24
Institute for Responsible Technology P.O. Box 469 Fairfield, IA 52556 USA +1.641.209.1761 [email protected] www.responsibletechnology.org S TATE - OF - THE -S CIENCE ON THE H EALTH R ISKS OF GM F OODS v2.15.10 e all know stories of tobacco, asbestos, and DDT. Originally declared safe, they caused widespread death and disease. Although their impact was vast, most of the population was spared. The same cannot be said for sweeping changes in the food supply. Everyone eats; everyone is affected. The increase in several diseases in North America may be due to the profound changes in our diet. The most radical change occurred a little over a decade ago when genetically modified (GM) crops were introduced. Their influence on health has been largely ignored, but recent studies show serious problems. Genetically modified organisms (GMOs) have been linked to thousands of toxic or allergic-type reactions, thousands of sick, sterile, and dead livestock, and damage to virtually every organ and system studied in lab animals. 1 Nearly every independent animal feeding safety study shows adverse or unexplained effects. GM foods were made possible by a technology developed in the 1970s whereby genes from one species are forced into the DNA of other species. Genes produce proteins, which in turn can generate characteristics or traits. The promised traits associated with GMOs have been sky high—vegetables growing in the desert, vitamin fortified grains, and highly productive crops feeding the starving millions. None of these are available. In fact, the only two traits that are found in nearly all commericialized GM plants are herbicide tolerance and/or pesticide production. Herbicide tolerant soy, corn, cotton, and canola plants are engineered with bacterial genes that allow them to survive otherwise deadly doses of herbicides. This gives farmers more flexibility in weeding and gives the GM seed company lots more profit. When farmers buy GM seeds, they sign a contract to buy only that seed producer’s brand of herbicide. Herbicide tolerant crops comprise about 80% of all GM plants. The other 20% are corn and cotton varieties that produce a pesticide in every cell. This is accomplished due to a gene from a soil bacterium called Bacillus thuringiensis or Bt, which produces a natural insect-killing poison called Bt- toxin. In addition to these two traits, there are also disease resistant GM Hawaiian papaya, zucchini and crook neck squash, which comprise well under 1% of GMO acreage. T HE FDA’ S NON - REGULATION OF GM FOODS Rhetoric from the United States government since the early 1990s proclaims that GM foods are no different from their natural counterparts that have existed for centuries. The Food and Drug Administration (FDA) has labeled them “Generally Recognized as Safe,” or GRAS. This status allows a product to be commercialized without any additional testing. According to US law, to be considered GRAS the substance must be the subject of a substantial amount of peer-reviewed published studies (or equivalent) and there must be overwhelming consensus among the scientific community that the product is safe. GM foods had neither. Nonetheless, in a precedent-setting move in 1992 that some experts contend was illegal, the FDA declared that GM crops are GRAS as long as their producers say they are. Thus, the FDA does not require any safety evaluations or labeling of GMOs. A company can even introduce a GM food to the market without telling the agency. W

STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

  • Upload
    dangdan

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

Institute for Responsible Technology P.O. Box 469 Fairfield, IA 52556 USA +1.641.209.1761 [email protected] www.responsibletechnology.org

STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

v2.15.10

e all know stories of tobacco, asbestos, and DDT. Originally declared safe, they caused widespread death and disease.

Although their impact was vast, most of the population was spared. The same cannot be said for sweeping changes in

the food supply. Everyone eats; everyone is affected. The increase in several diseases in North America may be due to

the profound changes in our diet. The most radical change occurred a little over a decade ago when genetically

modified (GM) crops were introduced. Their influence on health has been largely ignored, but recent studies show serious

problems. Genetically modified organisms (GMOs) have been linked to thousands of toxic or allergic-type reactions, thousands of

sick, sterile, and dead livestock, and damage to virtually every organ and system studied in lab animals.1 Nearly every independent

animal feeding safety study shows adverse or unexplained effects.

GM foods were made possible by a technology developed in the 1970s whereby genes from one species are forced into the DNA of

other species. Genes produce proteins, which in turn can generate characteristics or traits. The promised traits associated with

GMOs have been sky high—vegetables growing in the desert, vitamin fortified grains, and highly productive crops feeding the

starving millions. None of these are available. In fact, the only two traits that are found in nearly all commericialized GM plants are

herbicide tolerance and/or pesticide production.

Herbicide tolerant soy, corn, cotton, and canola plants are engineered with bacterial genes that allow them to survive otherwise

deadly doses of herbicides. This gives farmers more flexibility in weeding and gives the GM seed company lots more profit. When

farmers buy GM seeds, they sign a contract to buy only that seed producer’s brand of herbicide. Herbicide tolerant crops comprise

about 80% of all GM plants. The other 20% are corn and cotton varieties that produce a pesticide in every cell. This is accomplished

due to a gene from a soil bacterium called Bacillus thuringiensis or Bt, which produces a natural insect-killing poison called Bt-

toxin. In addition to these two traits, there are also disease resistant GM Hawaiian papaya, zucchini and crook neck squash, which

comprise well under 1% of GMO acreage.

THE FDA’S “NON-REGULATION” OF GM FOODS

Rhetoric from the United States government since the early 1990s proclaims that GM foods are no different from their natural

counterparts that have existed for centuries. The Food and Drug Administration (FDA) has labeled them “Generally Recognized as

Safe,” or GRAS. This status allows a product to be commercialized without any additional testing. According to US law, to be

considered GRAS the substance must be the subject of a substantial amount of peer-reviewed published studies (or equivalent) and

there must be overwhelming consensus among the scientific community that the product is safe. GM foods had neither.

Nonetheless, in a precedent-setting move in 1992 that some experts contend was illegal, the FDA declared that GM crops are GRAS

as long as their producers say they are. Thus, the FDA does not require any safety evaluations or labeling of GMOs. A company can

even introduce a GM food to the market without telling the agency.

W

Page 2: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

Such a lenient approach was largely the result of the influence of large agricultural corporations According to Henry Miller, who

had a leading role in biotechnology issues at the FDA from 1979 to 1994, “In this area, the US government agencies have done

exactly what big agribusiness has asked them to do and told them to do.” The Ag biotech company with the greatest influence was

clearly Monsanto. According to the New York Times, “What Monsanto wished for from Washington, Monsanto and, by extension,

the biotechnology industry got. . . . When the company abruptly decided that it needed to throw off the regulations and speed its

foods to market, the White House quickly ushered through an unusually generous policy of self-policing.”

This policy was heralded by Vice President Dan Quayle on May 26, 1992. He chaired the Council on Competitiveness, which had

identified GM crops as an industry that could boost US exports. To take advantage, Quayle announced “reforms” to “speed up and

simplify the process of bringing” GM products to market without “being hampered by unnecessary regulation.”2 Three days later,

the FDA policy on non-regulation was unveiled.

The person who oversaw its development was the FDA’s Deputy Commissioner for Policy, Michael Taylor, whose position had

been created especially for him in 1991. Prior to that, Taylor was an outside attorney for both Monsanto and the Food

Biotechnology Council. After working at the FDA, he became Monsanto’s vice president. The Obama administration has put Talyor

back into the FDA as the US Food Safety Czar.

THE FDA COVERS UP HEALTH RISKS

Taylor’s GMO policy needed to create the impression that unintended effects from GM crops were not an issue. Otherwise their

GRAS status would be undermined and they would need the extensive testing and labels that are normally required for food

additives. But internal memos made public from a lawsuit showed that the overwhelming consensus among the agency scientists

was that GM crops can have unpredictable, hard-to-detect side effects. Various departments and experts spelled these out in detail,

listing allergies, toxins, nutritional effects, and new diseases as potential dangers. They urged superiors to require long-term safety

studies.3 In spite of the warnings, according to public interest attorney Steven Druker who studied the FDA’s internal files,

“References to the unintended negative effects of bioengineering were progressively deleted from drafts of the policy statement

(over the protests of agency scientists).”4

FDA microbiologist Louis Pribyl, PhD, wrote about the policy, “What has happened to the scientific elements of this document?

Without a sound scientific base to rest on, this becomes a broad, general, ‘What do I have to do to avoid trouble’-type document. . . .

It will look like and probably be just a political document. . . . It reads very pro-industry, especially in the area of unintended

effects.”5

The scientists’ concerns were not only ignored, their very existence was denied. The official FDA policy stated, “The agency is not

aware of any information showing that foods derived by these new methods differ from other foods in any meaningful or uniform

way.”6 In sharp contrast, an internal FDA report stated, “The processes of genetic engineering and traditional breeding are different

and according to the technical experts in the agency, they lead to different risks.”7 The FDA’s deceptive notion of no difference was

coined “substantial equivalence” and formed the basis of the US government position on GMOs.

Many scientists and organizations have criticized the US position. The National Academy of Sciences and even the pro-GM Royal

Society of London8 describe the US system as inadequate and flawed. The editor of the prestigious journal Lancet said, “It is

astounding that the US Food and Drug Administration has not changed their stance on genetically modified food adopted in 1992. . .

. The policy is that genetically modified crops will receive the same consideration for potential health risks as any other new crop

plant. This stance is taken despite good reasons to believe that specific risks may exist. . . . Governments should never have allowed

these products into the food chain without insisting on rigorous testing for effects on health.”9 The Royal Society of Canada

described substantial equivalence as “scientifically unjustifiable and inconsistent with precautionary regulation of the technology.”

10

Page 3: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

GMOS ARE INHERENTLY UNSAFE

There are several reasons why GM plants present unique dangers. The first is that the process of genetic engineering itself creates

unpredicted alterations, irrespective of which gene is transferred. The gene insertion process, for example, is accomplished by either

shooting genes from a “gene gun” into a plate of cells, or using bacteria to infect the cell with foreign DNA. Both create mutations

in and around the insertion site and elsewhere.11

The “transformed” cell is then cloned into a plant through a process called tissue

culture, which results in additional hundreds or thousands of mutations throughout the plants’ genome. In the end, the GM plant’s

DNA can be a staggering 2-4% different from its natural parent.12

Native genes can be mutated, deleted, or permanently turned on

or off. In addition, the insertion process causes holistic and not-well-understood changes among large numbers of native genes. One

study revealed that up to 5% of the natural genes altered their levels of protein expression as a result of a single insertion.

The Royal Society of Canada acknowledged that “the default prediction” for GM crops would include “a range of collateral changes

in expression of other genes, changes in the pattern of proteins produced and/or changes in metabolic activities.”13

Although the

FDA scientists evaluating GMOs in 1992 were unaware of the extent to which GM DNA is damaged or changed, they too described

the potential consequences. They reported, “The possibility of unexpected, accidental changes in genetically engineered plants”

might produce “unexpected high concentrations of plant toxicants.”14

GM crops, they said, might have “increased levels of known

naturally occurring toxins,” and the “appearance of new, not previously identified” toxins.15

The same mechanism can also produce

allergens, carcinogens, or substances that inhibit assimilation of nutrients.

