ρ)

    )]

    + 2Ωǫij3Vj

    - Heat equation and continuity equation

    - Weakly temperature-dependent fluid parameters

    ρ(T ) = 1 − γ0T − T0R

    (1 + γ1T − T0R

    ) ν(T ) = 1 + γ2T − T0R

    .....

    • Fully nonlinear hexagon

    solution

    linear stability analysis

    • Direct numerical simulation of

    chaotic states

    Interpretation:

    Reduction to complex

    Ginzburg-Landau equation

  • Reentrant Hexagons in Non-Rotating Convection

    • Stability of hexagons with respect to amplitude perturbations

    20 30 40 50 60Mean Temperature T

    0

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Red

    . Ray

    leig

    h N

    umbe

    r ε

    h=1.8 mm

    Unstable Rolls

    Stable Rolls

    Unstable Hexagons

    Stable HexagonsReentrant Hexagons

    • Non-Boussinesq effects increase

    with decreasing mean temperature T0

  • Reentrant Hexagons in Non-Rotating Convection

    • Stability of hexagons with respect to amplitude perturbations

    20 30 40 50 60Mean Temperature T

    0

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Red

    . Ray

    leig

    h N

    umbe

    r ε

    h=1.8 mm

    Unstable Rolls

    Stable Rolls

    Unstable Hexagons

    Stable HexagonsReentrant Hexagons

    • Strong non-Boussinesq effects (low mean temperature):

    - no instability of hexagons to rolls

    - coexistence of stable hexagons and rolls

  • Reentrant Hexagons in Non-Rotating Convection

    • Stability of hexagons with respect to amplitude perturbations

    20 30 40 50 60Mean Temperature T

    0

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Red

    . Ray

    leig

    h N

    umbe

    r ε

    h=1.8 mm

    Unstable Rolls

    Stable Rolls

    Unstable Hexagons

    Stable HexagonsReentrant Hexagons

    • Weak non-Boussinesq effects

  • Reentrant Hexagons in Non-Rotating Convection

    • Stability of hexagons with respect to amplitude perturbations

    20 30 40 50 60Mean Temperature T

    0

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Red

    . Ray

    leig

    h N

    umbe

    r ε

    h=1.8 mm

    Unstable Rolls

    Stable Rolls

    Unstable Hexagons

    Stable HexagonsReentrant Hexagons

    • Weak non-Boussinesq effects

    • Intermediate non-Boussinesq effects

  • Reentrant Hexagons in Non-Rotating Convection

    • Stability of hexagons with respect to amplitude perturbations

    20 30 40 50 60Mean Temperature T

    0

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    Red

    . Ray

    leig

    h N

    umbe

    r ε

    h=1.8 mm

    Unstable Rolls

    Stable Rolls

    Unstable Hexagons

    Stable HexagonsReentrant Hexagons

    • Weak non-Boussinesq effects

    • Intermediate non-Boussinesq effects

    • Strong non-Boussinesq effects

  • Weak Non-Boussinesq Effects

    water: thickness h = 4.92mm

    mean temperature T0 = 12oC

    critical temperature difference

    ∆Tc = 6.4oC

    rotation rate Ω = 65 (∼ 1 Hz)

    Hopf bifurcation at ǫ = 0.07

    0 0.05 0.1 0.15 0.2 0.25

    Red. Rayleigh Number ε

    0

    200

    400

    600

    Am

    plit

    ude

    (a.u

    .)

    OscillationAmplitude

    steady oscillating

    ǫ = 0.2

  • Description within CGL Framework

    ~

    ~

    ~

    q1

    q

    q

    3

    2

    • Extract oscillation amplitude H(X,T )

    – wavevectors near q̃n – frequencies near ωH

    vx(x, t, z = 0) =3

    n=1

    (

    R+[

    e2πni/3H(X,T ) eiωH t + c.c.])

    exp (iq̃n · x) + . . .

    ∂tH = µH + (1 + ib1)∇2H− (b3 − i)H|H|

    2

    • Complex Ginzburg-Landau equation:

    the universal description of weakly nonlinear oscillations

  • Description within CGL Framework

    ~

    ~

    ~

    q1

    q

    q

    3

    2

    • Extract oscillation amplitude H(X,T )

    – wavevectors near q̃n – frequencies near ωH

    vx(x, t, z = 0) =3

    n=1

    (

    R+[

    e2πni/3H(X,T ) eiωH t + c.c.])

    exp (iq̃n · x) + . . .

    ∂tH = µH + (1 + ib1)∇2H− (b3 − i)H|H|

    2

    • CGL Defect Chaos (Hr)

    0 0.5 1 1.5 2 2.5b3

    -2

    0

    2

    4

    b1

    Defect Chaos Phase Chaos

    Frozen

    Vortices

    L

    BF

    T

    StablePlane Waves

    S2

    (Chaté & Manneville, 1996)

  • Description within CGL Framework

    ~

    ~

    ~

    q1

    q

    q

    3

    2

    • Extract oscillation amplitude H(X,T )

    – wavevectors near q̃n – frequencies near ωH

    vx(x, t, z = 0) =3

    n=1

    (

    R+[

    e2πni/3H(X,T ) eiωH t + c.c.])

    exp (iq̃n · x) + . . .

