10
\SS- si/ J. Flow Injection Anal., Vol. 14 , No. 2 (1997) -7<9n75-=>~;5fttl%ft;£D-74^7~?-,-/< Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan The Application of micromachining techniques to prepare micr ofabr icated system for flow analysis is reviewed. Microstructures and capillaries, integrated detector systems, valveless switching of sample flow, and electroosmotic pumping are concepts that can be combined in a variety of ways to produce unique, miniaturized analytical systems. Integration of microflow contr 01 devices and microflow sensors allowed very precise control of small flow. High performance liquid dosing micr osystems and sophisticated chemical analysing micr osystems were demonstrated by the combination of micr oflow devices and micr osensors. Applications of microfl ow devices and systems are also introduced.

SS- - 九州大学(KYUSHU UNIVERSITY)jafia.kyushu-u.ac.jp/japanese/jfia/contents/14_2/JFIA1997V0014P... · \SS- si/ J. Flow Injection Anal., Vol. 14 , No. 2 (1997) -7~;5fttl%ft;£D-74^7~?-,-

Embed Size (px)

Citation preview

\SS- si/ J. Flow Injection Anal., Vol. 14 , No. 2 (1997)

- 7 < 9 n 7 5 - = > ~ ; 5 f t t l % f t ; Â £ D - 7 4 ^ 7 ~ ? - , - / <

Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences,

The University of Tokushima, Shomachi, Tokushima 770-8505, Japan

The Application of micromachining techniques to prepare micr ofabr icated

system for flow analysis is reviewed. Microstructures and capillaries, integrated

detector systems, valveless switching of sample flow, and electroosmotic pumping

are concepts that can be combined in a variety of ways to produce unique,

miniaturized analytical systems. Integration of microflow contr 01 devices and

microflow sensors allowed very precise control of small flow. High performance

liquid dosing micr osy stems and sophisticated chemical analysing micr osystems

were demonstrated by the combination of micr oflow devices and micr osensors.

Applications of microfl ow devices and systems are also introduced.

9 u 3 > F A 4 y l -FIA'>Xf- .^T{;^ -:?00Â¥9-t^- X ' @ ~ ' D ';I 9 KÈn< $ M S t ~ T i / e c i ~ ( , @; iaQl~d 9 a?->-=>TE%DB@i:ff7T, $ iS>i:/J@!-fb M3^tl, .@-(D#yY_h4~^fs@DAf~ 6-r. $>?, 0%99-, fill̂ 4% XWJ: F% W^t^ L f c ~ 4 3' u M^r % ~ - A ( ~ - T A s : micro total analysis system) D@&(&j 6 i/ ^^Lab-on-a-chip concept) @$@$$$ & ( ~ i ~ . 2)\ FIAG mfe, 3' u -? F 7 4 -%AV?%%@^-i3^r^^ l : ^ J i ~ t i ~ ~ & - ^ ~

- ?̂I

- ., f l 7 X ' ] = l >

Fig. 2 Micro Total Analysis System ([A-TAS) or Lab-on-a-chip concept

POLISHED Sl WAFER

THERMAL OXIDE DEPOSmON

. - . - .,., , . , - . . . . . , , PHOTORESIST

PHOTORESIST DEPOSillON

PHOTO- UTHOQRAPHY

REMOVING THE PHOTORESIST

DEVELOPING ETCHINQ THE SI MICROSTRUCTURE

ETCHING THE OXIDE

Fig. 3 Process steps in a standard one-mask micromachining procedure

1 I I l T _ _ _ e77.9 . . . . . . . . . ................. .............. .............. .............. .............. ............................ PMMA l- ->'a

ASSIS

;I£SW)- ̂ 'Ni

Valvel Chamber Valve2 ( closed (open 1

Valve1 Valve2 ( open) (closed

( a ) P u m p i n g m o d e ( b ) S u c i i o n m o d e

Fig. 5 Piezoelectric type reciprocating micropump2^

b'>7¡n^r- >?@-749 a/-^ >7¡ LTiA, Fig. 5 K % T J : 5 I:, -74 9 a,< fi7"h79#3.^-9-?X#k/~, m - N & T t \ & o h y 9 / W 7 * & 7 9 f - s . ~ - ~ - t ^ t ^ ~ % g ~ % ~ % ~ ~ ~ & ~ ~ ~ k ^ . T 9 5 - 3 - - 9 - 2 L

Fig. 6 Piezoelectric type peristaltic r n i c r ~ ~ u r n ~ ~ ~ ~

Inlet 2 In le t I O u t l e t

Fig. 7 Piezoelectric type three-way microvalve ̂

REAGENT cARR1w MICROPUMP

T H R E E - W A Y

/ \

C A R

S A

R I E R [

DETECTOR

V A L V E D E T E C T O R

S A M P L E

U I C R O P U M P P Y R E X G L A S S

Fig. 8 Integrated flow injection analysis systemu)

I 40 50 Is0 TO 80

Time (seconds)

Fig. 9 Functional integration for PCR and capillary electrophoresis on a microchip31)

- Fig. 10 Microchip ESI-MS interfacem

-

2% 1. J. Ruzicka, Anal. Chem., 55, 1040A (1983).