Most of these problems would pass unnoticed through safety assessments on GM foods, which are largely designed on the false

premise that genes are like Legos that cleanly snap into place. But even if we disregard unexpected changes in the DNA for the

moment, a proper functioning inserted gene still carries significant risk. Its newly created GM protein, such as the Bt-toxin, may be

dangerous for human health (see below). Moreover, even if that protein is safe in its natural organism, once it is transferred into a

new species it may be processed differently. A harmless protein may be transformed into a dangerous or deadly version. This

happened with at least one GM food crop under development, GM peas, which were destroyed before being commercialized.

FDA scientists were also quite concerned about the possibility of inserted genes spontaneously transferring into the DNA of bacteria

inside our digestive tract. They were particularly alarmed at the possibility of antibiotic resistant marker (ARM) genes transferring.

ARM genes are employed during gene insertion to help scientists identify which cells successfully integrated the foreign gene.

These ARM genes, however, remain in the cell and are cloned into the DNA of all the GM plants produced from that cell. One FDA

report wrote in all capital letters that ARM genes would be “A SERIOUS HEALTH HAZARD,” due to the possibility of that they

might transfer to bacteria and create super diseases, untreatable with antibiotics.

Although the biotech industry confidently asserted that gene transfer from GM foods was not possible, the only human feeding

study on GM foods later proved that it does take place. The genetic material in soybeans that make them herbicide tolerant

transferred into the DNA of human gut bacteria and continued to function16

. That means that long after we stop eating a GM

crop, its foreign GM proteins may be produced inside our intestines. It is also possible that the foreign genes might end up inside

our own DNA, within the cells of our own organs and tissues.

Another worry expressed by FDA scientists was that GM plants might gather “toxic substances from the environment” such as

“pesticides or heavy metals,”17

or that toxic substances in GM animal feed might bioaccumulate into milk and meat products. While

no studies have looked at the bioaccumulation issue, herbicide tolerant crops certainly have higher levels of herbicide residues. In

fact, many countries had to increase their legally allowable levels—by up to 50 times—in order to accommodate the introduction of

GM crops.

The overuse of the herbicides due to GM crops has resulted in the development of herbicide resistant weeds. USDA statistics show

that herbicide use is rapidly accelerating. Its use was up by 383 million pounds in the first 13 years of GM crops.18

But the rate of

application is accelerating due in large part to the emergence of herbicide tolerant weeds. According to a study by Charles

Benbrook, “Crop years 2007 and 2008 accounted for 46% of the increase in herbicide use over 13 years across the three HT

[herbicide tolerant] crops. Herbicide use on HT crops rose a remarkable 31.4% from 2007 to 2008.” And as Roundup becomes less

effective, farmers are now using more toxic herbicides, such as 2-4D, which increased by 237% from 2004 to2006.19

Page 4: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

All of the above risks associated with GM foods are magnified for high-risk groups, such as pregnant women, children, the sick, and

the elderly. The following section highlights some of the problems that have been identified.

GM DIET SHOWS TOXIC REACTIONS IN THE DIGESTIVE TRACT

The very first crop submitted to the FDA’s voluntary consultation process, the FlavrSavr tomato, showed evidence of toxins. Out of

20 female rats fed the GM tomato, 7 developed stomach lesions.20

The director of FDA’s Office of Special Research Skills wrote

that the tomatoes did not demonstrate a “reasonable certainty of no harm,”21

which is their normal standard of safety. The Additives

Evaluation Branch agreed that “unresolved questions still remain.”22

The political appointees, however, did not require that the

tomato be withdrawn.1

According to Arpad Pusztai, PhD, one of the world’s leading experts in GM food safety assessments, the type of stomach lesions

linked to the tomatoes “could lead to life-endangering hemorrhage, particularly in the elderly who use aspirin to prevent [blood

clots].”23

Dr. Pusztai believes that the digestive tract, which is the first and largest point of contact with foods, can reveal various

reactions to toxins and should be the first target of GM food risk assessment. He was alarmed, however, to discover that studies on

the FlavrSavr never looked passed the stomach to the intestines. Other studies that did look found problems.

Mice fed potatoes engineered to produce the Bt-toxin developed abnormal and damaged cells, as well as proliferative cell growth in

the lower part of their small intestines (ileum).24

Rats fed potatoes engineered to produce a different type of insecticide (GNA lectin

from the snowdrop plant) also showed proliferative cell growth in both the stomach and intestinal walls (see photos).25

Although

the guts of rats fed GM peas were not examined for cell growth, the intestines were mysteriously heavier; possibly as a result of

such growth.26

Cell proliferation can be a precursor to cancer and is of special concern.

GM DIETS CAUSE LIVER DAMAGE

1

Page 5: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

The state of the liver—a main detoxifier for the body—is another indicator of toxins.

• Rats fed the GNA lectin potatoes described above had smaller and partially atrophied livers.27

• Rats fed Monsanto’s Mon 863 corn, engineered to produce Bt-toxin, had liver lesions and other indications of toxicity.28

• Rabbits fed GM soy showed altered enzyme production in their livers as well as higher metabolic activity.29

• The livers of rats fed Roundup Ready canola were 12%–16% heavier, possibly due to liver disease or inflammation.30

• Microscopic analysis of the livers of mice fed Roundup Ready soybeans revealed altered gene expression and structural and

functional changes (see photos).31

Many of these changes reversed after the mice diet was switched to non-GM soy, indicating

that GM soy was the culprit. The findings, according to molecular geneticist Michael Antoniou, PhD, “are not random and must

reflect some ‘insult’ on the liver by the GM soy.” Antoniou, who does human gene therapy research in King’s College London,

said that although the long-term consequences of the GM soy diet are not known, it “could lead to liver damage and

consequently general toxemia.”32

• Rats fed Roundup Ready soybeans also showed structural changes in their livers. 33

Page 6: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

GM FED ANIMALS HAD HIGHER DEATH RATES AND ORGAN DAMAGE

In the FlavrSavr tomato study, a note in the appendix indicated that 7 of 40 rats died within two weeks and were replaced.34

In

another study, chickens fed the herbicide tolerant “Liberty Link” corn died at twice the rate of those fed natural corn.35

But in these

two industry-funded studies, the deaths were dismissed without adequate explanation or follow-up.

In addition, the cells in the pancreas of mice fed Roundup Ready soy had profound changes and produced significantly less

digestive enzymes;36

in rats fed a GM potato, the pancreas was enlarged.37

In various analyses of kidneys, GM-fed animals showed

lesions, toxicity, altered enzyme production or inflammation.38,39

Enzyme production in the hearts of mice was altered by GM soy.40

And GM potatoes caused slower growth in the brain of rats.41

A team of independent scientists re-analyzed the raw data in three

Monsanto 90-day rat feeding studies and saw signs of toxicity in the liver and kidneys, as well as effects in the heart, adrenal glands,

spleen, and blood.42

REPRODUCTIVE FAILURES AND INFANT MORTALITY

The testicles of both mice and rats fed Roundup Ready soybeans showed dramatic changes. In rats, the organs were dark blue

instead of pink (see photos on next page).43

In mice, young sperm cells were altered.44

Embryos of GM soy-fed mice also showed

temporary changes in their DNA function, compared to those whose parents were fed non-GM soy.45

Page 7: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

An Austrian government study showed that mice fed GM corn (Bt and Roundup Ready) had fewer babies and smaller babies.46

More dramatic results were discovered by a leading scientist at the Russian National Academy of sciences. Female rats were fed

GM soy, starting two weeks before they were mated.

• Over a series of three experiments, 51.6 percent of the offspring from the GM-fed group died within the first three weeks,

compared to 10 percent from the non-GM soy group, and 8.1 percent for non-soy controls.

• “High pup mortality was characteristic of every litter from mothers fed the GM soy flour.”47

• The average size and weight of the GM-fed offspring was quite a bit smaller (see photo on next page).48

• In a preliminary study, the GM-fed offspring were unable to conceive.49

After the three feeding trials, the supplier of rat food used at the Russian laboratory began using GM soy in their formulation. Since

all the rats housed at the facility were now eating GM soy, no non-GM fed controls were available for subsequent GM feeding

trials; follow-up studies were canceled. After two months on the GM soy diet, however, the infant mortality rate of rats throughout

the facility had skyrocketed to 55.3 percent (99 of 179).50

Page 8: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

FARMERS REPORT LIVESTOCK STERILITY AND DEATHS

About two dozen farmers reported that their pigs had reproductive problems when fed certain varieties of Bt corn. Pigs were sterile,

had false pregnancies, or gave birth to bags of water. Cows and bulls also became sterile. Bt corn was also implicated by farmers in

the deaths of cows, horses, water buffaloes, and chickens.51

When Indian shepherds let their sheep graze continuously on Bt cotton plants, within 5-7 days, one out of four sheep died. There

was an estimated 10,000 sheep deaths in the region in 2006, with more reported in 2007. Post mortems on the sheep showed severe

irritation and black patches in both intestines and liver (as well as enlarged bile ducts). Investigators said preliminary evidence

“strongly suggests that the sheep mortality was due to a toxin. . . . most probably Bt-toxin.”52

In a small feeding study, 100% of

sheep fed Bt cotton died within 30 days. Those fed natural plants had no symptoms.

Buffalo that grazed on natural cotton plants for years without incident react to the Bt variety. In one village in Andhra Pradesh, for

example, 13 buffalo grazed on Bt cotton plants for a single day. All died within 3 days.53

Investigators in the state of Haryana, India,

report that most buffalo that ate GM cottonseed had reproductive complications such as premature deliveries, abortions, infertility,

and prolapsed uteruses. Many young calves and adult buffaloes died.

GM CROPS TRIGGER IMMUNE REACTIONS AND MAY CAUSE ALLERGIES

Allergic reactions occur when the immune system interprets something as foreign, different, and offensive, and reacts accordingly.

All GM foods, by definition, have something foreign and different. And several studies show that they provoke reactions. Rats fed

Monsanto’s GM corn, for example, had a significant increase in blood cells related to the immune system.54

GM potatoes caused the

immune system of rats to respond more slowly.55

And GM peas provoked an inflammatory response in mice, suggesting that it

might cause deadly allergic reactions in people.56

It might be difficult to identify whether GM foods were triggering allergic responses in the population, since very few countries

conduct regular studies or keep careful records. One country that does have an annual evaluation is the UK. Soon after GM soy

was introduced into the British diet, researchers at the York Laboratory reported that allergies to soy had skyrocketed by

50% in a single year.57

Although no follow-up studies were conducted to see if GM soy was the cause, there is evidence showing

several ways in which it might have contributed to the rising incidence of allergies:

• The only significant variety of GM soy is Monsanto’s “Roundup Ready” variety, planted in 89% of US soy acres. A foreign

gene from bacteria (with parts of virus and petunia DNA) is inserted, which allows the plant to withstand Roundup herbicide.

The protein produced by the bacterial gene has never been part of the human food supply. Because people aren’t usually

allergic to a food until they have eaten it several times, it would be difficult to know in advance if the protein was an allergen.

