39
1B Reitz EPD9636 Spray Submodels Nozzle flow, atomization drop drag, dispersion, breakup, collision, vaporization 130 deg. 150 deg. 180 deg. Start of Injection=120 degrees Han et al. SAE970625 Early Injection Homogeneous Charge

Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

Embed Size (px)

Citation preview

Page 1: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

1B ReitzEPD9636Spray Submodels

Nozzle flow, atomizationdrop drag, dispersion,breakup, collision,vaporization

130 deg.

150 deg.

180 deg.

Start of Injection=120 degrees

Han et al. SAE970625 Early InjectionHomogeneous Charge

Page 2: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

2B ReitzEPD9636Discrete Drop Spray Model

• Drop injected with specified size, velocity (spray angle), temperature, distortion,…

Standard KIVA – DDM

Stochastic parcel model

• Low pressure, single component fuel vaporization model• O’Rourke collision/coalescence model

• Drop break up modeled with Taylor Analogy Breakup (TAB) model

• Solid sphere drop drag correlations

Page 3: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

3B ReitzEPD9636

• Pump-line-nozzle system

Describe flows in chambers, high pressure pipe, moving parts

pumping chamber

delivery chamber

nozzle chamber

high pressure pipe

sac chamber

delivery valve

needle valve

pump plunger

feed/spill port

Injected drop spraycharacteristics - drop size, velocitytemperature, ….

Fuel System Modeling

Bosch Injection Rate Shape

-5

0

5

10

15

20

25

30

35

40

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Tim e (s)

Mas

s Fl

ow (m

g/m

s)

Bosch rate-of-Injection data

Page 4: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

4B ReitzEPD9636

R/D

L/D

InitialSMD

Cavitationregion

1 vena 2UmeanC

c

C r dc = − −[(.

) . / ] /10 62

11 42 1 2

Contraction coefficient (Nurick (1976)

0.00 0.04 0.08 0.12 0.160.6

0.7

0.8

0.9

1.0

r/d

c c sharp inletnozzle

C c

Cavitation Inception

Sarre et al. SAE 1999-01-0912

• Account for effects of nozzle geometry

Cavitating flow

Yes No

Non-cavitating flow

P < PvCavitation if

12 2( )C Cc c

P P2 1/

Page 5: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

5B ReitzEPD9636

21

1

pppp

CC vcd −

−=

uC P P C P

C P Peffc c v

c v=

− + −−

2 1 22

1 2

1

( )( )ρ

A C P PC P P C P

Aeffc v

c c v=

−− + −

22 1 2

21

1 2

( )( )

C ldd = −0 827 0 0085. .

u CP P

eff d=−2 1 2( )ρ

A Aeff =

Cavitating flowYes No

P P2 1/ Non-cavitating flow

Nozzle discharge coefficient

Effective injection velocity

Effective nozzle area

Nozzle discharge coefficient

Effective injection velocity

Effective nozzle area

Lichtarowicz (1965)

ERC Nozzle Flow Model

Page 6: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

6B ReitzEPD9636Jet Atomization Regimes

a.) Rayleigh breakup. Ddrop > Djet

b.) 1st wind-induced Ddrop ~ Djet

c.) 2nd wind-induced Ddrop < Djet d.) Atomization Ddrop << Djet Breakup at nozzle exit.

Jet velocity (Weber Number)

2 /gWe U a

We>40We~1

Page 7: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

7B ReitzEPD9636‘Blob’ Injection model

• Inject ‘blobs’ at nozzlewith characteristic size equal to effective nozzlediameter

• Allow ‘blobs’ to breakupfollowing drop/jet breakup model

L

Blobs

InjectedBroken up

Page 8: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

8B ReitzEPD9636Liquid Jet Atomization Models

Tan θ = v/Vrel

• Provide breakup drop size• Provide drop velocity

η = R η 0e ikz +ωt

‘Blob’

Kelvin-Helmholtz Instability Model

KH Wave Reitz Atom.Spray TechVol. 3, 309-337,1987Wave+FIPA Habchi SAE970881Wave+TAB Beatrice SAE950086

