81
Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler Physics Division Lawrence Berkeley National Laboratory Outline: 1. CMB Physics and Experiments 2. Measurement Techniques and Requirements 3. Bolometer Arrays 4. Frequency-Multiplexed Readout 5. System results More information at www-physics.LBL.gov/~spieler.

Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – DetectorArrays for Next-Generation CMB Experiments

Helmuth SpielerPhysics Division

Lawrence Berkeley National Laboratory

Outline: 1. CMB Physics and Experiments2. Measurement Techniques and Requirements3. Bolometer Arrays4. Frequency-Multiplexed Readout5. System results

More information at www-physics.LBL.gov/~spieler.

Page 2: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

2

History of the universe You are here

LHC probes physicsLHC probes physicsrelevant to the universerelevant to the universe

at age 10at age 10--1414 sec.sec.

NOW (12.7 Billion years)

Stars form (1 Billion years)

Nuclei Form (180 seconds)

Atoms Form (300 000 years)

Protons and Neutrons Form (10-10 sec)

Quarks Differentiate (10-34 sec ?)

CMB Structure Imprinted

Inflation? <1016 GeV

Page 3: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

3

CMB has a near perfect black body spectrum (T = 2.7K)– measurements within 1% of theoretical spectrum

Page 4: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

4

CMB very well understood – has provided precision data on key cosmological parameters.

Map Temperature of Sky:

Data from WMAP

Temperature anisotropy ~10-5

Page 5: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

5

Multipole expansion of spatial distribution – determine angular scales

Angular structure depends oncosmological parameters

For example, geometry:dominant angular scale ~1°

⇒ universe is flat

l∆Θ ≈angular resolution 180/

Page 6: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

6

Analyzing the power spectrum:

Normalization set by the total amount ofmatter M b CDMΩ = Ω +Ω

Position of 1st peak: geometry of universe

0

0

0

200 1 pos. curv.

200 1 flat

200 1 neg. curv.

l

l

l

> Ω >

≈ Ω =

< Ω <

Ratio of 1st to 2nd peak: amount ofbaryonic matter

3rd peak > 2nd peak: presence ofcold dark matter

Page 7: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

7

• CMB measurements provideconstraints on fundamentalcosmological parameters

• CMB spatial distribution largelyunaffected since300k yrs after Big Bang

• Supernova and CMB data togethergive best constraints on mass andenergy density of the universe

• Also consistent with Ωm from LargeScale Structure data

Cosmology relies on combined data from different techniques

Page 8: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

8

Today we use CMB as a tool:1. Map large-scale structure:

use Sunyaev-Zel’dovich Effect in galaxy cluster search ⇒ , mw Ω

Inverse Compton scattering: Hot gas bound to clusters of galaxies scatters CMB

⇒ distorts black-body spectrum – shifts to higher frequencies:

Clusters appear as dark spots in CMB sky

Springel, White, Hernquist astro-ph/0008133

Simulation of 1 deg2 of SZ sky

Springel, White, Hernquist astro-ph/0008133

Simulation of 1 deg2 of SZ sky

Galaxy cluster searchesGalaxy cluster searches

Page 9: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

9

SZ signal independent of redshift z

(Holzapfel et al.)

In contrast to x-rays (insets), SZ surface brightness is independent of redshift, so clusterscan be seen at any distance.

However, optical data needed to determine redshift.

Emerging technique that requires greatly improved arrays.

Page 10: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

10

Cluster densities at z > 1 sensitive to cosmological parameters

Page 11: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

11

2. CMB Polarization

Thomson scattering ⇒ Polarization

If CMB were perfectly isotropic, all polarizationswould occur equally

⇒ no net polarization.

However, CMB is anisotropic:Quadrupole anisotropy yields net polarization.

⇒ patterns with no preferential handedness inpolarization field (“E modes”)

CMB Polarization allows us to look beyond the time of last scattering:

Gravity waves emitted during inflation (~10-38 s after Big Bang) interact with matter and leaveimprint on surface of last scattering.

CMB temperature is image of matter distribution.

Gravity waves: tensor interaction ⇒ net curl in polarization field (“B-modes”)(“smoking gun” of inflation)

Page 12: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

12

Gravity waves generate B-modes: Polarization field has net “handedness”.

