60
Step-by-step MANUAL To Develop a typical Triple Pressure HRSG Boiler Scheme on Gas turbine with Duct burner PREPARED FOR: By NOVEMBER 2013

Step-by-step MANUAL€¦ · 1.4 Considered Concept of triple pressure HRSG boiler 8 1.5 Introduction of the duct burner 10 1.6 Selection of the fuel for the duct burner 12 1.7 Incorporation

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Step-by-step MANUAL

    To Develop a typical Triple Pressure HRSG Boiler Scheme on Gas turbine with Duct burner

    PREPARED FOR:

    By

    NOVEMBER 2013

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    2 of 60

    List of Contents

    1 Construction of the Flue Gas Circuit of the HRSG 4 1.1 Introduction of the heat source 4 1.2 Introduction of diverter damper and bypass stack 6 1.3 Consideration of possible mal flow distribution 7 1.4 Considered Concept of triple pressure HRSG boiler 8 1.5 Introduction of the duct burner 10 1.6 Selection of the fuel for the duct burner 12 1.7 Incorporation of the remaining modules after the duct burner 12

    2 Construction of the Water/Steam circuit of the HRSG 15 2.1 Overall Water/Steam Circuit with steam turbine 15 2.1.1 -Boiler Feedwater Inlet 15 2.1.2 -Construction of the overall Water/steam circuit, incl. LP-circuit 16 2.1.3 -Construction of the natural circulation of the LP-system (44) 22 2.1.4 -Construction of the detailed HP-Water Circuit 23 2.1.5 -Construction of the of the HP-DRUM-Evaporator Scheme 24 2.1.6 -Construction of the natural circulation of the HP-system 25 2.1.7 -Construction of the detailed IP-RH Water Circuit 27 2.1.8 -Construction of the of the IP-RH-DRUM-Evaporator Scheme 28 2.1.9 -Construction of the natural circulation of the IP-system 29

    3 Integration of the several control loops 30 3.1 Control loop for fuel-supply to ductburner 30 3.2 Control loops in the overall AllData_1.Water Scheme. 31 3.2.1 -Water level control LP-Drum 31 3.2.2 -Control of water inlet-temperature of the Condensate Heater 32 3.2.3 -Control of outlet pressure of the LP-SUPERHEATER 33 3.2.4 -Water Level Control of IP and HP-Drums 33 3.2.5 -Water-Level Control Loop of the IP-RH System Water Scheme 34 3.2.6 -IP-Hot Water Export to external User 35 3.2.7 -Temperature Control Loop Outlet IP-RH1 35 3.2.8 -Remaining control loops of the HP System Water Scheme 36

    4 Introduction of Input Data 37 4.1 Input Data Report 37 4.1.1 -Input Flue Gas Data at HRSG Inlet 37 4.1.2 -Input Data HRSG via Report File 39 4.1.3 -Input Data Natural Circulation via Report File 42 4.2 Excel Input Data 43 4.3 Input data for specific components 47 4.3.1 -Steamturbine 47 4.3.2 -Generator 48 4.3.3 -Condensor 49

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    3 of 60

    4.3.4 -Booster BFW Pumps 49 4.3.5 -Condensate extraction Pump 49

    5 Output Data 50 5.1 Output data report 50

    6 Final Outlook of the different Schemes 52

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    4 of 60

    1 Construction of the Flue Gas Circuit of the HRSG 1.1 Introduction of the heat source

    (2) The menu “File” offers following options :

    ♦ “NNeeww “: to create a new boiler structure file ♦ “OOppeenn”: to open an earlier created and saved boiler structure file ♦ A lliisstt ooff tthhee llaasstt 1100 rreecceennttllyy uusseedd bbooiilleerr ssttrruuccttuurree ffiilleess which can be

    loaded immediately. (3) Boiler Design ⇒ click on ”OK”

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    5 of 60

    (4) Two screens appear :

    ♦ AAllllDDaattaa__11..FFlluueeGGaassSScchheemmee : to simulate the Flue Gas circuit ♦ AAllllDDaattaa__11..WWaatteerrSScchheemmee : to simulate the Water/Steam circuit

    We start normally with the construction of the Flue Gas Circuit, beginning with the Hear source, i.e. gas turbine exhaust. (5) Click on the “FFlluuee ggaass ssiiddee eelleemmeennttss” and select the icon “GGaassIInnlleett”, (6) drag and drop the icon into the” FlueGasScheme” screen, select the appropriate icon, within the proposed options, and double-click on the respective text or click on “OOKK”.