λ

r = B λo

t = B τ1

Vrel

break

Liquid

Gas

Wave breakup model

θ

Page 9: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

9B ReitzEPD9636Linear Stability Analysis

= σ kρ1a2

1 - k 2a2 l2 - k 2

l2 + k 2 I1 kaI0 ka

+ ρ2ρ1

U - iω /k 2 k 2 l2 - k 2

l2 + k 2 I1 ka K0 kaI0 ka K1 ka

ω2 + 2v1k 2ω I1' ka

I0 ka - 2kl

k 2+l2 I1 kaI0 ka

I1' la

I0 la

Dispersion relationship:

Λa = 9.02 1 + 0.45 Z 0.5 1 + 0.4 T 0.7

1 + 0.87 We21.67 0.6

Curve fits:

Ω ρ1a3

σ0.5

= 0.34 + 0.38 We21.5

1 + Z 1 + 1.4T 0.6

We1=ρ1U2aσ ; We2=ρ2U2a

σ ; Re 1=Uav1

Z=We10.5

Re 1 ; T=ZWe2

0.5

where

Page 10: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

10B ReitzEPD9636

R/DL/D

Breakup lengthNozzle flowNozzle flowmodelmodel

ERC Jet Breakup Model‘Blob’ injection size ‘a’

tan( ) ( )θ π ρ

ρ24

= ⋅A

f Tg

lv/U =

Drop initial velocity

L = C aρ1

ρ2

/ f(T )

Breakup lengthΛ

η=η0eΩt

r=B0Λ

KH Model

KHKHKH

aBΛΩ

= 1726.3τ

ΚΗΛ= 0BrKH

Drop/Blob breakup da/dt = - (a -r) / τ

Page 11: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

11B ReitzEPD9636

s

Λ

LdL

d = 1.89 dL

• Sheet breakup length and resulting ligament diameter:

• Maximum growth rate ΩS and wave number KS determinedfrom dispersion relation for liquid sheets

SS

bS

UULΩ

= 12ln

0ηη

S

bL K

hd 16=

LISA Model - Schmidt et al. SAE 1999-01-0496

Liquid Sheet Breakup Modeling

1

32242

12

1 42ρ

σννω kkQUkkr −++−=

Page 12: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

12B ReitzEPD9636

0.7 msec 1.7 msec 2.7 msec

Injector hole diameter 560 µmInjection pressure 4.76 MPaFuel mass 0.0437 gAmbient conditions 1 atm, 298 C

SMD

( µµ µµ

m )

Time (ms)

MeasuredPredicted

80

60

40

20

0 0 1 2 3 4 5 6

Gasoline Hollow Cone Sprays

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Measured Pre-sprayMeasured Main SprayComputed Pre-sprayComputed Main Spray

Pene

tratio

n (c

m)

Time (ms)

Page 13: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

13B ReitzEPD9636Droplet Drag Modeling

• Steady-state Stokes viscous drag, added-mass andBasset history integral

ρLVd dv / dt =CDAf

ρgU2

2U / U

F = 6πrµ g v + 12 ( 4

3 πr3ρg )dvdt

+ 6r2 πµρg

dvdt'

t − t '0

t

dt 'dv/dt =

• General form

dvdt

=9µ

2ρlr2 (u − v) = (u − v) / τ m

τ m = 2ρl r2 / 9µ

Stokes limit – low Reynolds number flow: CD = 24/Re

gMomentum Relaxation time

v = v 0 exp(−t / τ m)

Page 14: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

14B ReitzEPD9636Form Drag & Distortion

y

CD =CD,sphere(1+2.632y)

• Drop distortion – Liu et al. SAE 930072

CD = 24Re d

1 + 16

Re d2/3 Re d ≤ 1000

0.424 Re d > 1000CD =

• Corrections to Stokes Drag

y – from TAB Breakup model

Af = π a 2

• Magnus lift, Saffman lift, thermophoretic forces, Stefan flow effects usually neglected