E-modes B-modes

Wayne Hu

Density fluctuations give scalar perturbations ⇒ E-modesGravity waves give tensor perturbations ⇒ B-modes

Page 13: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

13

E-mode polarization detected(Carlstrom et al., DASI)

Challenge:

Detection and characterization ofB-modes

5 degrees

Page 14: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

14

Required Sensitivity

Magnitude of gravity wave signal set by energy scale of inflationB-modes are also generated by weak lensing of E-mode polarization

Gravity wave signature and lensing have different angular scalesRequires 3m reflector to provide angular resolution.

W.

Hu

et a

l. a

stro

-ph/

0210

096

~100 µK RMS

~4 µK RMS

=300 nK RMS

1 degree

Temperature

E-modes

B-modes

Page 15: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

15

DETECTED SIGNAL

• View region of sky withtemperature T(CMB: T ≈ 3K)

• Measured signalproportional to kTB

(B = bandwidth)

PRIMARYREFLECTOR

POWER DELIVEREDTO DETECTOR ~kTB

FOCALPLANE

SECONDARYREFLECTOR

REGIONOF SKY AT

TEMPERATURET

Page 16: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

16

Example Optics and Focal Plane(South Pole Telescope)

150 150

90 GHz 90 GHz

90 GHz

217 GHz

Page 17: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

17

COUPLING TO BOLOMETER

DIRECTCOUPLEDBOLOMETER

ANTENNA-COUPLEDBOLOMETER

Antenna-coupling provides inherent polarization sensitivity.

ELECTRICALSIGNAL

ELECTRICALSIGNAL

THERMALLINK

MICROSTRIP TRANSMISSION LINE

BOLOMETER

LOADRESISTOR

BANDPASSFILTER

DIPOLEANTENNA

CMB

CMB

BOLOMETER

FOCAL PLANE

METAL MESHBANDPASS FILTER

Page 18: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

18

Signal Spectrum in Galaxy Cluster Search

Antenna beam width: 1’ FWHM Scan speed: 10’/s

(W. Lu, CWRU)

⇒ Maintain Gain Stability + Noise Level down to ~0.1 Hz

0 0.1 0.2 0.3 0.4 0.5 0.6TIME (s)

0

0.2

0.4

0.6

0.8

1

INTE

NSI

TY

0 2 4 6 8 10FREQUENCY (Hz)

0

0.4

0.8

1.2

1.6

2

POW

ER P

ER

Hz

Page 19: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

19

Some Next Generation Experiments:

1. Cluster Searches:

a) APEX-SZ

UCB, LBNL, MPIfR, Colorado, McGill

12 m on-axis telescope(ALMA prototype) onAtacama Plateau, Chile, 5000m

~300 pixels

Shared with many otherexperiments, so CMB observingtime limited to few weeks

APEX-SZ first light Dec 2005

Page 20: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

20

b) South Pole Telescope

Univ. Chicago, UCB, LBNL, CWRU, CfA, Univ. Colorado, McGill, Univ. Illinois

10 m off-axis telescope

Installation: 2006-2007

~1000 pixels, dedicated to CMB measurements

Optical followup with DES

Test assembly in Texas (August 2006) January 3, 2007 at South Pole

Page 21: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

21

SPT final configuration with ground shield (Jan 2008)

Page 22: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

22

2. Polarization & Inflation: PolarBear (UCB, LBNL, UCSD, Colorado, McGill)

Reviewed by SAGENAP, proposal to NSF

Atacama plateau (Chilean Andes, 5000 m altitude)

~1000 dual polarization pixels

3m telescope: angular resolution to separate gravitational from lensing B-modes

Page 23: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

23

PolarBear designed from ground up to optimize polarization measurements

⇒ Minimize cross-polarization and instrumental polarizationSensitivity and resolution to separate E and B modes

PolarBearperformancesimilar toExperiment I

from InteragencyTask Force on CMBResearch(“Weiss Committee”)

Page 24: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

24

All of these experiments require a major step up in sensitivity

Bolometers today are so sensitive that we are limited by the shot noise of theCMB photons

Increase sensitivity by

performing many measurements simultaneously

⇒ bolometer arrays (100s to 1000s)

extending observation time

⇒ ground-based experimentseventually space-based

Bolometer array technology:

Wafer-scale monolithic fabrication (“radiometer on a chip”)Cold multiplexing on 0.25K stage (reduce heat leaks through wiring)Cryogen free system: pulse tube cooler + 4He/3He/3He sorption fridge