Without a surefire method to identify allergenic GM crops, the World Health Organization (WHO) and others recommend

examining the properties of the protein to see if they share characteristics with known allergens. One method is to compare the

amino acid sequence of the novel protein with a database of allergens. If there is a match, according to the WHO, the GM crop

should either not be commercialized or additional testing should be done. Sections of the protein produced in GM soy are

identical to shrimp and dust mite allergens,58

but the soybean was introduced before WHO criteria were established and the

recommended additional tests were not conducted. If the protein does trigger reactions, the danger is compounded by the

finding that the Roundup Ready gene transfers into the DNA of human gut bacteria and may continuously produce the protein

from within our intestines.59

• In addition to the herbicide tolerant protein, GM soybeans contain a unique, unexpected protein, which likely came about from

the changes incurred during the genetic engineering process. Scientists found that this new protein was able to bind with IgE

antibodies, suggesting that it may provoke dangerous allergic reactions. The same study revealed that one human subject

showed a skin prick immune response only to GM soy, but not to natural soy.60

These results must be considered preliminary,

Page 9: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

as the non-GM soy was a wild type and not necessarily comparible to the GM variety. Another study showed that the levels of

one known soy allergen, called trypsin inhibitor, were as much as seven times higher in cooked GM soy compared to a non-GM

control.61

This was Monsanto’s own study, and did use comparable controls.

• GM soy also produces an unpredicted side effect in the pancreas of mice—the amount of digestive enzymes produced is

dramatically reduced.62

If a shortage of enzymes caused food proteins to breakdown more slowly, then they have more time to

trigger allergic reactions. Thus, digestive problems from GM soy might promote allergies to a wide range of proteins, not just

soy.

• The higher amount of Roundup herbicide residues on GM soy might create reactions in consumers. In fact, many of the

symptoms identified in the UK soy allergy study are among those related to glyphosate exposure. [The allergy study identified

irritable bowel syndrome, digestion problems, chronic fatigue, headaches, lethargy, and skin complaints, including acne and

eczema, all related to soy consumption. Symptoms of glyphosate exposure include nausea, headaches, lethargy, skin rashes, and

burning or itchy skin. It is also possible that glyphosate’s breakdown product AMPA, which accumulates in GM soybeans after

each spray, might contribute to allergies.]

It is interesting to note that in the five years immediately after GM soy was introduced, US peanut allergies doubled. It is known

that a protein in natural soybeans cross-reacts with peanut allergies, i.e. soy may trigger reactions in some people who are allergic to

peanuts.63

Given the startling increase in peanut allergies, scientists should investigate whether this cross-reactivity has been

amplified in GM soy.

BT-TOXIN, PRODUCED IN GM CORN AND COTTON, MAY CAUSE ALLERGIES

For years, organic farmers and others have sprayed crops with solutions containing natural Bt bacteria as a method of insect control.

The toxin creates holes in their stomach and kills them. Genetic engineers take the gene that produces the toxin in bacteria and

insert it into the DNA of crops so that the plant does the work, not the farmer. The fact that we consume that toxic pesticide in every

bite of Bt corn is hardly appetizing.

Biotech companies claim that Bt-toxin has a history of safe use, is quickly destroyed in our stomach, and wouldn’t react with

humans or mammals in any event. Studies verify, however, that natural Bt-toxin is not fully destroyed during digestion and does

react with mammals. Mice fed Bt-toxin, for example, showed an immune response as potent as cholera toxin, 64,

became immune

sensitive to formerly harmless compounds,65

and had damaged and altered cells in their small intestines.66

A 2008 Italian

government study found that Bt corn provoked immune responses in mice.67

Moreover, when natural Bt was sprayed over areas

around Vancouver and Washington State to fight gypsy moths, about 500 people reported reactions—mostly allergy or flu-like

symptoms.68,69

Farm workers and others also report serious reactions7071727374

and authorities have long acknowledged that “people

with compromised immune systems or preexisting allergies may be particularly susceptible to the effects of Bt.”75

The Bt-toxin produced in GM crops is “vastly different from the bacterial [Bt-toxins] used in organic and traditional farming and

forestry.”76

The plant produced version is designed to be more toxic than natural varieties,77

and is about 3,000-5,000 times more

concentrated than the spray form. And just like the GM soy protein, the Bt protein in GM corn varieties has a section of its amino

acid sequence identical to a known allergen (egg yolk). The Bt protein also fails other allergen criteria recommended by the WHO,

i.e. the protein is too resistant to break down during digestion and heat.

If Bt-toxin causes allergies, then gene transfer carries serious ramifications. If Bt genes relocate to human gut bacteria, our

intestinal flora may be converted into living pesticide factories, possibly producing Bt-toxin inside of us year after year. The UK

Joint Food Safety and Standards Group also described gene transfer from a different route. They warned that genes from inhaled

pollen might transfer into the DNA of bacteria in the respiratory system.78

Although no study has looked into that possibility, pollen

from a Bt cornfield appears to have been responsible for allergic-type reactions.

In 2003, during the time when an adjacent Bt cornfield was pollinating, virtually an entire Filipino village of about 100 people was

stricken by mysterious skin, respiratory, and intestinal reactions.79

The symptoms started with those living closest to the field and

spread to those further away. Blood samples from 39 individuals showed antibodies in response to Bt-toxin, supporting—but not

Page 10: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

proving—a link. When the same corn was planted in four other villages the following year, however, the symptoms returned in all

four areas—only during the time of pollination.80

Bt-toxin might also trigger reactions by skin contact. In 2005, a medical team reported that hundreds of agricultural workers in India

are developing allergic symptoms when exposed to Bt cotton, but not when

axposed to natural varieties.81

They say reactions come from picking the cotton, cleaning it in factories, loading it onto trucks, or

even leaning against it. Their symptoms are virtually identical to those described by the 500 people in Vancouver and Washington

who were sprayed with Bt.

GOVERNMENT EVALUATIONS MISS MOST HEALTH PROBLEMS

Although the number of safety studies on GM foods is quite small, it has validated the concerns expressed by FDA scientists and

others. Unfortunately, government safety assessments worldwide are not competent to even identify most of the potential health

problems described above, let alone protect its citizens from the effects.82

A 2000 review of approved GM crops in Canada by professor E. Ann Clark, PhD, for example, reveals that 70% (28 of 40) “of the

currently available GM crops . . . have not been subjected to any actual lab or animal toxicity testing, either as refined oils for direct

human consumption or indirectly as feedstuffs for livestock. The same finding pertains to all three GM tomato decisions, the only

GM flax, and to five GM corn crops.” In the remaining 30% (12) of the other crops tested, animals were not fed the whole GM feed.

They were given just the isolated GM protein that the plant was engineered to produce. But even this protein was not extracted from

the actual GM plant. Rather, it was manufactured in genetically engineered bacteria. This method of testing would never identify

problems associated with collateral damage to GM plant DNA, unpredicted changes in the GM protein, transfer of genes to bacteria

or human cells, excessive herbicide residues, or accumulation of toxins in the food chain, among others. Clark asks, “Where are the

trials showing lack of harm to fed livestock, or that meat and milk from livestock fed on GM feedstuffs are safe?”83

Epidemiologist and GM safety expert Judy Carman, PhD, MPH, shows that assessments by Food Safety Australia New Zealand

(FSANZ) also overlook serious potential problems, including cancer, birth defects, or long-term effects of nutritional deficiencies. 84

“A review of twelve reports covering twenty-eight GM crops - four soy, three corn, ten potatoes, eight canola, one sugar beet and

two cotton—revealed no feeding trials on people. In addition, one of the GM corn varieties had gone untested on animals. Some

seventeen foods involved testing with only a single oral gavage (a type of forced-feeding), with observation for seven to fourteen

days, and only of the substance that had been genetically engineered to appear [the GM protein], not the whole food. Such testing

assumes that the only new substance that will appear in the food is the one genetically engineered to appear, that the GM plant-

produced substance will act in the same manner as the tested substance that was obtained from another source [GM bacteria], and

that the substance will create disease within a few days. All are untested hypotheses and make a mockery of GM proponents’ claims

that the risk assessment of GM foods is based on sound science. Furthermore, where the whole food was given to animals to eat,

sample sizes were often very low—for example, five to six cows per group for Roundup Ready soy—and they were fed for only

four weeks.”85

Dr. Carman points out that GM “experiments used some very unusual animal models for human health, such as chickens, cows, and

trout. Some of the measurements taken from these animals are also unusual measures of human health, such as abdominal fat pad

weight, total de-boned breast meat yield, and milk production.” In her examination of the full range of submittals to authorities in

Australia and New Zealand, she says that there was no proper evaluation of “biochemistry, immunology, tissue pathology, and gut,

liver, and kidney function.”86

Writing on behalf of the Public Health Association of Australia, Dr. Carman says, “The effects of

feeding people high concentrations of the new protein over tens of years cannot be determined by feeding 20 mice a single oral

gavage of a given high concentration of the protein and taking very basic data for 13-14 days.”87

Page 11: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

THE FDA’S FAKE SAFETY ASSESSMENTS

Submissions to the US Food and Drug Administraion (FDA) may be worse than in other countries, since the agency doesn’t

actually require any data. Their policy says that biotech companies can determine if their own foods are safe. Anything submitted is

voluntary and, according to former Environmental Protection Agency scientist Doug Gurian-Sherman, PhD, “often lack[s]

sufficient detail, such as necessary statistical analyses needed for an adequate safety evaluation.” Using Freedom of Information

Requests, Dr. Gurian-Sherman analyzed more than a fourth of the data summaries (14 of 53) of GM crops reviewed by the FDA. He

says, “The FDA consultation process does not allow the agency to require submission of data, misses obvious errors in company-

submitted data summaries, provides insufficient testing guidance, and does not require sufficiently detailed data to enable the FDA

to assure that GE crops are safe to eat.”88

Similarly, a Friends of the Earth review of company and FDA documents concluded:

“If industry chooses to submit faulty, unpublishable studies, it does so without consequence. If it should respond to an agency

request with deficient data, it does so without reprimand or follow-up. . . . If a company finds it disadvantageous to characterize its

product, then its properties remain uncertain or unknown. If a corporation chooses to ignore scientifically sound testing standards . .

