28
Copernicus Institute for Sustainable Development and Innovation State of the Art CCS (CO 2 Capture and Storage) Wim C. Turkenburg Copernicus Instituuut voor Duurzame Ontwikkeling en Innovatie Universiteit Utrecht [email protected] Nationaal Symposium “Schoon Fossiel voor Nederland” Den Haag – 23 November 2005

State of the Art CCS ( CO 2 Capture and Storage)

  • Upload
    jaron

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

State of the Art CCS ( CO 2 Capture and Storage). Wim C. Turkenburg Copernicus Instituuut voor Duurzame Ontwikkeling en Innovatie Universiteit Utrecht [email protected] Nationaal Symposium “Schoon Fossiel voor Nederland” Den Haag – 23 November 2005. - PowerPoint PPT Presentation

Citation preview

Page 1: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

State of the Art CCS (CO2 Capture and Storage)

Wim C. Turkenburg

Copernicus Instituuut voor Duurzame Ontwikkeling en InnovatieUniversiteit Utrecht

[email protected]

Nationaal Symposium “Schoon Fossiel voor Nederland”Den Haag – 23 November 2005

Page 2: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

World primary energy consumption in 2001

________________________________________________________________________________________________

Fossil fuels: 332 EJ (79.4%) - oil 147 EJ - natural gas 91 EJ - coal 94 EJ________________________________________________________________________________________________

Renewables: 57 EJ (13.7%) - large hydro 9 EJ - traditional biomass 39 EJ - ‘new’ renewables 9 EJ________________________________________________________________________________________________

Nuclear: 29 EJ (6.9%)________________________________________________________________________________________________

Total: 418 EJ (100%)

Source: World Energy Assessment, Overview, 2004 update

Page 3: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Fossil fuel occurrences

World fossil fuel consumption in 2001

332 EJ ~ 24 Gt CO2

Fossil fuel consumption 1860 – 2001

14.500 EJ ~ 1200 Gt CO2

Fossil fuel reserves 47.000 EJ 3.600 Gt CO2

Fossil fuel resources 235.000 EJ 20.500 Gt CO2

Additional occurrences 975.000 EJ 55.000 Gt CO2

Source: World Energy Assessment, 2000 / 2004

Page 4: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Global CO2 emissions from fossil fuels (in 2002, forecast for 2030)

Source: IEA, WEO, 2004

0

4000

8000

12000

16000

20000

power industry transport residential +services

othersectors

CO

2 em

issi

on

s (M

t/yr)

2030

2002

Page 5: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Business as Usual scenario

pre-industrial: 280 ppmv / at present: ~ 370 ppmv

Most proposals: stabilization at 450-550 ppmv

Page 6: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Courtesy of Statoil

Page 7: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 capture and storage (CCS)• CO2 capture (from static sources):

– Natural gas sweetening (> 50 Mt CO2/year)– Industry (e.g. refineries, ammonia, steel)– Hydrogen plants – Power plants

• Transport: by pipeline or tanker.

• Storage/disposal:– (Depleted) oil/gas fields (with EOR/EGR)– Deep unminable coal beds (with ECBM)– Deep saline aquifers – Mineral carbonation (very costly)– Ocean (still in research phase)

Page 8: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

SouthwestAquifers (200 Mt)Gas fields (50 Mt)

~

Large hydrogen plant with CCS

Large powerplant with CCS

CO2 pipeline

Hydrogen pipeline

Residential hydrogen market

Industrial hydrogen market

Automotive hydrogen market

H2

North SeaAquifers (350 Mt)Gas fields (1250 Mt)

SoutheastAquifers (200 Mt)15 30 45 60 75km

~

~

~

West Aquifers (570 Mt) Gas fields (100 Mt)

North Aquifers (130 Mt) Groningen gas field (7512 Mt) Other gas fields (2000 Mt)

Central Aquifers (110 Mt)

H2

~

Storage reservoirs

~

~

Source: Damen et al., 2005

Page 9: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Worldwide large stationary CO2 sources (more than 0.1 MtCO2/yr)

Process No. of Sources Emissions (MtCO2/yr)

Fossil Fuels Power plants Cement production Refineries Iron and Steel industry Petrochemical industry Oil and gas processing Other sources