(remote operation with minimal on-site staff)

Page 25: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

25

Berkeley Bolometer Group

William Holzapfel (UCB)Adrian Lee (LBNL,UCB)Paul Richards (UCB)Helmuth Spieler (LBNL)

John Clarke (LBNL,UCB) SQUIDs

Greg Engargiola (UCB RAL)John Joseph (Eng. Div. LBNL)Chinh Vu (Eng. Div. LBNL)

Brad Benford (UCB)H.-M. “Sherry” Cho (UCB)Matt Dobbs (LBNL

– now McGill Univ.)Nils Halverson (UCB

– now Univ. Colorado)Huan Tran (UCB SSL)

+ 15 graduate students

Funding: NSF, NASA, DoE

Page 26: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

26

Bolometers

Superconducting transition edge sensors:

• Bias thin film superconductor at transition from super- to normal conducting

⇒ Large change in resistance with absorbed power

• Thin bi-layers (e.g. Al – Ti) allow tuning of transition temperature

0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6R

esis

tanc

e (Ω

)

Temperature (K)

0.50 0.55 0.60 0.65

0.0

0.2

0.4

0.6R

esis

tanc

e (Ω

)

Temperature (K)

Page 27: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

27

ndPd

ωω

=

Why Bolometers?

Amplifiers (phase coherent systems) subject to quantum noise limit.

Minimum spectral noise power density:

Follows from uncertainty principle.(H.A. Haus and J.A. Mullen, Phys. Rev. 128 (1962) 2407-2413)

For a simple derivation see Spieler, Semiconductor Detector Systems, pp. 132-133

Bolometers do not preserve phase, so not subject to quantum noise limit.

Page 28: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

28

Thermal Detectors

Basic principle:

Assume thermal equilibrium:

If all absorbed Energy E t= Φ∆ is converted into phonons,the temperature of the sample will increase by

ET

C∆ = ,

where C the heat capacity of the sample (specific heat x mass).

After absorption of an energy packet E the heat flows through the thermal conductance G and thebolometer temperature decays as

with the thermal time constantCG

τ = ,

analogous to a capacitor discharged through a resistance.

/0

tET T e

Cτ−− =

Φ

C

G

T0

TEMPERATURESENSORT t( )

Page 29: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

29

Voltage-Biased Transition-Edge Sensors

Required power is of order pW, i.e. voltage of order µVcurrent of order µA

Simplest to bias device with a constant current and measure change in voltage

Problem: power dissipated in sensor 2P I R=

Increasing R ⇒ Increasing P ⇒ Increasing R ⇒ Increasing P

⇒ thermal runaway

When biased with a constant voltage2

bVP

R=

Increasing R ⇒ Decreasing P ⇒ Decreasing T ⇒ Decreasing R

⇒ negative feedback

stabilizes operating point

Analogous to op-amp: Bolometer time constant corresponds to amplifier cutoff frequency.Subject to constraints of feedback theory!

Page 30: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

30

4 6 8 10 12 14 1625

50

75

100

125

150

175

200Po

wer

(pW

)

Bias voltage (µV)

• Operate with constant voltage bias

⇒ Electrothermal negative feedback

⇒ Stabilize operating point + predictable response

⇒ “Constant power operation”:Change in absorbed power is balanced by change in electrical power: / 1 / biasI P V∆ ∆ =

Page 31: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

31

DIRECT COUPLED BOLOMETERS

Page 32: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

32

50 µm

APEX Focal Plane (Jared Mehl)

TES125 mm

Page 33: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

33

Close-up of spiderweb bolometer

Page 34: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

34

Focal Plane Design for APEX-SZ and SPT

Disk with machinedconical hornspositioned abovebolometer arrray.

Horns match opticsto bolometer plane.

Page 35: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

35

ANTENNA COUPLED BOLOMETERS

Page 36: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

36

Antenna-Coupled Prototype Pixel (Mike Myers)

Microstrip Bandpass Filters (217 GHz, 40% BW)Transmission Lines

Microstripterminated on aSi-nitridesuspension.

Power measuredwith TES

Double-Slot Dipole Antenna

Page 37: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

37

PolarBear Array Segment (Kam Arnold) – 90, 150, 220 GHz bands

Page 38: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

38

Antenna Coupling to Optics by Dielectric (Si) Lenses

Antenna

substrate

Extended Hemispherical lens

• Well developed (SIS mixers, etc.)