. then faulty tests are conducted instead, and the results are considered legitimate. In the area of genetically engineered food

regulation, the ‘competent’ agencies rarely if ever (know how to) conduct independent research to verify or supplement industry

findings.”89

At the end of the consultation, the FDA doesn’t actually approve the crops. Rather, they issue a letter that includes a statement such

as the following:

“Based on the safety and nutritional assessment you have conducted, it is our understanding that Monsanto has concluded that corn

products derived from this new variety are not materially different in composition, safety, and other relevant parameters from corn

currently on the market, and that the genetically modified corn does not raise issues that would require premarket review or

approval by FDA. . . . As you are aware, it is Monsanto’s responsibility to ensure that foods marketed by the firm are safe,

wholesome and in compliance with all applicable legal and regulatory requirements.”90

COMPANY RESEARCH IS SECRET, INADEQUATE, AND FLAWED

The unpublished industry studies submitted to regulators are typically kept secret based on the claim that it is “confidential business

information.” The Royal Society of Canada is one of many organizations that condemn this practice. They wrote:

“In the judgment of the Expert Panel, the more regulatory agencies limit free access to the data upon which their decisions are

based, the more compromised becomes the claim that the regulatory process is ‘science based.’ This is due to a simple but well-

understood requirement of the scientific method itself—that it be an open, completely transparent enterprise in which any and all

aspects of scientific research are open to full review by scientific peers. Peer review and independent corroboration of research

findings are axioms of the scientific method, and part of the very meaning of the objectivity and neutrality of science.”91

Whenever private submissions are made public through lawsuits or Freedom of Information Act Requests, it becomes clear why

companies benefit from secrecy. The quality of their research is often miserable, incompetent, and unacceptable for peer-review. In

2000, for example, after the potentially allergenic StarLink corn was found to have contaminated the food supply, the corn’s

producer, Aventis CropScience, presented wholly inadequate safety data to the EPA’s scientific advisory panel. One frustrated

panel member, Dean Metcalfe, MD,—the government’s top allergist—said during a hearing, “Most of us review for a lot of

journals. And if this were presented for publication in the journals that I review for, it would be sent back to the authors with all of

these questions. It would be rejected.”92

Page 12: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

UNSCIENTIFIC ASSUMPTIONS ARE THE BASIS OF APPROVALS

Professor Clark, who analyzed submissions to Canadian regulators, concluded, “Most or all of the conclusions of food safety for

individual GM crops are based on inferences and assumptions, rather than on actual testing.” For example, rather than actually

testing to see if the amino acid sequence produced by their inserted gene is correct, “the standard practice,” according to research

analyst William Freese, “is to sequence just 5 to 25 amino acids,”93

even if the protein has more than 600 in total. If the short

sample matches what is expected, they assume that the rest are also fine. If they are wrong, however, a rearranged protein could be

quite dangerous.

Monsanto’s submission to Australian regulators on their high lysine GM corn provides an excellent example of overly optimistic

assumptions used in place of science. The gene inserted into the corn produces a protein that is naturally found in soil. Monsanto

claimed that since people consume small residues of soil on fruits and vegetables, the protein has a history of safe consumption.

Based on the amount of GM corn protein an average US citizen would consume (if all their corn were Monsanto’s variety), they

would eat up to 4 trillion times the amount normally consumed through soil. In other words, “for equivalent exposure” of the

protein from soil “people would have to eat . . . nearly as much as 10,000kg [22,000 pounds, every] second 24 hours a day seven

days a week.”94

STUDIES ARE RIGGED TO AVOID FINDING PROBLEMS

In addition, to relying on untested assumptions, industry-funded research is often designed specifically to force a conclusion of

safety. In the high lysine corn described above, for example, the levels of certain nutritional components (i.e. protein content, total

dietary fiber, acid detergent fiber, and neutral detergent fiber) were far outside the normal range for corn. Instead of comparing their

corn to normal controls, which would reveal this disparity, Monsanto compared it to obscure corn varieties that were also

substantially outside the normal range on precisely these values. Thus, their study found no statistical differences by design.

When independent researchers published a study in July 1999 showing that GM soy contains 12%-14% less cancer-fighting

phytoestrogens, Monsanto responded with its own study, concluding that soy’s phytoestrogen levels vary too much to even carry

out a statistical analysis. Researchers failed to disclose, however, that they had instructed the laboratory to use an obsolete method

of detection—one that had been prone to highly variable results.95

When Aventis prepared samples to see if the potential allergen in StarLink corn remained intact after cooking, instead of using the

standard 30-minute treatment, they heated corn for two hours.96

To show that pasteurization destroyed bovine growth hormone in milk from cows treated with rbGH, scientists pasteurized the milk

120 times longer than normal. Unable to destroy more than 19%, they then spiked the milk with a huge amount of the hormone and

repeated the long pasteurization, destroying 90%.97

(The FDA reported that pasteurization destroys 90% of the hormone.98

)

To demonstrate that injections of rbGH did not interfere with cow’s fertility, Monsanto apparently added cows to the study that

were pregnant prior to injection.99

And in order to prove that the protein from their GM crops breaks down quickly during simulated digestion, biotech companies

used thousands of times the amount of digestive enzymes and a much stronger acid compared to that recommended by the World

Health Organization.100

Other methods used to hide problems are varied and plentiful. For example, researchers:

• Use highly variable animal starting weights to hinder detection of food-related changes

• Keep feeding studies short to miss long-term impacts

Page 13: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

• Test effects of Roundup Ready soybeans that have not been sprayed with Roundup

• Avoid feeding animals the actual GM crop, but give them instead a single dose of the GM protein that was produced inside GM

bacteria

• Use too few subjects to derive statistically significant results

• Use poor statistical methods or simply leave out essential methods, data, or statistics

• Use irrelevant control groups, and employ insensitive evaluation techniques

ROUNDUP READY SOYBEANS: CASE STUDY OF FLAWED RESEARCH

Monsanto’s 1996 Journal of Nutrition studies on Roundup Ready soybeans101,102

provide plenty of examples of scientific

transgressions. Although the study has been used often by the industry as validation for safety claims, experts working in the field

were not impressed. For example, Dr. Arpad Pusztai was commissioned at the time by the UK government to lead a 20 member

consortium in three institutions to develop rigorous testing protocols on GM foods—protocols that were never implemented. Dr.

Pusztai, who had published several studies in that same nutrition journal, said the Monsanto paper was not “up to the normal journal

standards.” He said, “It was obvious that the study had been designed to avoid finding any problems. Everybody in our consortium

knew this.” Some of the flaws include:

• Researchers tested GM soy on mature animals, not young ones. Young animals use protein to build their muscles, tissues, and

organs. Problems with GM food could therefore show up in organ and body weight. But adult animals use the protein for tissue

renewal and energy. “With a nutritional study on mature animals,” says Dr. Pusztai, “you would never see any difference in

organ weights even if the food turned out to be anti-nutritional. The animals would have to be emaciated or poisoned to show

anything.”

• If there were an organ development problem, the study wouldn’t have picked it up since the researchers didn’t even weigh the

organs.

• In one of the trials, researchers substituted only one tenth of the natural protein with GM soy protein. In two others, they diluted

their GM soy six- and twelve-fold. 103

Scientists Ian Pryme, PhD, of Norway and Rolf Lembcke, PhD, of Denmark wrote, the

“level of the GM soy was too low, and would probably ensure that any possible undesirable GM effects did not occur.”

• Pryme and Lembcke, who published a paper in Nutrition and Health that analyzed all published peer-reviewed feeding studies

on GM foods (10 as of 2003), also pointed out that the percentage of protein in the feed used in the Roundup Ready study was

“artificially too high.” This “would almost certainly mask, or at least effectively reduce, any possible effect of the [GM soy].”

They said it was “highly likely that all GM effects would have been diluted out.” 104

• Proper compositional studies filter out effects of weather or geography by comparing plants grown at the same time in the same

location. Monsanto, however, pooled data from several locations, which makes it difficult for differences to be statistically

significant. Nonetheless, the data revealed significant differences in the ash, fat, and carbohydrate content. Roundup Ready soy

meal also contained 27% more trypsin inhibitor, a potential allergen. Also, cows fed GM soy produced milk with a higher fat

content, demonstrating another disparity between the two types of soy.

• One field trial, however, did grow GM and non-GM plants next to each other, but this data was not included in the paper. Years

after the study appeared, medical writer Barbara Keeler recovered the data that had been omitted. It showed that Monsanto’s

GM soy had significantly lower levels of protein, a fatty acid, and phenylalanine, an essential amino acid. Also, toasted GM soy

meal contained nearly twice the amount of a lectin—a substance that may interfere with the body’s ability to assimilate other

nutrients. And the amount of trypsin inhibitor in cooked GM soy was as much as seven times higher than in a cooked non-GM

control.

Page 14: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

• The study also omitted many details normally required for a published paper. According to Pryme and Lembcke, “No data were

given for most of the parameters.”

• And when researchers tested the effects of Roundup Ready protein on animals, they didn’t extract the protein from the

soybeans. Instead, they derived it from GM bacteria, claiming the two forms of protein were equivalent. There are numerous

ways, however, in which the protein in the soy may be different. In fact, nine years after this study was published, another study

showed that the gene inserted into the soybeans produced unintended aberrant RNA strands, meaning that the protein may be

quite different than what was intended.105

In Pryme and Lembcke’s analysis, it came as no surprise that this Monsanto study, along with the other four peer-reviewed animal

feeding studies that were “performed more or less in collaboration with private companies,” reported no negative effects of the GM

diet. “On the other hand,” they wrote, “adverse effects were reported (but not explained) in [the five] independent studies.” They

added, “It is remarkable that these effects have all been observed after feeding for only 10–14 days.”106

TOXIC GM FOODS COULD HAVE BEEN APPROVED

Two GM foods whose commercialization was stopped because of negative test results give a chilling example of what may be

getting through. Rats fed GM potatoes had potentially precancerous cell growth in the stomach and intestines, less developed brains,

livers, and testicles, partial atrophy of the liver, and damaged immune systems.107

GM peas provoked an inflammatory response in

mice, suggesting that the peas might trigger a deadly anaphylactic shock in allergic humans.108

Both of these dangerous crops,

however, could easily have been approved. The problems were only discovered because the researchers used advanced tests that

were never applied to GM crops already on the market. Both would have passed the normal tests that companies typically use to get

their products approved.

Ironically, when Monsanto was asked to comment on the pea study, their spokesperson said it demonstrated that the regulatory

system works. He failed to disclose that none of his company’s GM crops had been put through such rigorous tests.

RAMPANT, UNRELENTING INDUSTRY BIAS

Industry-funded research that favors the funders is not new. Bias has been identified across several industries. In pharmaceuticals,

for example, positive results are four times more likely if the drug’s manufacturer funds the study.109

When companies pay for the

economic analyses of their own cancer drugs, the results are eight times more likely to be favorable.110

Compared to drug research,

the potential for industry manipulation in GM crop studies is considerably higher. Unlike pharmaceutical testing, GM research has

no standardized procedures dictated by regulators. GM studies are not usually published in peer-reviewed journals and are typically

kept secret by companies and governments. There is little money available for rigorous independent research, so company evidence

usually goes unchallenged and unverified. Most importantly, whereas drugs can show serious side-effects and still be approved, GM

food cannot. There is no tolerance for adverse reactions; feeding trials must show no problems.

Thus, when industry studies show problems (in spite of their efforts to avoid them), serious adverse reactions and even deaths

among GM-fed animals are ignored or dismissed as “not biologically significant” or due to “natural variations.” In the critical arena

of food safety research, the biotech industry is without accountability, standards, or peer-review. They’ve got bad science down to a

science.

Page 15: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

PROMOTING AND REGULATING DON’T MIX

While such self-serving behavior may be expected from corporations, how come government bodies let such blatant scientific

contortions pass without comment? One reason is that several regulatory agencies are also charged with promoting the interests of

biotechnology. This is the official position of the FDA and other US government bodies, for example. Suzanne Wuerthele, PhD, a

US EPA toxicologist, says, “This technology is being promoted, in the face of concerns by respectable scientists and in the face of

data to the contrary, by the very agencies which are supposed to be protecting human health and the environment. The bottom line

in my view is that we are confronted with the most powerful technology the world has ever known, and it is being rapidly deployed

with almost no thought whatsoever to its consequences.”

