42
SpecNet: Spectrum Sensing Sans Frontières Anand Iyer * , Krishna Chintalapudi * , Vishnu Navda * , Ramachandran Ramjee * , Venkata N. Padmanabhan * and Chandra R. Murthy + * Microsoft Research India + Indian Institute of Science

SpecNet: Spectrum Sensing Sans Frontières

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SpecNet: Spectrum Sensing Sans Frontières

SpecNet: Spectrum Sensing Sans Frontières

Anand Iyer*, Krishna Chintalapudi*, Vishnu Navda*, Ramachandran Ramjee*, Venkata N. Padmanabhan*

and Chandra R. Murthy+

*Microsoft Research India +Indian Institute of Science

Page 2: SpecNet: Spectrum Sensing Sans Frontières

• McHenry “NSF Spectrum Occupancy Measurement Project Summary”

- Average occupancy ~5.2% in 30MHz – 3GHz

• McHenry et.al. “Chicago Spectrum Occupancy Measurements & Analysis” [TAPAS 2006]

- 17% occupancy in Chicago, 13% in New York

• China [MobiCom 2009], Singapore [CrownCom 2008], Germany, New Zealand, Spain…

Spectrum Measurement Studies

2

Page 3: SpecNet: Spectrum Sensing Sans Frontières

• McHenry “NSF Spectrum Occupancy Measurement Project Summary”

- Average occupancy ~5.2% in 30MHz – 3GHz

• McHenry et.al. “Chicago Spectrum Occupancy Measurements & Analysis” [TAPAS 2006]

- 17% occupancy in Chicago, 13% in New York

• China [MobiCom 2009], Singapore [CrownCom 2008], Germany, New Zealand, Spain…

Spectrum Measurement Studies

Spectrum heavily underutilized

3

FM

TV

GSM

CDMA

Spectrum Occupancy in Bangalore, India

Page 4: SpecNet: Spectrum Sensing Sans Frontières

Impact

Nov 4, 2008: FCC voted 5-0 to approve Opportunistic Spectrum Access (OSA) in licensed bands

Sep 23, 2010: FCC determines final rules for the use of whitespaces. Removes mandatory sensing requirement

4

Page 5: SpecNet: Spectrum Sensing Sans Frontières

• Studies conducted only at a handful of locations - Till date, only the US has allowed OSA

• Represent static spectrum occupancy - Future OSA devices may require dynamic spatio-temporal occupancy information

• Through evaluation of OSA proposals from the research community is hard - Little or no access to real-world data from cross-geographic locations

However…

5

Page 6: SpecNet: Spectrum Sensing Sans Frontières

• Studies conducted only at a handful of locations - Till date, only the US has allowed OSA

• Represent static spectrum occupancy - Future OSA devices may require dynamic spatio-temporal occupancy information

• Through evaluation of OSA proposals from the research community is hard - Little or no access to real-world data from cross-geographic locations

However…

6

No infrastructure for measuring real-time spectrum occupancy across vast regions

Page 7: SpecNet: Spectrum Sensing Sans Frontières

Remote User

Spectrum Analyzer

“A first-of-its-kind platform that allows spectrum analyzers around the world to be networked and efficiently used in a coordinated manner for

spectrum measurement as well as implementation and evaluation of distributed sensing applications”

SpecNet

7

Page 8: SpecNet: Spectrum Sensing Sans Frontières

SpecNet

Conduct remote spectrum measurements

Construction & maintenance of spatio-temporal usage maps

Deploy & evaluate real-time distributed sensing applications

8

Page 9: SpecNet: Spectrum Sensing Sans Frontières

9

Challenges

• Expensive ($10K - $40K)

• Limited availability

• Support user demands

• Applications require quick detection

Complete tasks in minimal time

Page 10: SpecNet: Spectrum Sensing Sans Frontières

• Motivation

• SpecNet

– Architecture

– Components

– Programmability

• Spectrum Analyzer Primer

• Key Challenge – Resource Management

• Applications

Overview

10

Page 11: SpecNet: Spectrum Sensing Sans Frontières

SpecNet Operation

Master Server

Slave Servers import xmlrpclib; APIServer = xmlrpclib.ServerProxy(http://bit.ly/SpecNetAPI, allow_none=True); devices = APIServer.GetDevices(None, None);