• High antenna gain, symmetric beam

• Forward radiation pattern

• Efficient coupling to telescope(similar to scalar horn)

• Complete pixel fits beneath lens

• Wideband AR coating (Erin Quealy)

• Broadband for multichroic pixels

Page 39: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

39

Future Development: Wideband Polarization-Sensitive Antenna + “Channelizer”⇒ Multi-Frequency Pixel

GHz Scale Model:

THz pixel with 3 bandscurrently in fab

(Roger O’Brient +Greg Engargiola)

Page 40: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

40

READOUT

Page 41: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

41

Readout

• Constant voltage bias requires that readout impedance bolometer resistance

bolometer resistance 1≈ Ω

bias resistance 20 m≈ Ω

amplifier input impedance 10 m≈ Ω

1st amplifier stage: SQUID at 4K in shunt feedback configuration.High-frequency feedback loop includes SQUID +warm electronics (300K).

• Typical bolometer bias power: 10 – 40 pW

• Power Budget on 0.25K stage: <10 µW

• Heat conduction through wires to 4K stage acceptable up to ~300 bolometers

⇒ Larger arrays require multiplexing

• Novel development:

Frequency-Domain MUX with ZERO additional power on cold stage

Page 42: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

42

Principle of Frequency-Domain Multiplexing

1. High-frequency bias (~100 kHz – 1 MHz)

Each bolometer biased at different frequency

2. Signals change sensor resistance

⇒ Modulate current

⇒ Transfer signal spectrum to sidebands adjacent to bias frequency

⇒ Each sensor signal translated to unique frequency band

3. Combine all signals in common readout line

4. Retrieve individual signals in bank of frequency-selective demodulators

⇒ High-frequency bias provides greatly reduced sensitivity to microphonics

Page 43: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

43

Modulation Basics

If a sinusoidal current 0 0sinI tω is amplitude modulated by a second sine wave sinm mI tω

0 0

0 0 0

( ) ( sin )sin

( ) sin sin sinm m

m m

I t I I t t

I t I t I t t

ω ωω ω ω

= +

= +

Using the trigonometric identity 2sin sin cos( ) cos( )α β α β α β= − − + this can be rewritten

0 0 0 0( ) sin cos( ) cos( )2 2m m

m m

I II t I t t t t tω ω ω ω ω= + − − +

The modulation frequency is translated into two sideband frequencies

0( )mt tω ω+ and 0( )mt tω ω−

symmetrically positioned above and below the carrier frequency 0ω .

All of the information contained in the modulation signal appears in the sidebands; the carrierdoes not carry any information whatsoever.

The power contained in the sidebands is equal to the modulation power, distributed equallybetween both sidebands.

Page 44: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

44

Modulation Waveforms and Spectra

Carrier amplitude remains constant! All signal information in the sidebands.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5AM

PLI

TUD

E

ω ω ωω ωω ωω ωω ω

0 0 0

0 00 0m mm m

Page 45: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

45

MUX circuit on cold stage

• “Comb” of all bias frequencies fed through single wire.• Tuned circuits “steer” appropriate frequencies to bolometers and limit noise bandwidth.• Wiring inductance tuned out at resonance to reduce impedance.• Current return through shunt-fedback SQUID amplifier (low input impedance).• No additional power dissipation on cold stage (only bolometer bias power).

R( fVR R R

V

R

C C C C

L L L L

Biasnn

b b b

out

b

1 2 3 n

1 2 3 n

Σ )

4K

0.25K

V

f

V

f

Page 46: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

46

0

0.2

0.4

0.6

0.8

1

1.2

800 900 1000 1100 1200

f [kHz]

I/I0

Circuit 1

0

0.2

0.4

0.6

0.8

1

1.2

800 900 1000 1100 1200

f [kHz]

I/I0

Circuit 2

Constraints on Tuned Circuits

Selectivity and spacing of tuned circuitsdetermines cross-talk.

However:

Limited bandwidth introduces additionaltime constant into electro-thermalnegative feedback.

Analogous to multiple cutoff frequencies(“poles”) in electronic feedback systems.

If bandwidth too small, bias power cannotrespond quickly enough to changes inoptical power

⇒ Instability!