Canadian regulators are similarly conflicted. The Royal Society of Canada reported that, “In meetings with senior managers from

the various Canadian regulatory departments . . . their responses uniformly stressed the importance of maintaining a favorable

climate for the biotechnology industry to develop new products and submit them for approval on the Canadian market. . . . The

conflict of interest involved in both promoting and regulating an industry or technology . . . is also a factor in the issue of

maintaining the transparency, and therefore the scientific integrity, of the regulatory process. In effect, the public interest in a

regulatory system that is ‘science based’. . . is significantly compromised when that openness is negotiated away by regulators in

exchange for cordial and supportive relationships with the industries being regulated.”111

Many scientists on the European Food Safety Authority (EFSA) GMO Panel are personally aligned with biotech interests.

According to Friends of the Earth (FOE), “One member has direct financial links with the biotech industry and others have indirect

links, such as close involvement with major conferences organized by the biotech industry. Two members have even appeared in

promotional videos produced by the biotech industry. . . . Several members of the Panel, including the chair Professor Kuiper, have

been involved with the EU-funded ENTRANSFOOD project. The aim of this project was to agree [to] safety assessment, risk

management, and risk communication procedures that would ‘facilitate market introduction of GMOs in Europe, and therefore bring

the European industry in a competitive position.’ Professor Kuiper, who coordinated the ENTRANSFOOD project, sat on a working

group that also included staff from Monsanto, Bayer CropScience, and Syngenta.” In a statement reminiscent of the deceptive

policy statement by the FDA, the FOE report concludes that EFSA is “being used to create a false impression of scientific

agreement when the real situation is one of intense and continuing debate and uncertainty.”112

The pro-GM European Commission repeats the same ruse. According to leaked documents obtained by FOE, while they privately

appreciate “the uncertainties and gaps in knowledge that exist in relation to the safety of GM crops, . . . the Commission normally

keeps this uncertainty concealed from the public whilst presenting its decisions about the safety of GM crops and foods as being

certain and scientifically based.” For example, the Commission privately condemned the submission information for one crop as

“mixed, scarce, delivered consecutively all over years, and not convincing.” They said there is “No sufficient experimental evidence

to assess the safety.”113

With an agenda to promote GM foods, regulators regularly violate their own laws. In Europe, the law requires that when EFSA and

member states have different opinions, they “are obliged to co-operate with a view to either resolving the divergence or preparing a

joint document clarifying the contentious scientific issues and identifying the relevant uncertainties in the data.”114

According to

FOE, in the case of all GM crop reviews, none of these legal obligations were followed.115

The declaration of GRAS status by the

FDA also deviated from the Food and Cosmetic Act and years of legal precedent. Some violations are more blatant. In India, one

official tampered with the report on Bt cotton to increase the yield figures to favor Monsanto.116

In Mexico, a senior government

official allegedly threatened a University of California professor, implying “We know where your children go to school,” trying to

get him not to publish incriminating evidence that would delay GM approvals.117

In Indonesia, Monsanto gave bribes and

questionable payments to at least 140 officials, attempting to get their genetically modified (GM) cotton approved.118

Page 16: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

MANIPULATION OF PUBLIC OPINION

When governments fail in their duty to keep corporations in check, the “protector” role should shift to the media, which acts as a

watchdog to expose public dangers and governmental shortcomings. But mainstream media around the world has largely

overlooked the serious problems associated with GM crops and their regulation. The reason for this oversight is varied and includes

contributions from an aggressive public relations and disinformation campaign by the biotech industry, legal threats by biotech

companies, and in some cases, the fear of losing advertising accounts. This last reason is particularly prevalent among the farm

press, which receives much of its income from the biotech industry.

Threatening letters from Monsanto’s attorneys have resulted in the cancellation of a five-part news series on their genetically

engineered bovine growth hormone scheduled for a Fox TV station in Florida, as well as the cancellation of a book critical of

Monsanto’s GMO products. A printer also shredded 14,000 copies of the Ecologist magazine issue entitled “The Monsanto Files,”

due to fear of a Monsanto lawsuit. (See the chapter “Muscling the Media” in Seeds of Deception119

for more examples.)

The methods that biotech advocates use to manipulate public opinion research has become an art form. Consumer surveys by the

International Food Information Council (IFIC), for example,whose supporters include the major biotech seed companies, offers

conclusions such as “A growing majority of Americans support the benefits of food biotechnology as well as the US Food and Drug

Administration’s (FDA) labeling policy.” But communications professor James Beniger, who was past president of the American

Association for Public Opinion Research, described the surveys as “so biased with leading questions favoring positive responses

that any results are meaningless.”120

The 2003 survey, for example, included gems such as:

“All things being equal, how likely would you be to buy a variety of produce, like tomatoes or potatoes, if it had been modified by

biotechnology to taste better or fresher?” and

“Biotechnology has also been used to enhance plants that yield foods like cooking oils. If cooking oil with reduced saturated fat

made from these new plants was available, what effect would the use of biotechnology have on your decision to buy this cooking

oil?”121

A similar tactic was used at a December 11, 2007 focus group in Columbus, Ohio “designed” to show that consumers wanted to

make it illegal for dairies to label their milk as free from Monsanto’s genetically engineered bovine hormone rBST. The facilitator

said, “All milk contains hormones. There is no such thing as hormone-free milk. The composition of both types of milk is the same

in all aspects. Now what do you think of a label that says ‘no added hormones?’ Don’t you think it is deceiving and inappropriate to

put ‘rBST-free’ on labels?” Not only was the facilitator “leading the witness,” he presented false information. Milk from cows

treated with rBST has substantially higher levels of Insulin-like Growth Factor-1,122

which has been linked to higher risk of

cancer,123

and higher incidence of fraternal twins.124

It also has higher levels of bovine growth hormone, pus, and in some cases,

antibiotics.

Another example of manipulated consumer opinion was found in a 2004 article in the British Food Journal, authored by four

advocates of genetically modified (GM) foods.125

According to the peer-reviewed paper, when shoppers in a Canadian farm store

were confronted with an informed and unbiased choice between GM corn and non-GM corn, most purchased the GM variety. This

finding flew in the face of worldwide consumer resistance to GM foods, which had shut markets in Europe, Japan, and elsewhere. It

also challenged studies that showed that the more information on genetically modified organisms (GMOs) consumers have, the less

they trust them.126

The study, which was funded by the biotech-industry front group, Council for Biotechnology Information and the

industry’s trade association, the Crop Protection Institute of Canada (now Croplife Canada), was given the Journal’s prestigious

Award for Excellence for the Most Outstanding Paper of 2004 and has been cited often by biotech advocates.

Stuart Laidlaw, a reporter from Canada’s Toronto Star, visited the farm store several times during the study and described the

scenario in his book Secret Ingredients. Far from offering unbiased choices, key elements appeared rigged to favor GM corn

purchases. The consumer education fact sheets were entirely pro-GMO, and Doug Powell, the lead researcher, enthusiastically

demonstrated to Laidlaw how he could convince shoppers to buy the GM varieties. He confronted a farmer who had already

Page 17: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

purchased non-GM corn. After pitching his case for GMOs, Powell proudly had the farmer tell Laidlaw that he had changed his

opinion and would buy GM corn in his next shopping trip.

Powell’s interference with shoppers’ “unbiased” choices was nothing compared to the effect of the signs placed over the corn bins.

The sign above the non-GM corn read, “Would you eat wormy sweet corn?” It further listed the chemicals that were sprayed during

the season. By contrast, the sign above the GM corn stated, “Here’s What Went into Producing Quality Sweet Corn.” It is no

wonder that 60% of shoppers avoided the “wormy corn.” In fact, it may be a testament to people’s distrust of GMOs that 40% still

went for the “wormy” option.

Powell and his colleagues did not mention the controversial signage in their study. They claimed that the corn bins in the farm store

were “fully labelled”—either “genetically engineered Bt sweet corn” or “Regular sweet-corn.” When Laidlaw’s book came out,

however, Powell’s “wormy” sign was featured in a photograph,127

exposing what was later described by Cambridge University’s

Dr. Richard Jennings as “flagrant fraud.” Jennings, who is a leading researcher on scientific ethics, says, “It was a sin of omission

by failing to divulge information which quite clearly should have been disclosed.”128

In his defence, Powell claimed that his signs merely used the language of consumers and was “not intended to manipulate consumer

purchasing patterns.” He also claimed that the “wormy” corn sign was only there for the first week of the trial and was then replaced

by other educational messages. But eye witnesses and photographs demonstrate the presence of the sign long after Powell’s

suggested date of replacement.129

Several scientists and outraged citizens say the paper should be withdrawn, but the Journal refused. In fact, the Journal’s editor has

not even agreed to reconsider its Award for Excellence. A blatant propaganda exercise still stands validated as exemplary science.

CRITICS AND INDEPENDENT SCIENTISTS ARE ATTACKED

One of the most troubling aspects of the biotech debate is the attack strategy used on GMO critics and independent scientists. Not

only are adverse findings by independent scientists often suppressed, ignored, or denied, researchers that discover problems from

GM foods have been fired, stripped of responsibilities, deprived of tenure, and even threatened. Consider Dr. Pusztai, the world’s

leading scientist in his field, who inadvertently discovered in 1998 that unpredictable changes in GM crops caused massive damage

in rats. He went public with his concerns, was a hero at his prestigious institute for two days, and then, after the director received

two phone calls allegedly from the UK Prime Minister’s office, was fired after 35 years and silenced with threats of a lawsuit. False

statements were circulated to trash his reputation, which are recited by GMO advocates today.

After University of California Professor Ignacio Chapela, PhD, published evidence that GM corn contaminated Mexico’s

indigenous varieties, two fictitious internet characters created by Monsanto’s PR firm, the Bivings Group, initiated a brutal internet

smear campaign, lying about Dr. Chapela and his research.

Irina Ermakova, PhD, a leading scientist at the Russian National Academy of Sciences, fed female rats GM soy and was stunned to

discover that more than half their offspring died within three weeks—compared to only 10% from mothers fed non-GM soy.

Without funding to extend her analysis, she labeled her work “preliminary,” published it in a Russian journal, and implored the

scientific community to repeat the study. Two years later, no one has repeated it, but advocates use false or irrelevant arguments to

divert attention from the shocking results and have tried to vilify Dr. Ermakova.

A New Zealand MP testified at the 2001 Royal Commission of Inquiry on Genetic Modification, “I have been contacted by

telephone and e-mail by a number of scientists who have serious concerns . . . but who are convinced that if they express these fears

publicly. . . or even if they asked the awkward and difficult questions, they will be eased out of their institution.” Indeed this year,

after Professor Christian Velot, PhD, raised the difficult questions on GMOs at public conferences, his 2008 research funds were

confiscated, his student assistants were re-assigned, and his position at the University of Paris-Sud faces early termination.