Users

Low-level GetDevices ReserveDevices RunCommandOnDevice

High-level GetOccupancy GetPowerSpectrum FindPowerAtLocation LocalizeTransmitter

11

Page 12: SpecNet: Spectrum Sensing Sans Frontières

Components

Spectrum Analyzer

DeviceManager

CommunicationManager Master Server

VISA

SCPI

Slave Server

Page 13: SpecNet: Spectrum Sensing Sans Frontières

Components

CommunicationManager

DatabaseManager

Scheduler ClientManager

Server Engine

API Webservice

Slave Servers

Users

SQL Server

Master Server

Page 14: SpecNet: Spectrum Sensing Sans Frontières

Programmability

• Sophisticated Users – ReserveDevices

– RunCommandOnDevice

• Policy Users – GetPowerSpectrumHistory

– GetOccupancyHistory

• Others (E.g. network operators) – LocalizeTransmitter

– FindPowerAtLocation

– GetPowerSpectrum

– GetOccupancy

Page 15: SpecNet: Spectrum Sensing Sans Frontières

• Used to measure the spectral composition of waveforms

• Frequency span (Q) and Resolution Bandwidth (RBW, ρ)

Spectrum Analyzer Primer

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

702 702.1 702.2 702.3 702.4

Re

ceiv

ed

Sig

nal

Po

we

r (d

Bm

)

Frequency (MHz)

1MHz

30KHz

10KHz

1KHz

15

Noise Floor

Page 16: SpecNet: Spectrum Sensing Sans Frontières

• Used to measure the spectral composition of waveforms

• Frequency span (Q) and Resolution Bandwidth (RBW, ρ)

Spectrum Analyzer Primer

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

-50.00

-40.00

702 702.1 702.2 702.3 702.4

Re

ceiv

ed

Sig

nal

Po

we

r (d

Bm

)

Frequency (MHz)

1MHz

30KHz

10KHz

1KHz

16

Noise Floor

Lowering RBW reveals details about the signal, and lowers noise floor

Page 17: SpecNet: Spectrum Sensing Sans Frontières

Spectrum Analyzer Primer

• Often users are interested in determining which parts of the spectrum are in use.

- Distinguish between signal and noise

17

Page 18: SpecNet: Spectrum Sensing Sans Frontières

Spectrum Analyzer Primer

• Often users are interested in determining which parts of the spectrum are in use.

- Distinguish between signal and noise

Lowering noise floor helps in reliably detecting transmissions

18

Page 19: SpecNet: Spectrum Sensing Sans Frontières

Spectrum Analyzer Primer

• Noise floor determines the detection range of a spectrum analyzer

19

d

)log(100 dPPd

Lowering noise floor helps in detecting transmitters farther away

Page 20: SpecNet: Spectrum Sensing Sans Frontières

• Motivation

• SpecNet – Architecture

– Components

– Programmability

• Spectrum Analyzer Primer

• Key Challenge – Resource Management – When multiple devices are available, how should

the scanning task be scheduled?

• Applications

Overview

20

Page 21: SpecNet: Spectrum Sensing Sans Frontières

• Depends on Frequency Span (Q) and RBW (ρ)

• Linear dependency on span, 𝑇 ∝ 𝑄

Scan Time

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Tim

e t

o S

can

(s)

Frequency Span (MHz)

Analyzer 1, RBW=3KHz Analyzer 1, RBW=1KHz

Analyzer 2, RBW=3KHz Analyzer 2, RBW=1KHz

21

Page 22: SpecNet: Spectrum Sensing Sans Frontières

• In theory inversely proportional to RBW, 𝑇 ∝1

𝜌

Scan Time

0.01

0.1

1

10

100

1 10 100 1000 10000 100000 1000000

Tim

e t

o s

can

(s)

Resolution Bandwidth (Hz)

Analyzer 1

Analyzer 2

Analyzer 3

In practice… piece-wise linear!

