1
XV Latin American Regional IAU Meeting (Cartagena de Indias, Colombia, 3-7 October 2016) Editors: Mario Armando Higuera Garzón & Santiago Vargas Domínguez RevMexAA (Serie de Conferencias), 49, 70–70 (2017) SPIN-ORBIT EVOLUTION OF GJ 667C SYSTEM: EFFECTS OF COMPOSITION AND PERTURBATIONS P. A. Cuartas-Restrepo 1 , M. D. Melita 2 , J. I. Zuluaga 1 , B. A. Portilla 1 , M. Sucerquia 1 , and O. Miloni 3 We studied the tidal evolution of the GJ 667C system, focused on the effects that differ- ent compositions and perturbations, have on the spin-down time and the probability to be trapped in a low spin-orbit resonance. For planets b and c of the system, we evaluated the probabilities of capture in resonances be- low 5:2 for two compositions: Earth-like (El) and Waterworld (Ww) planets. We used the Efroimsky-Makarov-Williams treatment (Efroimsky & Williams 2009, Williams & Efroimsky 2012, Makarov & Efroimsky 2013), included in a computational tool that we call Tidal Evolution - TIDEV (https://github.com/facom/tidev). We calculated the spin-down time took to reach a low resonance (3:2), and the probability to be trapped in a low spin-orbit resonance further than 5:2 for planets b and c of the system using two dif- ferent compositions: El (70% mantle - 30% Iron) and Ww (50% water - 20% mantle - 30% Iron). The capture probabilities in a 3:2 resonance varies from 47% to 0.0% for El and Ww respectively (Cuartas-Restrepo et.al, 2016). The most stable res- onance is 3:2 for an El composition. The probability of capture decreases for resonances 2:1 and 3:2 to zero for a Ww composition. We found that the bulk planetary composition have a non-negligible effect on the spin-down time. The time to reach the final resonance in some cases is almost twice compared with the value estimated for a reference El model (see Fig. 1). Even being a close-packed system, the gravita- tional effect did not cause any change in the final resonance and the probability of capture is practi- cally the same. REFERENCES Cuartas-Restrepo P.A. et.al., 2016, MNRAS, 463, 1592 - 1604. 1 FACom - SEAP - Instituto de F´ ısica - FCEN, Universi- dad de Antioquia, Calle 70 No. 52-21, Medell´ ın, Colombia ([email protected]). 2 Instituto de Astronom´ ıa y F´ ısica del Espacio - IAFE, Buenos Aires, Argentina. 3 FCAG - Universidad Nacional de La Plata, La Plata, Ar- gentina. Fig. 1. Up: Spin down times. Down: Probabilities to reach 3:2 resonance for Planet b. Efroimsky M., Williams J. G., 2009, Celestial Mechanics and Dynamical Astronomy, 104, 257. Makarov V. V., Efroimsky M., 2013, ApJ , 764, 27. Williams J. G., Efroimsky M., 2012, Celestial Mechanics and Dynamical Astronomy, 114, 387. 70

SPIN-ORBIT EVOLUTION OF GJ 667C SYSTEM: EFFECTS OF ... · 5:2 for planets b and c of the system using two dif-ferent compositions: El (70% mantle - 30% Iron) and Ww (50% water - 20%

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: SPIN-ORBIT EVOLUTION OF GJ 667C SYSTEM: EFFECTS OF ... · 5:2 for planets b and c of the system using two dif-ferent compositions: El (70% mantle - 30% Iron) and Ww (50% water - 20%

XV

La

tin

Am

eri

ca

n R

eg

ion

al I

AU

Me

etin

g (

Ca

rta

ge

na

de

In

dia

s, C

olo

mb

ia, 3

-7 O

cto

be

r 2016)

Edito

rs: M

ari

o A

rma

nd

o H

igu

era

Ga

rzó

n &

Sa

ntia

go

Va

rga

s D

om

íng

ue

z

RevMexAA (Serie de Conferencias), 49, 70–70 (2017)

SPIN-ORBIT EVOLUTION OF GJ 667C SYSTEM: EFFECTS OF

COMPOSITION AND PERTURBATIONS

P. A. Cuartas-Restrepo1, M. D. Melita2, J. I. Zuluaga1, B. A. Portilla1, M. Sucerquia1, and O. Miloni3

We studied the tidal evolution of the GJ 667Csystem, focused on the effects that differ-ent compositions and perturbations, have onthe spin-down time and the probability to betrapped in a low spin-orbit resonance. Forplanets b and c of the system, we evaluatedthe probabilities of capture in resonances be-low 5:2 for two compositions: Earth-like (El)and Waterworld (Ww) planets.

We used the Efroimsky-Makarov-Williamstreatment (Efroimsky & Williams 2009,Williams & Efroimsky 2012, Makarov &Efroimsky 2013), included in a computationaltool that we call Tidal Evolution - TIDEV(https://github.com/facom/tidev).

We calculated the spin-down time took to reacha low resonance (3:2), and the probability to betrapped in a low spin-orbit resonance further than5:2 for planets b and c of the system using two dif-ferent compositions: El (70% mantle - 30% Iron) andWw (50% water - 20% mantle - 30% Iron).

The capture probabilities in a 3:2 resonancevaries from 47% to 0.0% for El and Ww respectively(Cuartas-Restrepo et.al, 2016). The most stable res-onance is 3:2 for an El composition. The probabilityof capture decreases for resonances 2:1 and 3:2 tozero for a Ww composition.

We found that the bulk planetary compositionhave a non-negligible effect on the spin-down time.The time to reach the final resonance in some casesis almost twice compared with the value estimatedfor a reference El model (see Fig. 1).

Even being a close-packed system, the gravita-tional effect did not cause any change in the finalresonance and the probability of capture is practi-cally the same.

REFERENCES

Cuartas-Restrepo P.A. et.al., 2016, MNRAS, 463, 1592 -

1604.

1FACom - SEAP - Instituto de Fısica - FCEN, Universi-dad de Antioquia, Calle 70 No. 52-21, Medellın, Colombia([email protected]).

2Instituto de Astronomıa y Fısica del Espacio - IAFE,Buenos Aires, Argentina.

3FCAG - Universidad Nacional de La Plata, La Plata, Ar-gentina.

Fig. 1. Up: Spin down times. Down: Probabilities to

reach 3:2 resonance for Planet b.

Efroimsky M., Williams J. G., 2009, Celestial Mechanics

and Dynamical Astronomy, 104, 257.

Makarov V. V., Efroimsky M., 2013, ApJ , 764, 27.

Williams J. G., Efroimsky M., 2012, Celestial Mechanics

and Dynamical Astronomy, 114, 387.

70