⇒ Bolometer time constants must becompatible with MUX parameters.

Page 47: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

47

Demodulation

The same carrier signal that biases the sensor is used to translate the sideband information to baseband.

The mixer acts analogously to a modulator, where the input signal modulates the carrier, forming bothsum and difference frequencies.

In the difference spectrum the sidebands at n Sf f± ∆ are translated to a frequency band

( ) 0n n S Sf f f f− ± ∆ = ± ∆ .

A post-detection low-pass filter attenuates all higher frequencies and determines the ultimate signal andnoise bandwidth.

• We use a highly linear sampling demodulator that aliases the high-frequency signal to baseband.

OSC

MIXER LPF

SENSOR BIAS

COMPOSITESIGNAL INPUT

SIGNALOUTPUT

V

V

f

f

V

f

Page 48: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

48

SQUIDs

Superconducting Quantum Interference Devices

Two Josephson junctions connected in parallel to form superconducting ring:

Two key ingredients:

1. Phase between two tunneling currents inJosephson junction is determined by current.

2. Magnetic flux in superconducting loop isquantized:

-7 20

-15

2.0678 10 gauss cm

2.0678 10 Vs

ce

π∆Φ = = ⋅

= ⋅

SQUID is biased by current bI .

• Input signal is magnetic flux due to currentthrough coupling coil L.

• Output is voltage Vo .

I

I

i

b

Vo

JOSEPHSONJUNCTION

R C

M

L

Page 49: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

49

Current-Voltage Characteristics:

Output voltage V vs. flux Φ/Φ0 as bias current IB isincreased

Page 50: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

50

However,

• Input signal may not exceed ¼ flux quantum (output periodic in Φ0 )

• Feedback loop required to lock flux at proper operating point (flux locked loop)

Maximum acceptable signal level grows with increasing loop gain.

Voltage bias requires input impedance bolometer resistance!

Shunt feedback SQUID amplifier achieves about 10 mΩ at 1 MHz

However: Feedback circuit limits frequency response.

Vout

ii i RF F

iSQ

INPUT

Page 51: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

51

Typical Parameters

Operating Temperature: 0 – 5 K (also for high TC SQUIDs: noise)

Flux Sensitivity: ΦV =150 µV/Φ0

Flux Noise: 1 to 10 µΦ0

SQUID Inductance: 100 – 500 pH

Input Inductance: 10 nH to 1 µH

Series SQUID Arrays

Array of SQUIDs withinput coils in series andoutputs connected in series.

We use arrays of 100 series-connected SQUIDs (fabricated by NIST).

Sensitivity : 500i

dVM

d= ≈

Φoutput voltageinput current

Page 52: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

52

Bandwidth Limit of Feedback Loop

At low frequencies phase shift = 180° (negative feedback)

All systems incur additional phase shift

amplifier (additional time constants at high frequencies)

propagation delay of wiring

parasitic resonances

Criterion for stability against self-oscillation:

At frequency where total phase shift in feedback loop is 360°,

gain of feedback loop (loop gain) <1

Commonly used criterion to minimize ringing: phase margin = 45°

i.e. additional phase shift 135°

Page 53: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

53

Phase shift vs. frequency from wiring (wire length 1 m round trip)

If feedback loop gain is >1 at the frequency where the phase shift is 180°, the system will oscillate

⇒ must limit frequency response!

0

50

100

150

200

250

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

FREQUENCY (Hz)

PHA

SE S

HIF

T (d

eg)

Page 54: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

54

Additional phase shift vs. frequency from wiring + amplifier

1

10

100

1000

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10

FREQUENCY (Hz)

LOO

P G

AIN

0

50

100

150

200

250

PH

AS

E S

HIFT

AMPLIFIER GAIN

AMPLIFIERPHASE

45 deg PHASE MARGIN

CUMULATIVEPHASE SHIFT WIRING

Page 55: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

55

Examples:

SQUID’s allowable input signal increased by loop gain.

Example: input signal of 25Φ0 requires loop gain 0

0

25100

/ 4LAΦ

≈ =Φ

Stable operation requires that loop gain roll off to unity at frequency where net phase shift isat least 45° (phase margin).

⇒ relative to 180° phase shift at low frequencies, can tolerate additional 135° phase shift.

Single pole response introduces 90° phase shift beyond cutoff frequency fmax

⇒ connecting leads are allowed to introduce additional 45° phase shift.

