28
LLNL-PRES-715690 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Status of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14 th , 2016

Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

  • Upload
    others

  • View
    12

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

LLNL-PRES-715690This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Status of NNSA ICF Research on the NIFPresented to Fusion Power Associates

Washington, DCJohn Edwards

Director ICF ProgramDecember 14th, 2016

Page 2: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 2Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

This talk will focus on progress in learning how to control drive symmetry

This was identified as a major factor limiting performance

Page 3: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 3Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Why is laboratory ignition hard? Requires high convergence – amplifies “errors”

R = Areal density

Hot DT

Cold dense DT

Eignition ~ R3T ~R 3 T 3

Pstag2

Pstag2 ~ CR6

X‐ray drive on NIF requires CR ~ 30

Page 4: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 4Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

US ICF program evaluating 3 approaches – different convergence ratios, pros and cons

Laser Direct DriveUniv. Rochester (Omega, NIF)

Magnetic drive Sandia Nat’l Lab Z-machine

X-ray driveLLNL NIF

EFuel‐Z~100 kJCR2D ~ 20

Pign ~ 5 Gbar

EFuel‐NIF~100 kJCR ~ 20

Pign ~ 150 Gbar

EFuel‐NIF~15 kJCR ~ 30

Pign ~ 350 Gbar

Page 5: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 5Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

US ICF program evaluating 3 approaches – different convergence ratios, pros and cons

EFuel‐Z~100 kJCR2D ~ 20

Pign ~ 5 Gbar

EFuel‐NIF~100 kJCR ~ 20

Pign ~ 150 Gbar

EFuel‐NIF~15 kJCR ~ 30

Pign ~ 350 Gbar

Laser Direct DriveUniv. Rochester (Omega, NIF)

Magnetic drive Sandia Nat’l Lab Z-machine

X-ray driveLLNL NIF

• Energy coupling• Implosion uniformity

• Fuel preheating• Radiation loss

• Drive symmetry• Engineering features

Principal challenges (as understood today)

Page 6: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 6Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Page 7: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 7Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”NICNIC ICF Framework

New diagnostics + model improvements

Page 8: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 8Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”Execute NIC NIC Pt design

NICNIC ICF Framework

Fell far short of ignitionAsymmetry and mix suspected but details not understood 

New diagnostics + model improvements

Page 9: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 9Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”Execute NIC NIC Pt design

Emphasis on understanding what’s wrongLower convergence, more stable design

NICNIC ICF Framework

Fell far short of ignitionAsymmetry and mix suspected but details not understood 

New diagnostics + model improvements

“Path Forward”

Page 10: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 10Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Post NIC, “high foot” implosions performed better, > 2X alpha heating – no mix observed

NIC

“high foot”

High foot was more stable and lower convergence

Accomplished by laser pulse shape change  

Page 11: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 11Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Ti = 4.5 keV 

Ti = 5.5 keV

Ti = 3.1 keV 

Capsule support impact

NIC

“high foot”

Better stability and lower convergence of high foot delayed onset of limiting factors

Page 12: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 12Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2Simulated DT fuel at stagnation

Capsule support “Tent”

“Tent” “Tent”

2014 summer study concluded: appears two major factors preventing ignition – others may be found

LPI dominated Asymmetric x‐ray drive

+

1J.E. Field et al, Rev. Sci. Instrum. 85, 11E503, (2014)1R. Tommasini et al, Phys. Plasmas. 22, 056315, (2015)

22D. S. Clark et al, Phys. Plasmas, 22, 022703, (2014)

Are these fundamental limiters or can they be addressed?This directed follow on research

1Processed in‐flight radiograph

Distorted implosion

Inefficient fuel assembly

Page 13: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 13Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”Execute NIC NIC Pt design

Emphasis on understanding what’s wrongLower convergence, more stable design

26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating

NICNIC ICF Framework

Fell far short of ignitionAsymmetry and mix suspected but details not understood 

New diagnostics + model improvements

“Path Forward”

Appears LPI dominated asymmetry too large,capsule support ‐> mix in NIC, limits high foot

Page 14: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 14Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”Execute NIC NIC Pt design

Emphasis on understanding what’s wrongLower convergence, more stable design

Can LPI, asymmetry and engineering featuresbe mitigated? Low LPI (low fill) hohlraum designs

26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating

NICNIC ICF Framework

Fell far short of ignitionAsymmetry and mix suspected but details not understood 

New diagnostics + model improvements

“Path Forward”

ICF Framework

Appears LPI dominated asymmetry too large,capsule support ‐> mix in NIC, limits high foot

Page 15: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 15Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

At the start of 2015 the program redirected to “eliminate” LPI and improve symmetry – did it work?

High fillLPI dominated

Low fillLow LPI

(more efficient)

Page 16: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 16Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

At the start of 2015 the program redirected to “eliminate” LPI and improve symmetry – did it work?