Page 15: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

15B ReitzEPD9636Turbulence & Drop Dispersion

G( ′ u ) = 4 / 3πk( )−3/ 2 exp(−3 ′ u 2 / 4k)

• Monte Carlo method (Gosman 1981)

u = u + ′ u

Vortex structure

St >>1

St ~1

St <<1

δ

Drop-eddy interaction time Eddy life time Residence time

l = Cµ3/ 4k 3/ 2 / ε

te = l / 2k / 3 tp = l / u − v

t int = min(te ,tp )

δ = l

Page 16: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

16B ReitzEPD9636

• Breakup due to capillary surface wavesHinze (1955) and Engel (1958)

Drop Breakup• Mechanisms of drop breakup at high velocities poorly understood - Conflicting theories

• Bag, 'Shear' and 'Catastrophic' breakup regimes

• Boundary Layer Stripping due to Shear at the interfaceRanger and Nicolls (1969) Reinecke and Waldman (1970)

• Stretching and thinning – dropdistortion - Liu and Reitz (1997)

δ(x)

Delphanque & Sirignano (1994)

Page 17: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

17B ReitzEPD9636

Nozzle

1.27

Gas

Liquid drop

Liquidinjectionorifice

Low velocity drop breakup

Drop distortion

Page 18: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

18B ReitzEPD9636

air-jet

Diesel Water

Stretching and Thinning breakup mechanism Liu & Reitz (1997)

High velocity drop breakup

We = 260

Page 19: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

19B ReitzEPD9636

Breakupstages

Deformation orbreakup regimes Breakup process Weber number References

First breakup stage

(1) Deformationand flattening We 12<

(b) Bag breakup≤12 We 100≤

(including theBag-and-Stamenbreakup)

Pilch and Erdman[6]

(c) Shear breakup We 80< Ranger andNicolls[10]

(d) Stretching and thinning breakup

≤100 We 350≤ Liu and Reitz [24]

Second breakup stage

(e) Catastrophic breakup

≤350 We Hwang et al.[3]

Air

Air

Bag growth Bag burst Rim burst

Air

Air

Flatteningand thinning

Air

l

RTwaves KH waves

Drop Breakup Review

Page 20: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

20B ReitzEPD9636Drop Breakup Models

t1 = D1ρlr

3

σ

Lifetimes of unstable drops:

Bag breakup

t2 = D2rU

ρl

ρg

Stripping

Reitz and Diwakar SAE 860469

• Check We inequalities for each drop parcel each timestep

• If criteria met for a time equal to life time then new drop size is specified using equalities

nf r f3 = niri

3

Page 21: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

21B ReitzEPD9636Drop Distortion Modeling

y

Taylor Analogy Breakup Model (TAB)

y = 2 x/r

if y> 1 droplet breaks up:

We = Wecrit > 6.0For low speed drops

For high speed drops

tbu =π2

ρl r3

2σtbu = 3

rU

ρl

ρg

TAB ModelO’Rourke SAE 872089Pelloni & Bianchi SAE99 Tanner SAE 970050

2

2 3 2

52 83

g l

l l l

Uy y y

r r r

Page 22: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

22B ReitzEPD9636Wave Breakup Theory

τ = 0.82B1ρa3

σ

• Jet stability theory

low speed (inviscid) jets

τ = (B1a/U) ρ1/ ρ2high speed (inviscid) jets

t t+dt t = tbu

'Wave' Model

TAB Model

λ

r = B λo

t = B τ1

Vrel

break

Liquid

Gas

Wave breakup model

Page 23: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

23B ReitzEPD9636

Air jet

DropsRT waves

KH waves

λ

Λ

Product drops

• High Speed Drop Breakup Mechanism

Hwang et al. Atom. & Sprays, 1996

Catastrophic Drop Breakup

• Rayleigh Taylor Breakup

gt = accelerationK =

−gt ρl − ρg( )3 σ

Ωt =2

3 σ

−gt ρl − ρg( )[ ]3

2

ρl + ρg

Page 24: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

24B ReitzEPD9636

R/DL/D

Breakup length

Λ

η=η0eΩt

r=B0Λ

Jet/drop breakupKH Model

Nozzle flowNozzle flowmodelmodel

ERC KH-RT Atomization Model‘Blob’ injection

KHKHKH

aBΛΩ

= 1726.3τ

Drop size (KH)