Page 18: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

WE’RE THE GUINEA PIGS

Since GM foods are not properly tested before they enter the market, consumers are the guinea pigs. But this doesn’t even qualify as

an experiment. There are no controls and no monitoring. Given the mounting of evidence of harm, it is likely that GM foods are

contributing to the deterioration of health in the United States, Canada, and other countries where it is consumed. But without post-

marketing surveillance, the chances of tracing health problems to GM food are low. The incidence of a disease would have to

increase dramatically before it was noticed, meaning that millions may have to get sick before a change is investigated. Tracking the

impact of GM foods is even more difficult in North America, where the foods are not labeled.

Regulators at Health Canada announced in 2002 that they would monitor Canadians for health problems from eating GM foods. A

spokesperson said, “I think it’s just prudent and what the public expects, that we will keep a careful eye on the health of Canadians.”

But according to CBC TV news, Health Canada “abandoned that research less than a year later saying it was ‘too difficult to put an

effective surveillance system in place.’” The news anchor added, “So at this point, there is little research into the health effects of

genetically modified food. So will we ever know for sure if it’s safe?”130

Not with the biotech companies in charge. Consider the following statement in a report submitted to county officials in California

by pro-GM members of a task force. “[It is] generally agreed that long-term monitoring of the human health risks of GM food

through epidemiological studies is not necessary because there is no scientific evidence suggesting any long-term harm from these

foods.”131

Note the circular logic: Because no long-term epidemiological studies are in place, we have no evidence showing long-

term harm. And since we don’t have any evidence of long-term harm, we don’t need studies to look for it.

What are these people thinking? Insight into the pro-GM mindset was provided by Dan Glickman, the US Secretary of Agriculture

under President Clinton.

“What I saw generically on the pro-biotech side was the attitude that the technology was good, and that it was almost immoral to

say that it wasn’t good, because it was going to solve the problems of the human race and feed the hungry and clothe the naked. . . .

And there was a lot of money that had been invested in this, and if you’re against it, you’re Luddites, you’re stupid. That, frankly,

was the side our government was on. Without thinking, we had basically taken this issue as a trade issue and they, whoever ‘they’

were, wanted to keep our product out of their market. And they were foolish, or stupid, and didn’t have an effective regulatory

system. There was rhetoric like that even here in this department. You felt like you were almost an alien, disloyal, by trying to

present an open-minded view on some of the issues being raised. So I pretty much spouted the rhetoric that everybody else around

here spouted; it was written into my speeches.”132

Fortunately, not everyone feels that questioning GM foods is disloyal. On the contrary, millions of people around the world are

unwilling to participate in this uncontrolled experiment. They refuse to eat GM foods. Manufacturers in Europe and Japan have

committed to avoid using GM ingredients. And the US natural foods industry, not waiting for the government to test or label

GMOs, is now engaged in removing all remaining GM ingredients from their sector using a third party verification system. The

Campaign for Healthier Eating in America will circulate non-GMO shopping guides in stores nationwide so that consumers have

clear, healthy non-GMO choices. With no governmental regulation of biotech corporations, it is left to consumers to protect

ourselves.

For a guide to avoiding GMOs, go to www.NonGMOShoppingGuide.com.

Page 19: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

Endnotes

1 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007

2 Dan Quayle, “Speech in the Indian Treaty Room of the Old Executive Office Building,” May 26, 1992.

3 For copies of FDA memos, see The Alliance for Bio-Integrity, www.biointegrity.org

4 Steven M. Druker, “How the US Food and Drug Administration approved genetically engineered foods despite the deaths one had caused and

the warnings of its own scientists about their unique risks,” Alliance for Bio-Integrity, http://www.biointegrity.org/ext-summary.html

5 Louis J. Pribyl, “Biotechnology Draft Document, 2/27/92,” March 6, 1992, www.biointegrity.org

http://www.biointegrity.org/FDAdocs/04/view1.html

6 “Statement of Policy: Foods Derived from New Plant Varieties,” Federal Register 57, no. 104 (May 29, 1992): 22991.

7 Linda Kahl, Memo to James Maryanski about Federal Register Document “Statement of Policy: Foods from Genetically Modified Plants,”

Alliance for Bio-Integrity(January 8, 1992) http://www.biointegrity.org

8 See for example, “Good Enough To Eat?” New Scientist (February 9, 2002), 7.

9 “Health risks of genetically modified foods,” editorial, Lancet, 29 May 1999.

10 “Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of

Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and

Environment Canada” The Royal Society of Canada, January 2001.

11 J. R. Latham, et al., “The Mutational Consequences of Plant Transformation,” The Journal of Biomedicine and Biotechnology 2006, Article ID

25376: 1-7; see also Allison Wilson, et. al., “Transformation-induced mutations in transgenic plants: Analysis and biosafety implications,”

Biotechnology and Genetic Engineering Reviews – Vol. 23, December 2006.

12 P. H. Bao, S. Granata, S. Castiglione, G. Wang, C. Giordani, E. Cuzzoni, G. Damiani, C. Bandi, S. K. Datta, K. Datta, I. Potrykus, A.

Callegarin and F. Sala, "Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts" Transgen Res 5 (1996):

97-103.; M. Labra, C. Savini, M. Bracale, N. Pelucchi, L. Colombo, M. Bardini and F. Sala, "Genomic changes in transgenic rice (Oryza sativa L.)

plants produced by infecting calli with Agrobacterium tumefaciens," Plant Cell Rep 20 (2001): 325-330.

13 “Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of

Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and

Environment Canada” The Royal Society of Canada, January 2001.

14 Edwin J. Mathews, Ph.D., in a memorandum to the Toxicology Section of the Biotechnology Working Group. Subject: Analysis of the Major

Plant Toxicants. Dated October 28, 1991

15 Division of Food Chemistry and Technology and Division of Contaminants Chemistry, “Points to Consider for Safety Evaluation of

Genetically Modified Foods: Supplemental Information,” November 1, 1991, www.biointegrity.org

16 Netherwood et al, “Assessing the survival of transgenic plant DNA in the human gastrointestinal tract,” Nature Biotechnology 22 (2004): 2.

17 Division of Food Chemistry and Technology and Division of Contaminants Chemistry, “Points to Consider for Safety Evaluation of

Genetically Modified Foods: Supplemental Information,” November 1, 1991, www.biointegrity.org

18 Charles Benbrook, “Impacts of Genetically Engineered Crops on Pesticide Use: The First Thirteen Years,” November 2009, The Organic

Center, http://www.organic-center.org/science.latest.php?action=view&report_id=159

19 Comments for AC21 Ag Biotech Committee Meeting, Center for Food Safety, August 1, 2007

20 Department of Veterinary Medicine, FDA, correspondence June 16, 1993. As quoted in Fred A. Hines, Memo to Dr. Linda Kahl. “Flavr Savr

Tomato: . . . Pathology Branch’s Evaluation of Rats with Stomach Lesions From Three Four-Week Oral (Gavage) Toxicity Studies . . . and an

Expert Panel’s Report,” Alliance for Bio-Integrity (June 16, 1993) http://www.biointegrity.org/FDAdocs/17/view1.html

21 Robert J. Scheuplein, Memo to the FDA Biotechnology Coordinator and others, “Response to Calgene Amended Petition,” Alliance for Bio-

Integrity (October 27, 1993) www.biointegrity.org

22 Carl B. Johnson to Linda Kahl and others, “Flavr Savr™ Tomato: Significance of Pending DHEE Question,” Alliance for Bio-Integrity

(December 7, 1993) www.biointegrity.org

23 Arpad Pusztai, “Genetically Modified Foods: Are They a Risk to Human/Animal Health?” June 2001 Action Bioscience

www.actionbioscience.org/biotech/pusztai.html

24 Nagui H. Fares, Adel K. El-Sayed, “Fine Structural Changes in the Ileum of Mice Fed on Endotoxin Treated Potatoes and Transgenic

Potatoes,” Natural Toxins 6, no. 6 (1998): 219–233.

25 Stanley W. B. Ewen and Arpad Pusztai, “Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat

small intestine,” Lancet, 1999 Oct 16; 354 (9187): 1353-4.

26 Arpad Pusztai, “Facts Behind the GM Pea Controversy: Epigenetics, Transgenic Plants & Risk Assessment,” Proceedings of the Conference,

December 1st 2005 (Frankfurtam Main, Germany: Literaturhaus, 2005).

Page 20: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

27 Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GM food,” Nutrition and Health, 2002, Vol 16 Pp 73-84.

28 John M. Burns, “13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food

Consumption Determination with PMI Certified Rodent Diet #5002,” December 17, 2002

http://www.monsanto.com/pdf/products/fullratstudy863.pdf

29 R. Tudisco, P. Lombardi, F. Bovera, D. d’Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, “Genetically Modified

Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,” Animal Science 82

(2006): 193–199.

30 Comments to ANZFA about Applications A346, A362 and A363 from the Food Legislation and Regulation Advisory Group (FLRAG) of the

Public Health Association of Australia (PHAA) on behalf of the PHAA, “Food produced from glyphosate-tolerant canola line GT73,”

www.iher.org.au/

31 M. Malatesta, C. Caporaloni, S. Gavaudan, M. B. Rocchi, S. Serafini, C. Tiberi, G. Gazzanelli, “Ultrastructural Morphometrical and

Immunocytochemical Analyses of Hepatocyte Nuclei from Mice Fed on Genetically Modified Soybean,” Cell Struct Funct. 27 (2002): 173–180

32 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007

33 Irina Ermakova, “Experimental Evidence of GMO Hazards,” Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June

12, 2007

34 Arpad Pusztai, “Can Science Give Us the Tools for Recognizing Possible Health Risks for GM Food?” Nutrition and Health 16 (2002): 73–84.

35 S. Leeson, “The Effect of Glufosinate Resistant Corn on Growth of Male Broiler Chickens,” Department of Animal and Poultry Sciences,

University of Guelph, Report No. A56379, July 12, 1996.

36 Malatesta, et al, “Ultrastructural Analysis of Pancreatic Acinar Cells from Mice Fed on Genetically modified Soybean,” J Anat. 2002

November; 201(5): 409–415; see also M. Malatesta, M. Biggiogera, E. Manuali, M. B. L. Rocchi, B. Baldelli, G. Gazzanelli, “Fine Structural

Analyses of Pancreatic Acinar Cell Nuclei from Mice Fed on GM Soybean,” Eur J Histochem 47 (2003): 385–388.

37 Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GM food,” Nutrition and Health, 2002, Vol 16 Pp 73-84

38 R. Tudisco, P. Lombardi, F. Bovera, D. d’Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, “Genetically Modified

Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,” Animal Science 82

(2006): 193–199.

39 John M. Burns, “13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food

Consumption Determination with PMI Certified Rodent Diet #5002,” December 17, 2002

http://www.monsanto.com/pdf/products/fullratstudy863.pdf

40 R. Tudisco, P. Lombardi, F. Bovera, D. d’Angelo, M. I. Cutrignelli, V. Mastellone, V. Terzi, L. Avallone, F. Infascelli, “Genetically Modified

Soya Bean in Rabbit Feeding: Detection of DNA Fragments and Evaluation of Metabolic Effects by Enzymatic Analysis,” Animal Science 82

(2006): 193–199.