4,942 1,175 638 269 470 Not available 90

10,539 932 798 646 379 50 33

Biomass Bioethanol and bioenergy 303 91Total > 7,887 13,366

Source: IPCC, SR-CCS, 2005

Page 10: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 capture options

Major approaches:– Post-combustion

– Pre-combustion

– Oxyfuel combustion

Separation technologies:– Absorption

– Adsorption

– Cryogenic

– MembraneCO2 capture plant (ABB Lummus Crest)

Page 11: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Separation with sorbents / solvents

CO2 Capture

Gas with CO2

Sorbent Regeneration

Sorbent + CO2

CO2

Sorbent make-up

Sorbent

Spentsorbent

Energy

a) Separation with sorbents/solvents

CO2 Capture

Gas with CO2

Sorbent Regeneration

Sorbent + CO2

CO2

Sorbent make-up

Sorbent

Spentsorbent

Energy

CO2 Capture

Gas with CO2

Sorbent Regeneration

Sorbent + CO2

CO2

Sorbent make-up

Sorbent

Spentsorbent

EnergyEnergy

a) Separation with sorbents/solvents

Source: IPCC, SR-CCS, 2005

CO2 has been captured from industrial process streams since 80 years

Page 12: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Separation with a membrane / by cryogenic distillation

Power

Gas B

Gas A

Gas (A+B)

Distillation

Gas (A+B)

Gas BGas A

Membrane

Power

Gas B

Gas A

Gas (A+B)

Distillation

PowerPowerPower

Gas B

Gas A

Gas (A+B)

Distillation

Gas (A+B)

Gas BGas A

MembraneGas

(A+B)

Gas BGas A

Membrane

Source: IPCC, SR-CCS, 2005

Many types of membranes (polymeric, metallic, ceramic)

Liquidizing the gas; separation ofgas components in distillation column

Separation of H2, CO2 or O2

O2 from air, CO2 from flue gas

Page 13: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Post-combustion

Source: IEA GHG R&D Programme

Natural gas

Air Gas turbine

Steamgenerator

Steamturbine

CO2 separatio

n

CO2 to storage

N2, O2, H2Oto atmosphere

Page 14: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Pre-combustion

Source: ECN

Syngas reactor Shift conversion CO2 to storage

CO2 separation

N2, H2O toatmosphere

H2- rich fuel gas

Natural gas Air

Steam cycle

Gas turbine

Page 15: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Oxyfuel combustion

Gas turbineSteam-turbine

Electrical

Generator96 % CO2

2 % H2O 2.1 % O2

Fuel Steamgenerator

Pressurizedoxygen

Cooler/condenser

H2O CO2 to compression

90 % recycle

1 bar

83 % CO2

15 % H2O2 % O2

83 % CO2

15 % H2O2 % O2

Condenser

Source: IPCC

Oxygen is usually produced by cryogenic air separation.Novel techniques under development: membranes, chemical looping.

Page 16: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Energy penalty & CO2 captured - CO2 avoided

Page 17: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Typical energy penalties (increase fuel use per kWh electricity due to CO2 capture)

Power plant (current technology) increase

Coal, post-combustion capture 24-40 %

Coal IGCC, pre-combustion capture 14-25 %

Coal, oxyfuel combustion 24-27 %

Gas, post-combustion capture 10-22 %

Gas, pre-combustion capture 16-28 %

Gas, oxyfuel combustion 22-28 %

Source: IPCC, SR-CCS, 2005 Damen et al., 2006

Page 18: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Performance new power plants *)(current technology)

New NGCC New PC New IGCC

Cap. Costs, no capt. (US$/kW) ~ 570 ~ 1290 ~ 1330

Cap. Costs, with capt. (US$/kW) ~ 1000 ~ 2100 ~ 1830

Plant efficiency, with capt. 47-50 % 30-35 % 31-40 %

COE, no capt. (US$/kWh) 0.031-0.050 0.043-0.052 0.041-0.061

COE, with capt. (US$/kWh) 0.043-0.072 0.062-0.086 0.054-0.079

Increase COE 37-69 % 42-66 % 20-55 %

Cost of net CO2 capt. (US$/tCO2) 37-74 29-51 13-37

*) Gas prices: 2.8-4.4 US$/GJ; Coal prices: 1-1.5 US$/GJ

Source: IPCC SR-CCS, 2005

Page 19: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 transport

CO2 transport USA - Canada

• Over 2500 km CO2 pipelines in USA (for EOR; transport more than 45 Mt/yr).