    ∂tH = µH + (1 + ib1)∇2H− (b3 − i)H|H|

    2

    • Extract coefficients b1 and b3from direct Navier-Stokes

    simulations

    • Bistability:

    Plane waves ↔ defect chaos

    0 0.5 1 1.5b3

    -1

    0

    1

    b1

    Defect Chaos

    L BF

    T

    StablePlane Waves

    (Chaté & Manneville, 1996)

  • Description within CGL Framework

    ~

    ~

    ~

    q1

    q

    q

    3

    2

    • Extract oscillation amplitude H(X,T )

    – wavevectors near q̃n – frequencies near ωH

    vx(x, t, z = 0) =3

    n=1

    (

    R+[

    e2πni/3H(X,T ) eiωH t + c.c.])

    exp (iq̃n · x) + . . .

    ∂tH = µH + (1 + ib1)∇2H− (b3 − i)H|H|

    2

    • Navier-Stokes Simulation (|H|)

    0 0.5 1 1.5b3

    -1

    0

    1

    b1

    Defect Chaos

    L BF

    T

    StablePlane Waves

    (Chaté & Manneville, 1996)

  • Intermediate Non-Boussinesq Effects

    h = 4.92mm Ω = 65 Pr = 8.7

    T0 = 14oC ∆Tc = 8.3

    oC Ω = 65

    • Hopf bifurcation backward

    • Hysteresis and bistability

    of steady and oscillating hexagons

    ǫ = 0.5

    • restabilization of steady hexagons

    at larger ǫ

    • fluctuating localized domains

    of whirling hexagons

    0 0.2 0.4 0.6

    Red. Rayleigh ε

    0

    0.5

    1

    1.5

    Am

    plit

    ude

    (a.u

    .)

    εH

    steady hexagonsoscillating hex.

  • Quintic Complex Ginzburg-Landau Equations

    • Quintic Ginzburg-Landau equation

    ∂tH = µH + (dr + idi)∇2H− (cr + ici)H|H|

    2 − (gr + igi)H|H|4

    • Extract coefficients

    d = 1.90 + 0.033i, c = −1.1 + 7.2i, g = 3.6 + 1.5i

    • Demodulation

    Navier-Stokes quintic Ginzburg-Landau

  • Localization Mechanism

    • CGL coupled to phase modes

    ∂tH = (µ−Qδ∇ · ~ϕ)H + d∇2H− cH|H|2 − gH|H|4

    Two contributions:

    1. Wavenumber selection by front

    H = Reiψ ~k = ∇ψ

    • large ci, gi:

    gradients in the oscillation

    magnitude R induce

    wavevector ~k

    • diffusion dr:

    oscillation amplitude damped

    |H|

    |~k|

    (Bretherton and Spiegel, 1983;...,Coullet and Kramer, 2004)

  • Localization Mechanism

    • CGL coupled to phase modes

    ∂tH = (µ−Qδ∇ · ~ϕ)H + d∇2H− cH|H|2 − gH|H|4

    Two contributions:

    1. Wavenumber selection by front

    2. Compression ∇ · ϕ of underlying hexagon pattern

    Pattern Compression ∇ · ϕ

    4.4 4.6 4.8 5 5.2 5.4Wavenumber q

    0

    0.2

    0.4

    0.6

    Gro

    wth

    rate

    σ

    A ε=0.2 B ε=0.5

  • Strong Non-Boussinesq Effects

    • h = 4.6mm Ω = 65 Pr = 8.7 T0 = 12◦C ∆Tc = 10

    ◦C

    • no Hopf bifurcation to whirling hexagons

    • only side-band instabilities

    4.4 4.6 4.8 5 5.2 5.4 5.6Wavenumber q

    0

    0.5

    1

    Red

    uced

    Ray

    leig

    h (R

    -Rc)

    /Rc

    steady hexagonslinearly stable

    ǫ = 1.0

    • whirling destroys order of hexagonal lattice

  • Strong Non-Boussinesq Effects

    • h = 4.6mm Ω = 65 Pr = 8.7 T0 = 12◦C ∆Tc = 10

    ◦C

    • no Hopf bifurcation to whirling hexagons

    • only side-band instabilities

    4.4 4.6 4.8 5 5.2 5.4 5.6Wavenumber q

    0

    0.5

    1

    Red

    uced

    Ray

    leig

    h (R

    -Rc)

    /Rc

    steady hexagonslinearly stable

    ǫ = 0.87

    • whirling destroys order of hexagonal lattice

  • Defect Statistics

    • ǫ = 1

    • Triangulation

    • Heptagons

    • Pentagons

    • Defect Statistics

    Broader than

    squared Poisson:

    Correlations

    20 30 40 50 60 70 80 90N

    0

    0.02

    0.04

    0.06

    0.08

    Rel

    ativ

    e F

    requ

    ency

  • Conclusions

    Defects and bursts in rotating non-Boussinesq convection

    • Whirling hexagons

    - reduction to CGL

    - 2d CGL defect chaos

    • Localized bursts of oscillations

    – quintic CGL: ‘retracting fronts’, collapse

    – compression of lattice

    • Whirling chaos

    – whirling ⇔ penta-hepta defects

    Phys. Rev. Lett. 96 (2006) 074501, J. Fluid Mech. 548 (2006) 341, New J. Phys. 5 (2003) 135.

    www.esam.northwestern.edu/riecke