2. A. Manz, N. Graber, and H.M. Widmer, Sensors &Actuators, B l , 244 (1990).

3. R.F. Service, Science, 268, 26 (1995).

4. A. Manz, D.J. Harrison, E. Verpoorte and H.M. Widmer, Adv. Chromatogr., 33, 1 (1993).

5. S. Shoji and M. Esashi, J. Micromech. Microeng., 4, 157 (1994).

6. C.L. Colyer, T. Tang, N. Chiem, and D.J. Harrison, Electrophoresis, 18, 1733 (1997).

7. ,%%gE, "7 7 Ib-7 37, 32, 549 (1996).

8. ,%%EB, %0̂ 46, 894 (1997).

9. ,g%s(g, @&! . %ffl&J , %?$@!%, ̂ -^ 7 - 4 - * ^xffl&i, 1997,

pp. 856-877.

lO..%$E$$-fZ, [S?D& @&, 183, 285 (1997).

11. S.C. Terry, J.H. Jennan, and J.B. Angell, IEEE Trans. Electron. Devices, ED-26, 1880

(1979).

12. S. Nakgagawa, S. Shoji, and M. Esashi, Proc. IEEE-MEMS Workshop, 1990, 89 (1990).

13. A. Manz, Y. Miyahara, J. Miura, Y. Watanabe, E. MIyagi, and K. Sato, Sensors &

Actuators, B l , 249 (1990).

14. D.J. Harrison, A Manz, Z. Fan, H. Ludi, and H.M. Widmer, Amd. Chem., 64, 1926

(1992).

15. D.J. Harrison, K. Fluri, K. Seiler, 2. Fan, C. S. Effenhauser, and A Manz, Science, 261, 895 (1993).

--- -- 7677.TJTSm^tS~S.Ftnsors ~c&ators;-A-2%A23;-20~l990):--- -- -

- -

17. F. C.M. van de Pol, H+T.G. van Lintel, M. Elwenspoek, and J.H.J. Fluitman, Sensors &

Actuators, A21-23, 198 (1990).

18. M. Esashi, Sensors &Actuators, A21-A23, 161 (1990).

19. S. Shoji, M. Esahi, B. van der Schoot, and N. de Rooij, Sensors &Actuators, A32, 335

(1992).

20. S. Shoji, S. Nakagwa, M. Esashi, Sensors &Actuators, A21-A23, 189 (1990).

21. T.S.J. Lammerink, M. Elwenspoek, and J.H.J. Fluitman, Proc. IEEE-MEMS Workshop,

1993,254 (1993).

22. S. Liu and P.K. Dasgupta, Anal. Chim. Acta, 268, 1 (1992).

23. J.M. Mesaros, P.J. Gavin, and A.G. Ewing,Anal. Chem., 68, 3441 (1996).

24. A.G. Ewing, P.J. G a ~ i n ~ P . 3 . Hietpas, and K.M. Billiard,Nature Medicine., 3, 97 (1997).

25. S.C. Jacobson, R. Hergemoder, L.B. Koutny, and J.M. Ramsey, Anal. Chem., 66, 1114

(1994).

26. S.C. Jacobson, L.B. Koutny, R. Hergemoder, A.W. Moore, Jr., and J.M. Ramsey, And

Chem., 66, 3472 (1994).

27. S.C. Jacobson, R. Hergenroder, A.W. Moore, Jr., and J.M. Ramsey, Anal. Chem., 6 6 , 4127

(1994).

28. S.C. Jacobson and J.M. Rarnsey, Anal. Chem., 68, 720 (1996).

29. K. Fluri, G. Fitzpatrick, N. Chiem, and DJ. Harrison, Anal. Chem., 68, 4285 (1996).

30. A.T. Woolley and R.A. Mathies, Proc. Natl. Acad. Sci. USA, 91, 11348 (1994).

31. A.T. Woolley and R.A. Mathies, Anal. Chem., 68, 4081 (1996)..

32. Q. Xue, F. Foret, Y.M. Dunayevskiy, P.M. Zavracky, N.E. McGruer, and B.L. Karger,

Anal. Chem., 69, 426 (1997).

33. R.S. Ramsey and J.M. Ramsey, Anal. Chem., 69, 1174 (1997).