    (7) With a right mouse click on the icon a menu will appear and go with the cursor to option “PPrrooppeerrttiieess” and change eventually the name “Gasinlet “ into the corresponding Gas turbine type i.e. GT-M701F

    .

    IMPORTANT NOTE : don’t forget to give the KED;dbi file a name and to save the file regularly during the different steps. !

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    6 of 60

    1.2 Introduction of diverter damper and bypass stack

    Drag and drop the respective elements, into the Flue Gas Scheme, and select appropriate icon.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    7 of 60

    (8) The respective flue gas connections between

    elements are established with a right mouse click on the consecutive elements. A menu appear, select on top of the menu ““CCoonnnneeccttiioonn MMeeddiiuumm ((GGaass))”” the applicable option, and make the connection through left mouse click between the elements.

    This operation must be repeated between all further elements of the HRSG.

    1.3 Consideration of possible mal flow distribution

    (9) With the flue gas element “SSttrreeaammss” all subsequent heat exchangers are divided in several zones (i.e. 5) and heat transfer calculations in these sections will take into account the uneven flow or temperature distribution of the flue gas leaving the gas turbine. The flow or temperature distribution can be set 100% if considered uniform or simulated by a function and confirmed by a click on “OK”.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    8 of 60

    1.4 Considered Concept of triple pressure HRSG boiler

    The triple pressure HRSG of this model has following pressure levels at their respective exit points :

    1. High Pressure level : 123 bar(a) at 568°C 2. Intermediate Pressure level : 31,41 bar(a) at 567°C 3. Low Pressure level : 5 bar(a) at 320°C

    Based on previous HRSG designs, following arrangement of the different heating modules in flue gas direction was selected:

    • HP - Superheater 1( outlet) • IP - Reheater 1 (outlet) • IP - Reheater 2 • Duct Burner • HP - Superheater 2 • HP - Superheater 3 • IP - Reheater 3 • HP – Superheater 4 • HP – Evaporator • HP – Economiser 1 • IP – Superheater • LP – Superheater • HP – Economiser 2 • IP – Evaporator • IP – Economiser • HP – Economiser 3 • HP – Economiser 4 • LP – Evaporator • Condensate Heater

    In this model, with horizontal gas flow, all modules consist of multiple rows with vertical serrated fin tube, all of the same height. Following action has to be repeated for each module:

    (10) Drag and drop from the ” HHeeaattiinngg SSuurrffaaccee” menu the “HHSSffiinnnneeddTTuubbeess” – icon and drag and drop it into the flue gas scheme, select further image “WWTT22” (11) and click on (12) OK.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    9 of 60

    With the three first modules, we get following preliminary picture:

    (13) : make the flue gas connections between the different modules same as under (8) (14) : before the duct burner, we have to mix the flue gas streams

    Note : With a right mouse click on the icon of the modules, a menu will appear and with the cursor to option “PPrrooppeerrttiieess” the standard name “ HHSSffiinnnneeddTTuubbeess__xxxx” can be changed with the personalized module name “HHPP--SSHH11” etc.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    10 of 60

    1.5 Introduction of the duct burner

    (15) To install the duct burner, select the icon “FFuurrnnaaccee” from the flue gas side elements, drag and drop it into the flue gas scheme, select the desired icon for a duct burner and (10) click on “OOKK”. If other image for the duct burner is preferred, see procedure below and click “OK” .

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    11 of 60

    When making the connection between the diverter damper and the duct burner (20), select the standard connection :” GGaass wwiitthh ooxxyyggeenn oorr AAiirr”.

    To change colour and thickness of the connection, place cursor on the connection, right mouse click to select properties and change width and colour as wanted, and confirm with click on “OK”

    (21) It is useful to provide several test points alongside the flue gas circuit, to check the in-and/or outlet conditions at certain locations and show exact values of the different parameters.

    (22) As explained under 1.3 a new flue gas element “SSttrreeaammss” should be included to divide following modules in several zones and calculate temperature distribution for the cross-parallel flow arrangements of the respective heating surfaces.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    12 of 60

    In the studied case, again 5 zones are installed and gas flow and temperature distribution at 100%, considering a uniform distribution after the first modules and the duct burner. Flue gas connection must be made the same way as between previous modules

    1.6 Selection of the fuel for the duct burner

    From the short-cut to schemes, select ”DDuuccttbbuurrnneerr FFuueell SScchheemmee” and select from the menu Fuel elements the appropriate fuel nature, i.e. gas.