ΚΗΛ= 0BrKH

Drop breakupda/dt = - (a -r) / τ

Drop size (RT)

Drop breakupRT Model

2 πB2 KrRT =

1 Ω tτRT =

Page 25: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

25B ReitzEPD963675(10)25 split injection

Page 26: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

26B ReitzEPD9636Comparison with Engine Sprays

-12 -10 -8 -6 -4 -2 0 205

10152025303540455055

Measured KH-RT (Lb) Model KH Model

Spra

y Ti

p Pe

netra

tion

(mm

)

CAD ATDC

Spray Tip Penetration

Sandia Engine (Dec, 1997)

Cummins optical-access engineCELECT systemL/D=4.1, Dnozzle=0.194 mmSharp-edge inlet

Page 27: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

27B ReitzEPD9636

Equivalence RatioL = 0.5 H = 4.5

KH KH-RTSpray drops Ricart, Reitz, Dec - ASME 1997

KH-RT & Breakup Length Model

9 btdc

7 btdc

5 btdc

• Limited liquid penetration length

Page 28: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

28B ReitzEPD9636Drop Collision & Coalescence

∆ =rsmallrl arg e

0

0,1

0,2

0,3

0,4

0,5

0 20 40 60 80 100 120

2*Wec

Impa

ct p

aram

eter

x

Coalescence

Reflexive separation

'grazing'Stretching separation

present study:satellite

formationor

shattering collisionpossible

∆ 0

x = 1 grazing

x = 0 head on σρ 2UrWe smallc =

• Small dropcolliding withbig drop ismore likely tocoalesce

Page 29: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

29B ReitzEPD9636Collision Probability

ν12 = N2 π(r1 + r2 )2 E12 |v1 − v2 |/Vol

• Collision frequency – O’Rourke and Bracco 1980

1

2

• Collision efficiency

E12 =K

K +1 / 2

2

~ 1 K =29

ρl v1 − v2 r22

µ g r1

Number of collisions fromPoisson process

p(n) = e -ν12∆t ν12∆t n/n!

0 < p <1 random number

Page 30: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

30B ReitzEPD9636Drop Coalescence

x =12

5 We1+ ∆3( )116

1 + ∆( ) ∆3 1+ ∆2 − 1 + ∆3( )23

12

• Grazing-coalescence boundary – Ashgriz and Poo JFM 1990

Drops fly apart if rotational energy of colliding pair exceedssurface energy of combined pair

0 < x <1random number

Page 31: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

31B ReitzEPD9636Grazing - Stretching Separation

• Collision dynamicsEnergy and angular momentum conservation:

• Grazing – drops move in same direction but at reduced velocity• Coalescence – mass average properties of colliding drops

Page 32: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

32B ReitzEPD9636Drop Reflexive Separation

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 1002*We

²=1²=0.75²=0.5

Coalescence

Reflexive separation

2 We

∆ 1 + ∆3( )2∆6 η1 + η2( )+ 3 4 1 + ∆2( )− 7 1+ ∆3( )2

3

≥ 0

η1 = 2 1− ξ( )2 1− ξ2( )12 −1

η2 = 2 ∆ − ξ( )2 ∆2 − ξ 2( )12 − ∆3

with ξ =12

x 1+ ∆( )

Tennison et al. SAE 980810

Page 33: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

33B ReitzEPD9636Shattering Collisions

ur

r0

r

t=tbreakuprc

t=0

λ

θr1 r2

• Model basedon thestabilityanalysis ofcombineddroplets thatelongate intoa ligamentafter acollision