Lead length l with phase velocity vp ⇒ 2P

lfv

ϕ π∆ =

⇒ unity gain frequency 0 8Pv

fl

=

⇒ loop gain-bandwidth product max 8P

L

vA f

l=

⇒ cutoff frequency =max 8P

L

vf

lA

Page 56: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

56

a) bare wire

Pv c=

30 cml = ⇒ 125 MHzL maxA f = (loop gain-bandwidth product)

100LA = ⇒ 1.25 MHzmaxf =

b) coaxial cable or twisted pair

23P

cv c

ε= =

30 cml = ⇒ 80 MHzL maxA f ≈

100LA = ⇒ 0.8 MHzmaxf ≈

⇒ Low frequency operation (~ 1 MHz) requires controlled phase at high frequencies (~100 MHz)

⇒ minimize physical length of feedback loop!

localized cold loop advantageous

⇒ Limits to achievable feedback loop gain, so additional technique employed.

Page 57: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

57

Feedback crucial to linearize SQUID response: Intermodulation

SQUID output voltage approx. sinusoidal function of flux

⇒ non-linear:3 5

sin ...3! 5!x x

x x≈ − +

Non-linear terms lead to mixing products:

For two input frequencies f1 and f2 : 3rd order distortion ⇒ 3 f13 f22 f1 ± f22 f2 ± f1

What levels are of concern? Bolometer noise current: 10 pA/Hz1/2

Bandwidth: 100 HzTotal noise current: 100 pABolometer bias current: 10 µAinoise / ibias = 10-5 ( -100 dBc)

System must be designed for very low distortion – choose appropriate technology

( )1 1 2 21 2(sin sin ) ( ) ( )

nt t t tnt t e e e eω ω ω ωω ω − −+ = − + −i i i ii i

Page 58: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

58

Carrier Nulling

Maximum input signal to SQUID is limited, even with feedback (“flux jumping”)

All of the information is in the sidebands, so the carrier can be suppressed to reducedynamic range requirements.

Low-frequency sideband noise associated with carriers cancels (-110 dBc at 10 Hz)

R

I

I

R R R

V

R

C C C C

L L L LB

2

1

S S S

out

S

1 2 3 n

1 2 3 nn x DDS :programmablefrequencyphaseamplitude

ΣV f( )

−ΣV f( )

n

n

n

n

COMPUTERCONTROL

DIGITAL POTENTIOMETER

V f

V

f

Page 59: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

59

Sideband Noise

All frequency generators exhibit noise sidebands above and below the desired frequency.

Sideband noise of a high-quality frequency synthesizer:

At frequencies <10 Hz the noise is too large for ourapplication.

Very high-quality synthesizer:

We achieve similar results with direct digital synthesis(DDS).

Adequate for some observations, but we requiresomewhat lower noise levels, so the cumulative noisefrom independent carrier generators for bolometerbiasing and nulling is too large.

Page 60: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

60

Demodulator

Frequency mixers are commonly described in terms of square law devices:

yields terms 1 2ω ω± , so a frequency spectrum 1ω ω+ ∆ when mixed with a localoscillator 1ω yields an output extending from zero to ω∆ .

However, there are no perfect square law devices, so additional mixing products aregenerated.

In the presence of many carriers high order intermodulation products will contaminate thesignal bands.

Need a highly linear demodulator.

( )1 1 2 222

1 2(sin sin ) ( ) ( )t t t tt t e e e eω ω ω ωω ω − −+ = − + −i i i ii i

Page 61: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

61

Sampling Demodulator

The signal spectrum 1ω ω+ ∆ is sampled at the carrier frequency 1ω :

No inherently non-linear devices needed. (old principle: synchronous rectifier)

0 0

0

T T

T

2T 2T3T 3T

2T 3TOFF

ON

C

RVav

RESPONSE TO LOW-FREQUENCY MODULATION

V V/π

Page 62: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

62

Aliasing

When a signal is sampled at a frequency that is lower than the signal frequency it is “aliased”to lower frequencies:

An input signal if sampled at a rate sf yields signal components i sf kf± .

Applies to any form of sampling (time waveform, image, ...)

Nyquist condition: Sampling frequency > 2x highest signal frequency

We turn aliasing into a virtue:

Sampling at the carrier frequency aliases the signal spectrum to baseband.