    1.7 Incorporation of the remaining modules after the duct burner As indicated under 1.4 the next 15 modules are introduced into the flue gas scheme. This can easily been achieved by placing the cursor on a previous module, with a right mouse click a menu appears and with the function “ DDuupplliiccaattee” an additional module is created which can be dragged to its correct location.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    13 of 60

    This must be repeated as needed to complete the configuration of the HRSG. The names of the copied modules must be accordingly adjusted (right mouse click on the module, select properties and change name in first window (23)). Also the necessary flue gas connections between the modules must be made (24).

    REMARK:

    The HP-Evaporator consist normally of a larger number of modules, and they are therefore in this scheme grouped and represented by a gas-group icon in the AAllllDDaattaa__11..FFlluueeGGaassSScchheemmee,, which can be opened by clicking with right mouse button and selecting the option: open group. A new underlying HHPP EEvvaapp..FFlluueeGGaassSScchheemmee is created where a more detailed construction of the HP-Evaporator can be specified.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    14 of 60

    The purpose of creating a separate HP-Evaporator scheme is to allow a detailed study of the heat transfer through the several screens and other specific values. To complete the flue gas circuit, we have to mix the flue gas streams, a second test point is added and also a stack. In order to calculate the thermal balance and efficiency, we have to confirm (25) the first elements or inlet of heat input (1) and the last elements (L) or outlets of heat considered as losses.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    15 of 60

    2 Construction of the Water/Steam circuit of the HRSG We have to build following detailed water/steam schemes

    * ModAlldaten_1 water scheme (including LP water system)

    * HP water system scheme

    * IP-RH water system scheme.

    2.1 Overall Water/Steam Circuit with steam turbine

    To open the screen for the construction of the water-steam circuit, click on the shortcut to schemes (26) , select the AllData_1: Water Scheme, and confirm by pressing OK. The screen for the water circuit will pop up .

    2.1.1 Boiler Feedwater Inlet Select from the water side elements, the icon “FFeeeeddWWaatteer”, drag it into the “AAllllDDaattaa__11..WWaatteerr sscchheemmee”, select the suitable image and direction (28) and confirm it by OK.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    16 of 60

    2.1.2 Construction of the overall Water/steam circuit, incl. LP-circuit

    We start with the LP-circuit, fed with cold condensate of 40°C, preheated to 60°C by recirculating the condensate over the condensate heater, with a three-way control valve, and further heated before entering in the LP steam drum. The necessary elements, mixing point, three-way control valve and steam drum are selected from the Water side elements list, and dragged into the water scheme with the selected suitable icon.(29) To complete the LP-circuit, we have to introduce the Condensate Reheater, and the LP-Superheater, already present in the Flue gas circuit. (30) Click with mouse right button on the background of AllData_1 Water scheme and click on Properties of the appearing menu (31). Select the option : “aadddd//ddeelleettee mmooddeell” and look for the applicable model, i.e. COND-HTR and LT-SH, click on the model (32) and shift the selected model in the group by pressing the corresponding arrow-button (33). When both models are shifted in the group, click OK button (34)

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    17 of 60

    µ

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    18 of 60

    To complete the LP-circuit, put cursor on the BFW-Inlet element, click on right mouse button, click on “ CCoonnnneeccttiioonn HH22OO” and draw the line to the MMiixx PPooiinntt (35) selecting the “SSttaannddaarrdd CCoonnnneeccttiioonn” and click.

    Continue to make the connection to a tteesstt ppooiinntt (36) - dragged from the water side elements, not from the flue gas side elements - continue further to the condensate heater and from there to the “ 33--wwaayy VVaallvvee” (37).

    From the 3-way control valve, select the “ CCoonnnneeccttiioonn HH22OO”, for the main flow and connect with the DDrruumm..(38)

    Between the drum and the LP-SH, we have added from the “PPrreessssuurree DDrroopp EElleemmeennttss” the icon “PPrreessssuurreeDDrroopp” (39), whereby we can introduce an estimated pressure drop of the LP circuit.

    From item (39) we make further the connection with the LP-SH, and from there to an “EENNDD” element (40), taken from the Water Side elements.

    Note:

    • To make every connection, put cursor on the starting icon, click on right mouse button, click on the corresponding type of connection, bring the cursor to the ending icon and click on the left mouse button.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    19 of 60

    • To change thickness or colour of the connection, bring cursor on the line, click on right mouse button, select Properties and click, change the width, press the colour button, select the desired colour and press OK.