22

Page 23: SpecNet: Spectrum Sensing Sans Frontières

a. Spectral Load Sharing

𝑆1 and 𝑆2 split the frequency span among themselves

If 𝜏𝑖 is the minimum scanning time per MHz for 𝑆𝑖

𝑇 = max 𝜏1𝑄1, 𝜏2𝑄2

𝑄1 ∶ 𝑄2 =1

𝜏1 :

1

𝜏2 𝑆1

𝑆2

23

Page 24: SpecNet: Spectrum Sensing Sans Frontières

b. Geographical Load Sharing

𝑆1

𝑆2

𝑆1 and 𝑆2 partition the region of interest

24

Page 25: SpecNet: Spectrum Sensing Sans Frontières

SpecNet uses a numerical approximation to Voronoi partitioning

b. Geographical Load Sharing

𝑆1

𝑆2

𝑆1 and 𝑆2 partition the region of interest

25

Page 26: SpecNet: Spectrum Sensing Sans Frontières

SpecNet uses a numerical approximation to Voronoi partitioning

b. Geographical Load Sharing

𝑆1

𝑆2

𝑆1 and 𝑆2 partition the region of interest

Scan time depends on detection range as:

𝑇 ∝ 𝑑𝛾

T decreases super-linearly

26

Page 27: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

27

S2

S1

S3

Page 28: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

28

S2

S1

S3

Page 29: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

29

S2

S1

S3

Page 30: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

30

S2

S1

S3

Page 31: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

31

S2

S1

S3

Page 32: SpecNet: Spectrum Sensing Sans Frontières

c. Geo-Spectral Load Sharing

32

S2

S1

S3

Page 33: SpecNet: Spectrum Sensing Sans Frontières

33

Geo-Spectral Performance

Spectral Geographical Geo-Spectral

Time to detect (s) 1118 1205 526

Page 34: SpecNet: Spectrum Sensing Sans Frontières

• Motivation

• SpecNet – Architecture

– Components

– Programmability

• Spectrum Analyzer Primer

• Key Challenge – Resource Management

• Applications – Remote Measurements

– Primary Coverage Estimation

– Spectrum Cop

Overview

34

Page 35: SpecNet: Spectrum Sensing Sans Frontières

#1. Doing Simple Scans GetDevices([lat,lng,r])

GetPowerSpectrum(device_id,Fs,Fe,Nf)

(Lat, Lng)

r

• SpecNet maps the required noise floor to the resolution bandwidth

• Schedules scan tasks at each analyzer

• Runs the job and returns the results

GetDevices([lat,lng,r]) GetPowerSpectrum(device_id,Fs,Fe,Nf)

35

Page 36: SpecNet: Spectrum Sensing Sans Frontières

Remote Measurement Studies

FM Radio

GSM

Stony Brook, USA 36

Page 37: SpecNet: Spectrum Sensing Sans Frontières

GSM

FM Radio

Remote Measurement Studies

Edinburgh, UK 37

Page 38: SpecNet: Spectrum Sensing Sans Frontières

38

Remote Measurement Studies

How does the FM band look like in Bangalore, India NOW?

Page 39: SpecNet: Spectrum Sensing Sans Frontières

#2. Spectrum Cop • Quickly detect violators

- Simplicity in writing complex real-time sensing applications requiring coordination

Use GetOccupancy to get an occupancy list in the desired frequency span

For each occupied frequency band, do finer scans using GetPowerSpectrum by setting a lower RBW,

Feed the results to LocalizeTransmitter to locate the transmitter.

39

Page 40: SpecNet: Spectrum Sensing Sans Frontières

#2. Spectrum Cop • Quickly detect violators

- Simplicity in writing complex real-time sensing applications requiring coordination

40

Page 41: SpecNet: Spectrum Sensing Sans Frontières

Limitations

41

• Benefit to owners

– Expensive devices

• Attenuation

– 5-20 dB attenuation due to buildings

• Privacy/Security concerns

– Fine-grained traffic monitoring/user-tracking not possible

Page 42: SpecNet: Spectrum Sensing Sans Frontières

Conclusion

• FCC ruling has spurred tremendous interest, both in academia and industry

• Key requirement is a measurement infrastructure that provides real data

• SpecNet fulfills this need by enabling a geographically distributed spectrum analyzer network

SpecNet requests your participation! Please contact Anand Iyer ([email protected])

or Krishna Chintalapudi ([email protected])

http://bit.ly/SpecNet 42