SAMPLING TIMES

T T T T T T T1 2 3 4 5 6 7

ACTUALWAVEFORM

ALIASEDWAVEFORM

Page 63: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

63

We use a full-wave sampling demodulator for common-mode rejection

MOSFET switches used for commutation.

0

0

T

T

2T 3T

2T 3T2

2

1

1C

C

R

R

Vav

Page 64: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

64

System Block Diagram

R

ΣI

R R R RC C C C

L L L Lbias

bolo bolo bolo bolo

1 2 3 n

0.25K STAGE

DDSOSC

DDSOSC

DEMOD DEMODLPF LPFADC ADC

FPGA: CONTROL AND READOUT

DDS CONTROL

4K STAGE

SUMMED BIAS CARRIERS

SUMMED NULLING CARRIERS

SAMPLINGSTROBE

CONTROL DATATO / FROM ONLINE COMPUTER

SQUIDCONTROLLER

WARM ELECTRONICSCOLD ELECTRONICS

MULTIPLEXER CIRCUITRY

bolo

CHANNEL 1 CHANNEL n

OSCILLATOR - DEMODULATOR BOARD

SQUID INPUTAMPLIFIER

CHANNEL 1 CHANNEL n

+V +V

V V

Page 65: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

65

5 mm

MUX chip (0.25K stage)

Superconducting spiral inductorsintegrated on a chip

(fabbed by Northrup-Grumman)

Capacitors can be integrated withinductors, but external chip capacitorsrequire less space.

NP0 capacitors perform well at 4K

Page 66: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

66

SQUIDs mounted as arrays of eight in magnetic shield (4K stage)

SQUID mounting board

SQUIDs mounted on Nb padsto pin magnetic flux

Magnetic Shield(M. Lueker)

Page 67: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

67

8-channel SQUID Controller

Computer-controlled (FPGA)SQUID diagnosticsOpen/closed loopSwitchable gain

SQUIDs VERY sensitive to pickup(up to GHz), so local shielding ofdigital circuitry is crucial.

16-channel Demodulator Board

16 individual demodulator channels1 DDS freq. generator per channelOn-board A/DOpto-isolated computer interface

Design and prototyping at LBNL(M. Dobbs, J. Joseph, M. Lueker, C. Vu)

Page 68: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

68

300 400 500 600 700 8000

5

10

15

20

expected readout noise

expected readout noise + Nyquist noiseS I1/

2 (pA/

Hz1/

2 )

frequency (kHz)

Measured MUX Noise Spectrum at SQUID Amplifier Output(Trevor Lanting)

Page 69: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

69

0.1 1 101

10

100

1000

sensor noisedemodulator noise floor

S I1/2 (p

A/H

z1/2 )

frequency (Hz)

Measured Noise Spectrum in 8-Channel MUX System

TheoreticalExpectation

Sensor noise white above 0.2 Hz (Trevor Lanting)

Page 70: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

70

70 80 90 100 1101

10

100

1000demodulator noise flooroptical channel (ch. 2; 396.0kHz)dark channel (ch. 3; 452.5kHz)

Optical/Dark Demodulated Spectra (LED on, 84Hz)

S I1/2 (p

A/H

z1/2 )

frequency (Hz)

Cross-Talk < 1%

(Trevor Lanting)

Page 71: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

71

MUX chip (0.25K stage)

Superconducting spiral inductors______

integrated on a chip 5 mm_______

(fabbed by Northrup-Grumman)

Capacitors can be integrated withinductors, but external chip capacitorsrequire less space.

NP0 capacitors perform well at 4K

Page 72: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

72

SQUIDs mounted as arrays of eight in magnetic shield (4K stage)

SQUID mounting board

SQUIDs mounted on Nb padsto pin magnetic flux

Magnetic Shield(M. Lueker)

Page 73: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

73

Page 74: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

74

TES Array at Atacama

Page 75: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

75

New Development: “Fully Digital” Demodulator (Matt Dobbs, LBNL/McGill)

• Prototypes of key components tested

• Substantial reduction in power ⇒ Balloon-borne experiments (e.g. EBEX)Satellite mission (CMBPOL?)

V

V

f

f

ADCFPGA

FROM SQUIDCONTROLLER

BOLOMETERBIAS DAC

NULLINGDAC

CONTROL BUSFROM PC

DATA BUSTO PC48 CH DEMOD,

FILTER, ADCV

f

Page 76: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

76

How many bolometers can (or should) be MUXed?