41 Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GM food,” Nutrition and Health, 2002, Vol 16 Pp 73-84

42 de Vendômois JS, Roullier F, Cellier D, Séralini GE. A Comparison of the Effects of Three GM Corn Varieties on Mammalian Health. Int J

Biol Sci 2009; 5:706-726. Available from http://www.biolsci.org/v05p0706.htm

43 Irina Ermakova, “Experimental Evidence of GMO Hazards,” Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June

12, 2007

44 L. Vecchio et al, “Ultrastructural Analysis of Testes from Mice Fed on Genetically Modified Soybean,” European Journal of Histochemistry

48, no. 4 (Oct–Dec 2004):449–454.

45 Oliveri et al., “Temporary Depression of Transcription in Mouse Pre-implantion Embryos from Mice Fed on Genetically Modified Soybean,”

48th Symposium of the Society for Histochemistry, Lake Maggiore (Italy), September 7–10, 2006.

46 Alberta Velimirov and Claudia Binter, “Biological effects of transgenic maize NK603xMON810 fed in long term reproduction studies in

mice,” Forschungsberichte der Sektion IV, Band 3/2008

47 I.V.Ermakova, “Genetically Modified Organisms and Biological Risks,” Proceedings of International Disaster Reduction Conference (IDRC)

Davos, Switzerland August 27th – September 1st, 2006: 168–172.

48 Irina Ermakova, “Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary

studies,” Ecosinform 1 (2006): 4–9.

49 Irina Ermakova, “Experimental Evidence of GMO Hazards,” Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June

12, 2007

50 I.V.Ermakova “GMO: Life itself intervened into the experiments,” Letter, EcosInform N2 (2006): 3–4.

51 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007

52 “Mortality in Sheep Flocks after Grazing on Bt Cotton Fields—Warangal District, Andhra Pradesh” Report of the Preliminary Assessment,

April 2006, http://www.gmwatch.org/archive2.asp?arcid=6494

Page 21: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

53 Personal communication and visit, January 2009.

54 John M. Burns, “13-Week Dietary Subchronic Comparison Study with MON 863 Corn in Rats Preceded by a 1-Week Baseline Food

Consumption Determination with PMI Certified Rodent Diet #5002,” December 17, 2002

http://www.monsanto.com/monsanto/content/sci_tech/prod_safety/fullratstudy.pdf, see also Stéphane Foucart, “Controversy Surrounds a GMO,”

Le Monde, 14 December 2004; and Jeffrey M. Smith, “Genetically Modified Corn Study Reveals Health Damage and Cover-up,” Spilling the

Beans, June 2005, http://www.seedsofdeception.com/Public/Newsletter/June05GMCornHealthDangerExposed/index.cfm

55 Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GM food,” Nutrition and Health, 2002, Vol 16 Pp 73-84

56 V. E. Prescott, et al, “Transgenic Expression of Bean r-Amylase Inhibitor in Peas Results in Altered Structure and

Immunogenicity,” Journal of Agricultural Food Chemistry (2005): 53.

57 Yearly food sensitivity assessment of York Laboratory, as reported in Mark Townsend, “Why soya is a hidden destroyer,” Daily Express,

March 12, 1999.

58 G. A. Kleter and A. A. C. M. Peijnenburg, “Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino

acid sequences indentical to potential, IgE-binding linear epitopes of allergens,” BMC Structural Biology 2 (2002): 8–19.

59 Netherwood et al, “Assessing the survival of transgenic plant DNA in the human gastrointestinal tract,” Nature Biotechnology 22 (2004): 2.

60 Hye-Yung Yum, Soo-Young Lee, Kyung-Eun Lee, Myung-Hyun Sohn, Kyu-Earn Kim, “Genetically Modified and Wild Soybeans: An

immunologic comparison,” Allergy and Asthma Proceedings 26, no. 3 (May–June 2005): 210-216(7).

61 Stephen R. Padgette et al, “The Composition of Glyphosate-Tolerant Soybean Seeds Is Equivalent to That of Conventional Soybeans,” The

Journal of Nutrition 126, no. 4, (April 1996); including data in the journal archives from the same study; see also A. Pusztai and S. Bardocz,

“GMO in animal nutrition: potential benefits and risks,” Chapter 17, Biology of Nutrition in Growing Animals (Elsevier, 2005).

62 Manuela Malatesta, et al, “Ultrastructural Analysis of Pancreatic Acinar Cells from Mice Fed on Genetically modified Soybean,” Journal of

Anatomy 201, no. 5 (November 2002): 409; see also M. Malatesta, M. Biggiogera, E. Manuali, M. B. L. Rocchi, B. Baldelli, G. Gazzanelli, “Fine

Structural Analyses of Pancreatic Acinar Cell Nuclei from Mice Fed on GM Soybean,” Eur J Histochem 47 (2003): 385–388.

63 See for example, Scott H. Sicherer et al., “Prevalence of peanut and tree nut allergy in the United States determined by means of a random digit

dial telephone survey: A 5-year follow-up study,” Journal of allergy and clinical immunology, March 2003, vol. 112, n 6, 1203-1207); and Ricki

Helm et al., “Hypoallergenic Foods—Soybeans and Peanuts,” Information Systems for Biotechnology News Report, October 1, 2002.

64 Vazquez et al, "Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal

antibody responses in mice," Life Sciences, 64, no. 21 (1999): 1897–1912; Vazquez et al, “Characterization of the mucosal and systemic immune

response induced by Cry1Ac protein from Bacillus thuringiensis HD 73 in mice,” Brazilian Journal of Medical and Biological Research 33 (2000):

147–155.

65 Vazquez et al, “Bacillus thuringiensis Cry1Ac protoxin is a potent systemic and mucosal adjuvant,” Scandanavian Journal of Immunology 49

(1999): 578–584. See also Vazquez-Padron et al., 147 (2000b).

66 Nagui H. Fares, Adel K. El-Sayed, “Fine Structural Changes in the Ileum of Mice Fed on Endotoxin Treated Potatoes and Transgenic

Potatoes,” Natural Toxins 6, no. 6 (1998): 219–233.

67 Alberto Finamore, et al, “Intestinal and Peripheral Immune Response to MON810 Maize Ingestion in Weaning and Old Mice,” J. Agric. Food

Chem., 2008, 56 (23), pp 11533–11539, November 14, 2008

68 Washington State Department of Health, “Report of health surveillance activities: Asian gypsy moth control program,” (Olympia, WA:

Washington State Dept. of Health, 1993).

69 M. Green, et al., “Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,”

Amer. J. Public Health 80, no. 7(1990): 848–852.

70 M.A. Noble, P.D. Riben, and G. J. Cook, “Microbiological and epidemiological surveillance program to monitor the health effects of Foray

48B BTK spray” (Vancouver, B.C.: Ministry of Forests, Province of British Columbi, Sep. 30, 1992).

71 A. Edamura, MD, “Affidavit of the Federal Court of Canada, Trial Division. Dale Edwards and Citizens Against Aerial Spraying vs. Her

Majesty the Queen, Represented by the Minister of Agriculture,” (May 6, 1993); as reported in Carrie Swadener, “Bacillus thuringiensis (B.t.),”

Journal of Pesticide Reform, 14, no, 3 (Fall 1994).

72 J. R. Samples, and H. Buettner, “Ocular infection caused by a biological insecticide,” J. Infectious Dis. 148, no. 3 (1983): 614; as reported in

Carrie Swadener, “Bacillus thuringiensis (B.t.)”, Journal of Pesticide Reform 14, no. 3 (Fall 1994)

73 M. Green, et al., “Public health implications of the microbial pesticide Bacillus thuringiensis: An epidemiological study, Oregon, 1985-86,”

Amer. J. Public Health, 80, no. 7 (1990): 848–852.

74 A. Edamura, MD, “Affidavit of the Federal Court of Canada, Trial Division. Dale Edwards and Citizens Against Aerial Spraying vs. Her

Majesty the Queen, Represented by the Minister of Agriculture,” (May 6, 1993); as reported in Carrie Swadener, “Bacillus thuringiensis (B.t.),”

Journal of Pesticide Reform, 14, no, 3 (Fall 1994).

75 Carrie Swadener, “Bacillus thuringiensis (B.t.),” Journal of Pesticide Reform 14, no. 3 (Fall 1994).

Page 22: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

76 Terje Traavik and Jack Heinemann, “Genetic Engineering and Omitted Health Research: Still No Answers to Ageing Questions, 2006. Cited in

their quote was: G. Stotzky, “Release, persistence, and biological activity in soil of insecticidal proteins from Bacillus thuringiensis,” found in

Deborah K. Letourneau and Beth E. Burrows, Genetically Engineered Organisms. Assessing Environmental and Human Health Effects (cBoca

Raton, FL: CRC Press LLC, 2002), 187–222.

77 See for example, A. Dutton, H. Klein, J. Romeis, and F. Bigler, “Uptake of Bt-toxin by herbivores feeding on transgenic maize and

consequences for the predator Chrysoperia carnea,” Ecological Entomology 27 (2002): 441–7; and J. Romeis, A. Dutton, and F. Bigler, “Bacillus

thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae),”

Journal of Insect Physiology 50, no. 2–3 (2004): 175–183.

78 N. Tomlinson of UK MAFF's Joint Food Safety and Standards Group 4, December 1998 letter to the U.S. FDA, commenting on its draft

document, “Guidance for Industry: Use of Antibiotic Resistance Marker Genes in Transgenic Plants,”

http://www.food.gov.uk/multimedia/pdfs/acnfp1998.pdf; (see pages 64–68).

79 Jeffrey M. Smith, “Bt-maize (corn) during pollination, may trigger disease in people living near the cornfield,” Press Release, February 2004,

http://www.seedsofdeception.com/Public/AboutGeneticallyModifiedFoods/InhaledGMMaizePollenMayCauseDiseas/index.cfm; and Allen V.

Estabillo, “Farmer's group urges ban on planting Bt corn; says it could be cause of illnesses,” Mindanews, October 19, 2004

http://www.seedsofdeception.com/utility/showArticle/?objectID=75

80 Mae-Wan Ho, “GM Ban Long Overdue, Dozens Ill & Five Deaths in the Philippines,” ISIS Press Release, June 2, 2006.

81 Ashish Gupta et. al., “Impact of Bt Cotton on Farmers’ Health (in Barwani and Dhar District of Madhya Pradesh),” Investigation Report, Oct–

Dec 2005.

82 Jeffrey M. Smith, Genetic Roulette: The Documented Health Risks of Genetically Engineered Foods, Yes! Books, Fairfield, IA USA 2007

83 E. Ann Clark, “Food Safety of GM Crops in Canada: toxicity and allergenicity,” GE Alert, 2000.

84 FLRAG of the PHAA of behalf of the PHAA, “Comments to ANZFA about Applications A372, A375, A378 and A379.”

85 Judy Carman, “Is GM Food Safe to Eat?” in R. Hindmarsh, G. Lawrence, eds., Recoding Nature Critical Perspectives on Genetic Engineering

(Sydney: UNSW Press, 2004): 82–93.