Learned could achieve:• Low LPI• Low hot electrons• Symmetric implosion

Key results

High fillLPI dominated

Low fillLow LPI

(more efficient)

Page 17: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 17Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

MacLaren et al

Equator

Pole

X‐ray images

High footDT

RHRC

5.75 mm

1.1mm

RH/RC ~ 2.5

0.68mm

2-shockDT

RH/RC ~ 4.3

Implosions can be spherical if hohlraum is large enough

100µm

But, this capsule is not large enough to ignite

Page 18: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 18Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Spherical and stable DT implosions perform close to 1D even at CR~32

MacLaren et al

High footDT

RHRC

5.75 mm

1.1mm

RH/RC ~ 2.5

0.68mm

2-shockDT

N161004

Preshot 1D 

simulationYDT (1014) 1.67±0.3 1.9

Tion (keV) 2.84±0.15 2.3

dsr 2.3±0.3 2

~ 88% YOC

Preliminary analysis(also note Tion high as 

usual)

RH/RC ~ 4.3

Implosions can be spherical if hohlraum is large enough

Equator

Pole

X‐ray images

100µm

Page 19: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 19Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Beginning to apply these lessons to more ignition relevant designs –> improved efficiency

Also new findings:Fill tube may be larger impact than originally expected  

But not yet clear whether this approach can scale to ignition

Page 20: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 20Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

At the start of 2015 the program redirected to “eliminate” LPI and improve symmetry – did it work?

Learned could achieve:• Low LPI• Low hot electrons• Symmetric implosion

Also learned:• Gold “bubble” limits time 

window for symmetric implosion – sets limit on capsule size

Key results

High fillLPI dominated

Low fillLow LPI

(more efficient)

Page 21: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 21Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

At the start of 2015 the program redirected to “eliminate” LPI and improve symmetry – did it work?

Learned could achieve:• Low LPI• Low hot electrons• Symmetric implosion

Also learned:• Gold “bubble” limits time 

window for symmetric implosion – sets limit on capsule size

Key question to answer going forward: In the largest hohlraum afforded by NIF’s power and energy, can we control symmetry with a capsule that is large enough to ignite? If not, can we do anything about it?

Key results

High fillLPI dominated

Low fillLow LPI

(more efficient)

Page 22: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 22Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Going forward, goal is to determine how large a capsule can be imploded spherically on NIF

Will evaluate three capsule materials – stress hohlraum and hydro stability differently

Low LPI, symmetric hohlraum driver

+Diamond(3.5 g/cc)

Beryllium(1.85 g/cc)

Plastic(1.1 g/cc)

Longest pulse Shortest pulseMost stable

How will they perform, what are the remaining issues, can they be overcome ?

Page 23: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 23Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Regular hohlraum

Foam lined hohlraum

Can we lengthen the “safe” operating window for symmetric drive – eg reduce wall motion?

Thomas et al

Example: foam liner concept

Page 24: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 24Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Regular hohlraum

Foam lined hohlraum

Beginning to explore new ideas to lengthen the “safe” operating window 

Thomas et al

Example: foam liner concept“Bubble” motion

Plasma ne,Te

Beam propagation

Page 25: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 25Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

“Path Forward”“Path Forward”Execute NIC NIC Pt design

Appears LPI dominated asymmetry too large,capsule support ‐> mix in NIC, limits high foot

Emphasis on understanding what’s wrongLower convergence, more stable design

Can LPI, asymmetry and engineering featuresbe mitigated? Low LPI (low fill) hohlraum designs

26kJ yield, no mix (high foot) 2X yield amplification due to alpha heating

Low LPI, symmetry demonstratedNot yet clear if scales to ignitionHave plan to answer/improve

NICNIC ICF Framework

Fell far short of ignitionAsymmetry and mix suspected but details not understood 

New diagnostics + model improvements

“Path Forward”

ICF Framework

Page 26: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 26Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Streak Trajectory

In‐fight instability

Shocks

R

time

time

10 ps resolution

Picket symmetry

Optical Thomson

2009 2010 2012 2013 2014 20162015 201820172011

Implosion shape

DT hot spot shape

DriveLPI

t‐intspots

Wall motion/ x‐ray drive / CBET

Capsule‐wall interactionHi res spectra

CBET

Fuel shape

Early

In‐flight

Stagnation

Au Te

Te/flow

Rel‐EOS

symmetry

DT 3‐axis2‐axis

Multi‐axis n‐spec

Stagnationstability

Time dep spots

Hohlraum

Co‐reg n,X Scattered neutrons

‐imageARC 

(simulation)(fuel shape) 

KB

Page 27: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016

Lawrence Livermore National Laboratory 27Edwards, FPA, 12/14/16

LLNL-PRES-xxxxxx

Summary of X‐ray drive ignition on the NIF

Progress in learning how to control drive symmetry• Identified as major factor limiting performance

Beginning to apply lessons to understand how far this can scale towards ignition – need time to evaluate

Beginning to explore concepts to improve prospects of scaling 

Ongoing engineering effort to address the capsule support and fill tube (not discussed today)

These new directions need a methodical, scientific approach, new diagnostics, improved models and time to evaluate

Page 28: Status of NNSA ICF Research on the NIFStatus of NNSA ICF Research on the NIF Presented to Fusion Power Associates Washington, DC John Edwards Director ICF Program December 14th, 2016