Georjon & Reitz, Atom. & Sprays, 1999

Page 34: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

34B ReitzEPD9636Drop Vaporization

• Vaporization in a non-convective environment– well understood for single component, low pressure– D2 Law

Drop

Liquid-Vapor Interface: Equilibrium or

Non-equilibrium

Heat transfer to drop: convection (conduction), radiation

Mass transfer with surroundings: vaporization, condensation, gas solubility

Internal circulation and profiles: temperature, concentration, velocity

Relative Drop Motion

r

TR

Tinf

T YR

Y Yinf R

Page 35: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

35B ReitzEPD9636KIVA Vaporization Models

Frossling correlation - Lefebvre, Atomization & Sprays 1989

Mass transfer number

Sherwood number

Fuel mass fraction at drop surface

R = dr / dt = −ρ DBSh / (2ρ1r )

B = (Y1* − Y1 ) / (1− Y1

* )

Sh = (2.0 + 0.6 Re d1/ 2 Sc1/ 3 )

ln(1+ B)B

Y1* = W1 / W1 + W0 (

ppv(Td )

−1)

Vapor pressure Pv from thermodynamic tables

Page 36: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

36B ReitzEPD9636Drop Heat-up Modeling

Change in drop temperature from energy balance

Rate of heat conduction to drop from Ranz-Marshall correlation

Qd = α (T2 − T1)Nu / (2ρ r)

Nu = (2.0 + 0.6Red1/ 2 Pr1/ 3 )

ln(1+ B)B

d l d d d dr c T r RL T r Q43

4 43 2 2 ( )

Page 37: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

37B ReitzEPD9636Other Effects

• High pressure effects (N2 solubility)• Drop distortion• Drop internal flow

– effective diffusivity

• Multicomponent fuels

0 20 40 60 80 100160

200

240

280

320

360

Chevron - Summer Chevron - Winter

Tem

pera

ture

(deg

C)

% Recovered

• Fuel effects:– Cetane number (auto-ignition)– Volatility (10%, 50% boiling point)

Page 38: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

38B ReitzEPD9636Continuous Thermodynamics

f I I I( ) ( )( )

exp ( )

;

= − − −FHG

IKJ

= + =

−γβ α

γβ

θ αβ γ σ αβ

α

α

1

2

Γ2

Fuel composition represented by:• Γ-Distribution function• α, β shape parameters; γ origin shift

Fuel composition represented by:• Γ-Distribution function• α, β shape parameters; γ origin shift

0

0.005

0.01

0.015

0.02

0 100 200 300 400

DieselGasolineKerosene

Dis

tribu

tion

Func

tion

f(I)

Molecular Weight I

Fuel Diesel Gasoline Keroseneαβγ

18.510.00.0

5.715.00.0

50.03.5250.0

θσ

18543

85.535.8

176.2524.9

C14H30

Lippert and Reitz SAE 972882

Page 39: Spray Submodels EPD9636 1B Reitz - UW-Madison Submodels.pdf · 20B Reitz Drop Breakup Models EPD9636 t1 =D1 ρlr 3 σ Lifetimes of unstable drops: Bag breakup t2 =D2 r U ρl ρg Stripping

39B ReitzEPD9636Drop Vaporization Processes

Gasoline Droplet Diesel Droplet

0 5 10 15 20 25 30 350

20

40

60

80

100

120

140

160

180

200

220

240

0

20

40

60

80

100

120

140

160

180

200

220

240 Vapor mass fraction @ surface [%] Droplet Temperature [deg C]

Diameter 2 [10 4mm 2] Mean of Liquid Composition [MW] Width of Liquid Composition [MW] Boiling Temperature [deg C]

Time [ms]0 10 20 30 40

0

50

100

150

200

250

300

350

400

0

50

100

150

200

250

300

350

400 Vapor mass fraction @ surface [%] Droplet Temperature [deg C]

Diameter 2 [10 4mm 2] Mean of Liquid Composition [MW] Width of Liquid Composition [MW] Boiling Temperature [deg C]

Time [ms]

Han et al. SAE 970625