• High-pressure (80-140 bar).

• Long-distance injection: transport by tanker less costly

- offshore > 1000 km

- onshore > 1600 km

Page 20: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 transportation costs (per 250 km, onshore and offshore)

Source: IPCC, SR-CCS, 2005

Transportation costs:1-8 US$ / tCO2 / 250 km

Page 21: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 geological storage capacity

10-200 GtCO2

1,000-10,000 GtCO2

700-900 GtCO2

Theoretical capacity in the Netherlands:• depleted gas fields: 10,900 MtCO2• saline aquifers: 260 – 2,600 MtCO2• coal beds: 300 – 1,000 MtCO2

Global capacity:At least 2,000 GtCO2

(80 x CO2 emissions in 2005 from fossil fuel use)

Source: IPCC, SR-CCS, 2005

Page 22: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Largest sites CO2 storage

Project name Start (year)

Daily injection

(tCO2/day)

Planned storage

(MtCO2)

Storage type

Weyburn, Canada 2000 3,000-5,000 20 EOR

In Salah, Algeria 2004 3,000-4,000 17 Gas field

Sleipner, Norway 1996 3,000 20 Saline format.

K-12B, Netherlands 2004 100 (1,000) 8 Gas field/ EOR

Frio, USA 2004 177 1.6 Saline format.

Fenn Big Valley, Canada 1998 50 0.2 ECBM

Gorgon, Australia (planned) ~ 2009 10,000 unknown Saline format.

Snøhvit, Norway (planned) 2006 2,000 unknown Saline format.

Source: IPCC, SR-CCS, 2005

Page 23: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Cost CO2 storage

CCS system components: Cost range(US$/tCO2 avoided)

- Geological storage 0.5 - 8

- Geological storage: monitoring and verification

0.1 - 0.3

- Ocean Storage 5 - 30

- Mineral carbonization 50 - 100

Source: IPCC, SR-CCS, 2005

Page 24: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Total production costs of electricity *)

Power plant system

Natural Gas Combined Cycle

(US$/kWh)

Pulverized Coal

(US$/kWh)

Integrated Gasification

Combined Cycle

(US$/kWh)Without capture(reference plant)

0.03-0.05 0.04-0.05 0.04-0.06

With capture and geological storage

0.04-0.08 0.06-0.10 0.05-0.09

With capture and EOR

0.04-0.07 0.05-0.08 0.04-0.07

*) Gas prices: 2.8-4.4 US$/GJ; Coal prices: 1-1.5 US$/GJ

Source: IPCC SR-CCS, 2005

Page 25: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

CO2 avoidance costs for complete CCS systems for electricity generation

Type of power plantwith CCS

reference plant :Natural Gas

Combined Cycle(US$/tCO2 avoided)

reference plant:Pulverized Coal

(US$/tCO2 avoided)Power plant with capture and geological storage- Natural Gas Combined Cycle- Pulverized Coal- Integrated Gasification CC

40 - 9070 - 27040 - 220

20 - 6030 - 7020 - 70

Power plant with capture and EOR

Cost reduction:20-30 US$/tCO2

Cost reduction:20-30 US$/tCO2

Source: IPCC, SR-CCS, 2005

Page 26: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Value CO2 emission permits

Europer tCO2

Page 27: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

“Energy and economic models indicate that the major CCS system’s contribution to climate change mitigation would come from deployment in the electricity sector.”

“Most modeling suggests that CCS systems begin to deploy at a significant level when CO2 prices begin to reach 25-30 US$/tCO2”

IPCC Special Report on CCSSeptember 2005

Page 28: State of the Art CCS ( CO 2  Capture and Storage)

Copernicus Institute forSustainable Development and Innovation

Conclusions / remarks• CCS is a viable option, with future costs ranging in

general from 10 to 100 US$ / tCO2 avoided.• It may reduce the cumulative emissions till 2100

with 220 - 2200 GtCO2 (15-55% contribution).• Advanced CCS may lead to an increase of the

production costs of electricity with 25-50% and of hydrogen with 5-30% (without use CO2).

• There is a growing interest for this option, from governments, industries, research institutes and environmental groups.

• Further RD&D needed to reduce costs, to develop new approaches, to address environmental concerns, and to understand public acceptance.