86 Judy Carman, “Is GM Food Safe to Eat?” in R. Hindmarsh, G. Lawrence, eds., Recoding Nature Critical Perspectives on Genetic Engineering

(Sydney: UNSW Press, 2004): 82–93.

87 FLRAG, “Comments to ANZFA about Applications A346, A362 and A363,” http://www.iher.org.au/

88 Doug Gurian-Sherman, “Holes in the Biotech Safety Net, FDA Policy Does Not Assure the Safety of Genetically Engineered Foods,” Center

for Science in the Public Interest, http://www.cspinet.org/new/pdf/fda_report__final.pdf

89 Bill Freese, “The StarLink Affair, Submission by Friends of the Earth to the FIFRA Scientific Advisory Panel considering Assessment of

Additional Scientific Information Concerning StarLink Corn,” July 17–19, 2001.

90 FDA Letter, Letter from Alan M. Rulis, Office of Premarket Approval, Center for Food Safety and Applied Nutrition, FDA to Dr. Kent Croon,

Regulatory Affairs Manager, Monsanto Company, Sept 25, 1996. See Letter for BNF No. 34 at http://www.cfsan.fda.gov/~lrd/biocon.html

91 “Elements of Precaution: Recommendations for the Regulation of Food Biotechnology in Canada; An Expert Panel Report on the Future of

Food Biotechnology prepared by The Royal Society of Canada at the request of Health Canada Canadian Food Inspection Agency and

Environment Canada” The Royal Society of Canada, January 2001.

92 FIFRA Scientific Advisory Panel (SAP), Open Meeting, July 17, 2001.

93 Bill Freese, Crop testing, New Scientist, Letter to the Editor, issue 2530, December 17, 2005

94 M. Cretenet, J. Goven, J. A. Heinemann, B. Moore, and C. Rodriguez-Beltran, “Submission on the DAR for application A549 Food Derived

from High-Lysine Corn LY038: to permit the use in food of high-lysine corn, 2006, www.inbi.canterbury.ac.nz

95 Marc Lappé and Britt Bailey, “ASA Response,” June 25, 1999, http://cetos.org/articles/asaresponse.html

96 Bill Freese, “The StarLink Affair, Submission by Friends of the Earth to the FIFRA Scientific Advisory Panel considering Assessment of

Additional Scientific Information Concerning StarLink Corn,” July 17-19, 2001

97 Paul P. Groenewegen, Brian W. McBride, John H. Burton, Theodore H. Elsasser. "Bioactivity of Milk from bST-Treated Cows." J. Nutrition

120, 1990, pp. 514-519

98 Judith C. Juskevich and C. Greg Guyer. "Bovine Growth Hormone: Human Food Safety Evaluation." Science, vol. 249. August 24, 1990, pp.

875-884

99 Pete Hardin, “rbGH: Appropriate Studies Haven’t Been Done,” The Milkweed, July 2000

100 See for example, Doug Gurian-Sherman, “Holes in the Biotech Safety Net, FDA Policy Does Not Assure the Safety of Genetically Engineered

Foods,” Center for Science in the Public Interest, http://www.cspinet.org/new/pdf/fda_report__final.pdf

101 S. R. Padgette, N. B.Taylor, D. L. Nida, M. R. Bailey, J. MacDonald, L. R. Holden, R. L. Fuchs, “The composition of glyphosate-tolerant

soybean seeds is equivalent to that of conventional soybeans,” J. Nutr. 126 (1996):702–716.

Page 23: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

102 B. G. Hammond, J. L. Vicini, G. F. Hartnell, M. W. Naylor, C. D. Knight, E. H. Robinson, R. L. Fuchs, and S. R. Padgette, “The feeding

value of soybeans fed to rats, chickens, catfish, and dairy cattle is not altered by genetic incorporation of glyphosate tolerance,” J. Nutr. 126

(1996): 717–727.

103 A. Pusztai and S. Bardocz, “GMO in animal nutrition: potential benefits and risks,” Chapter 17, Biology of Nutrition in Growing Animals

(Elsevier, October 2005). earlier

104 Ian F. Pryme and Rolf Lembcke, “In Vivo Studies on Possible Health Consequences of Genetically Modified Food and Feed—with Particular

Regard to Ingredients Consisting of Genetically Modified Plan Materials,” Nutrition and Health 17(2003): 1–8.

105 Andreas Rang, et al, “Detection of RNA variants transcribed from the transgene in Roundup Ready soybean,” Eur Food

Res Technol 220 (2005): 438–443.

106 Ian F. Pryme and Rolf Lembcke, “In Vivo Studies on Possible Health Consequences of Genetically Modified Food and Feed—with Particular

Regard to Ingredients Consisting of Genetically Modified Plan Materials,” Nutrition and Health 17(2003): 1–8.

107 Arpad Pusztai, “Can science give us the tools for recognizing possible health risks of GM food,” Nutrition and Health, 2002, Vol 16 Pp 73-84;

Stanley W. B. Ewen and Arpad Pusztai, “Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small

intestine,” Lancet, 1999 Oct 16; 354 (9187): 1353-4; Arpad Pusztai, “Genetically Modified Foods: Are They a Risk to Human/Animal Health?”

June 2001 Action Bioscience http://www.actionbioscience.org/biotech/pusztai.html; and A. Pusztai and S. Bardocz, “GMO in animal nutrition:

potential benefits and risks,” Chapter 17, Biology of Nutrition in Growing Animals, R. Mosenthin, J. Zentek and T. Zebrowska (Eds.) Elsevier,

October 2005

108 V. E. Prescott, et al, “Transgenic Expression of Bean r-Amylase Inhibitor in Peas Results in Altered Structure and Immunogenicity,” Journal

of Agricultural Food Chemistry (2005): 53.

109 J. Lexchin, L. A. Bero, B. Djulbegovic, and O. Clark, “Pharmaceutical industry sponsorship and research outcome and quality: systematic

review,” BMJ 326 (2003):1167–1176.

110 Mark Friedberg, et al, “Evaluation of Conflict of Interest in Economic Analyses of New Drugs Used in Oncology,” JAMA 282 (1999):1453–

1457.

111 “Elements of Precaution,” The Royal Society of Canada, January 2001.

112 Friends of the Earth Europe, “Throwing Caution to the Wind: A review of the European Food Safety Authority and its work on genetically

modified foods and crops,” November 2004.

113 European Communities submission to World Trade Organization dispute panel, 28 January 2005.

114 EU Regulation 178/2002 (Article 30)

115 Friends of the Earth Europe, “Throwing Caution to the Wind: A review of the European Food Safety Authority and its work on genetically

modified foods and crops,” November 2004.

116 “Greenpeace exposes Government-Monsanto nexus to cheat Indian farmers: calls on GEAC to revoke BT cotton permission,” Press release,

March 3, 2005, http://www.greenpeace.org/india_en/news/details?item_id=771071

117 Jeffrey M. Smith, Seeds of Deception, (Iowa: Yes! Books, 2003), 224.

118 “Monsanto Bribery Charges in Indonesia by DoJ and USSEC,” Third World Network, Malaysia, Jan 27, 2005,

http://www.mindfully.org/GE/2005/Monsanto-Indonesia-Bribery27jan05.htm

119 Jeffrey M. Smith, Seeds of Deception, Yes! Books, Fairfield, Iowa 2003

120 Karen Charman, The Professor Who Can Read Your Mind, PR Watch Newsletter Fourth Quarter 1999, Volume 6, No. 4

121 http://www.gmwatch.org/archive2.asp?arcid=4387

122 Estimates of increased IGF-1 levels vary considerably. In Mepham et al, “Safety of milk from cows treated with bovine somatotropin,” The

Lancet 2 (1994):197, IGF-1 levels were up to 10 times higher. The methods used may also underestimate IGF-1 levels considerably. See Samuel

S. Epstein, “Unlabeled Milk From Cows Treated With Biosynthetic Growth Hormones: A Case of Regulatory Abdication,” International Journal

of Health Services 26(1996): 173–185; and Samuel S. Epstein, What’s In Your Milk? (Victoria, British Columbia, Canada:Trafford Publishing,

2006), 197–204.

123 For a review of literature linking elevated levels of IGF-1 with increased risks of breast, colon and prostate cancers, see Samuel S. Epstein,

What’s In Your Milk?, 197–204.

124 Gary Steinman, “Mechanisms of Twinning VII. Effect of Diet and Heredity on the Human Twinning Rate,” Journal of Reproductive

Medicine, May 2006; S.E. Echternkamp et al, “Ovarian Follicular Development in Cattle Selected for Twin Ovulations and Births,” Journal of

Animal Science 82 no. 2 (2004): 459–471; and S. E. Echternkamp et al, “Concentrations of insulin-like growth factor-I in blood and ovarian

follicular fluid of cattle selected for twins,” Biology of Reproduction, 43(1990): 8–14.

125 Powell D.A.; Blaine K.; Morris S.; Wilson J., Agronomic and consumer considerations for Bt and conventional sweet-corn, British Food

Journal, Volume: 105, Issue: 10, Page: 700-713 (Nov 2003)

126 GM Nation? The findings of the public debate, http://www.gmnation.org.uk/ut_09/ut_9_6.htm#summary

Page 24: STATE-OF-THE-SCIENCE ON THE HEALTH RISKS OF GM FOODS

127 To see the Toronto Star photo in Laidlaw’s book, go to http://www.gmwatch.org/p1temp.asp?pid=72&page=1

128 Corn Fakes, Private Eye, No. 1194, 28 September-11 October 2007 http://www.gmwatch.org/archive2.asp?arcid=8314

129 Tim Lambert, Would you eat wormy corn?, September 7 2007

http://scienceblogs.com/deltoid/2007/09/would_you_eat_wormy_sweet_corn.php

130 “Genetically modified foods, who knows how safe they are?” CBC News and Current Affairs, September 25, 2006.

131 Mike Zelina, et al., The Health Effects of Genetically Engineered Crops on San Luis Obispo County,” A Citizen Response to the SLO Health

Commission GMO Task Force Report, 2006.

132 Bill Lambrecht, Dinner at the New Gene Café, St. Martin's Press, September 2001, pg 139

Photos

132 Stanley W. B. Ewen and Arpad Pusztai, “Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat

small intestine,” Lancet, 1999 Oct 16; 354 (9187): 1353-4.

132 M. Malatesta, C. Caporaloni, S. Gavaudan, M. B. Rocchi, S. Serafini, C. Tiberi, G. Gazzanelli, “Ultrastructural Morphometrical and

Immunocytochemical Analyses of Hepatocyte Nuclei from Mice Fed on Genetically Modified Soybean,” Cell Struct Funct. 27 (2002): 173–180

132 Irina Ermakova, “Experimental Evidence of GMO Hazards,” Presentation at Scientists for a GM Free Europe, EU Parliament, Brussels, June

12, 2007

132 Irina Ermakova, “Genetically modified soy leads to the decrease of weight and high mortality of rat pups of the first generation. Preliminary

studies,” Ecosinform 1 (2006): 4–9.