Lower bounds set by

Acceptable thermal leaks in wiring (~ 300 single channels OK)

Cost (SQUIDs + wiring assemblies)

e.g. for 8-fold MUXing SQUIDs no longer major cost driver.

Upper bounds

Overall bandwidth– determined by wiring length in SQUID feedback loop.

Single-point failure modes

Failure in a MUX module should lead to negligible lossin number of signal channels.

Baseline design for APEX-SZ and SPT: 8-fold MUXing

32-fold MUXing practical (extend max. frequency from 1 MHz to 3 MHz)Appears adequate for 104 bolometers.

Page 77: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

77

Technical limits to MUXing

1. Frequency spacing of bias carriers depends on selectivity of tuned circuits.

2. Minimum LC bandwidth (Q) set by bolometer time constant.

3. Channel spacing set by allowable cross-talk and noise leakage from other channels.

4. Minimum frequency set by bolometer thermal time constant(typ. min. 100 kHz)

5. Maximum frequency set by large-signal bandwidth of SQUID feedback loop.

Loop gain-bandwidth product: set by a) required dynamic range(no. and magnitude of carriers)

b) distortion in SQUID

Limited by total wiring length of feedback loop

Example: round trip wiring length of 20 cm limits loop gain-bandwidth productto ~100 MHz (at 1 MHz extend dynamic range x100)

H. Spieler, Frequency Domain Multiplexing for Large-Scale Bolometer Arrays, in Proceedings Far-IR, Sub-mm & mm Detector Technology Workshop, J. Wolf, J. Farhoomand and C. McCreight(eds.), NASA/CP-211408, 2002 and LBNL-49993, www-physics.LBL.gov/~spieler.

Page 78: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

78

Solutions

1. Maximize dynamic range of SQUID

SQUID is limited by flux, so reducing the mutual input inductanceallows larger input current.

Smaller input mutual inductanceincreases input noise currentreduces SQUID transresistance (gain)

Limited by bolometer noise and noise of warm amplifier

⇒ SQUID arrays (many SQUIDs connected in series)

We use 100-SQUID arrays from NIST

2. Cold local feedback loop

Use local feedback around 300-SQUID array.Reduced wire length increases maximum frequency.In addition: External warm feedback loop with reduced gain-bandwidth

⇒ larger bandwidth for given wire length

• With SQUID array and cold/warm feedback loop ~30 channels per readout line practical.

Page 79: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

79

Frequency-Domain MUX Demonstrated withGamma-Ray Micro-Calorimeters

LLNL/UCB/LBNL collaboration

-4

-2

0

2

4

Cur

rent

(uA

)

43210-1-2Time (msec)

101

102

103

104

105

106

Spe

ctra

l Den

sity

(pA

/rt(H

z))

180160140120100Frequency (kHz)

During Pulse

No Pulse

Time domain Frequency Domain

Energy resolution of 60 eV FWHM at 60 keV unaffected bymultiplexer.

J. N. Ullom et al., IEEE Trans. Appl. Superconductivity 13/2 (2003) 643-648

MUXing ⇒ increase active area, overall rate capability

Page 80: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

80

Major Transition in CMB Instrumentation

11998800ss 11999900ss 22000000ss

11 ccmm

5 mm

1100 ccmm

1100ccmm

Page 81: Spieler Bolometers and the Big Bang -  · Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth Spieler SLAC Advanced Instrumentation Seminar,

Bolometers and the Big Bang – Detector Arrays for Next-Generation CMB Experiments Helmuth SpielerSLAC Advanced Instrumentation Seminar, 10-Jan-2007 LBNL

81

Summary• Next-generation CMB experiments require 102 – 103 fold improved sensitivity

• Monolithic fabrication technology provides wafer-scale TES kilopixel arrays

• Antenna-coupled arrays provide polarization discrimination

• Frequency-domain MUXing demonstratedZero power dissipation at 0.25K focal plane<1% cross-talkVery insensitive to vibrationNegligible increase in noiseConceptually simple, but many crucial details

• System incorporates techniques fromCryogenics and superconductivityRF communications (old and new)Low noise analog electronicsHigh Energy Physics

• Collaboration between University and National Lab essential