    The moment we introduced the icon “Drum” into a Water scheme, another scheme is created, i.e. “LLPP--DDRRUUMM..EEvvaappoorraattoorrSScchheemmee” after we have changed the initial Name “Drum_56” into “LP-DRUM (42).

    In this LP-DRUM.EvaporatorScheme we have to introduce the “CCiirrccuullaattiioonnSSyysstteemm” (43), to assemble the transferred heat of all respective evaporation surfaces. This must further been elaborated in the “CCiirrccuullaattiioonnSSyysstteemm__EEvvaappoorraattiioonnSScchheemmee”.(44) This is also the case for the IP- and HP pressure systems. (see further)

    Remark

    • All different created schemes can been seen and called up by pressing on button (41) “SShhoorrttccuutt ttoo sscchheemmeess”.

    To complete the ““AAllllddaatteenn__11 WWaatteerr SScchheemmee”, we have to add the HP-system, the IP-RH-system, the 3-stage steam turbine with generator and the condensor.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    20 of 60

    At this stage, the entire HP and IP-RH systems are introduced in the scheme with a single icon “SStteeaammGGeennGGrroouupp” (45) from the Water Side Elements, but these systems need to be further detailed in a separate scheme. These new scheme’s will automatically been created from the moment that the respective icons are introduced into the Alldaten_1 Water Scheme.

    Further elements introduced from the “WWaatteerr ssiiddee EElleemmeennttss” are : 3 Pumps (46): a IP-Feedwater pump, a HP-Feedwater pump and a condensate pump; a three-way valve (47) to divide the feedwater flow between the IP and HP system; a mixing point (48) and several Test points (49)

    All these new elements can be renamed with a right mouse click on the icon, selecting with the cursor in the appeared menu the option “PPrrooppeerrttiieess” and change eventually the name as wished. From the “BBaallaannccee OOff PPllaanntt EElleemmeennttss”, we introduce two turbine stages with bleed valve (50) and one end stage (51), the generator (52) and condensor (53).

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    21 of 60

    All these new elements need to be interconnected to complete the circuit.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    22 of 60

    2.1.3 Construction of the natural circulation of the LP-system (44)

    Same procedure to call in the LP-evaporator (54) in the circulation scheme as for the AllData_1Water circuit. The corresponding down comer pipe and riser (55) are also inserted with the selected icon. Interconnection H2O are also made.

    Don’t forget to set “From LP-Drum” as first model.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    23 of 60

    2.1.4 Construction of the detailed HP-Water Circuit

    From the Shortcut to schemes button, we call the “HHPP SSyysstteemm..WWaatteerr sscchheemmee.”

    (56) Click with mouse right button on the background of HHPP SSyysstteemm__WWaatteerr SScchheemmee and click on Properties of the appearing menu. Select the option : “aadddd//ddeelleettee mmooddeell” and look for the HP-system pressure parts, mainly the economisers and superheater’s, shift all the respective modes, one by one in the group by pressing the arrow-button. When all models are shifted in the group, click OK button. Add further from the water side elements following items : Test point at the inlet , a tap for spray water injection cooler, the HP drum, the spray cooler, a main steam pipe and an outlet-element for the HP-system. Between the drum and HP-SH4, we have added from the “PPrreessssuurree DDrroopp EElleemmeennttss” the icon “PPrreessssuurreeDDrroopp”, where we can introduce an estimated pressure drop of the HP circuit.

    All above elements need to be interconnected.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    24 of 60

    Don’t forget to set “HP-System-In” as first model.

    2.1.5 Construction of the of the HP-DRUM-Evaporator Scheme

    Same procedure as for the LP-DRUM-Evaporator, starting from the shortcut to schemes (58).

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    25 of 60

    2.1.6 Construction of the natural circulation of the HP-system

    (59) Via Shortcut to schemes, we call “HHPP CCiirrccuullaattiioonnSSyysstteemm..EEvvaappoorraattoorrsscchheemmee.” (60) With right mouse button on the background of the scheme, click on Properties of the appearing menu. Select the option : “aadddd//ddeelleettee mmooddeell” and look for all the HP-Evaporator elements, shift all the respective modes, in the group by pressing the arrow-button. When all models are shifted in the group, click OK button. (61)We further add a number of “water side elements” like dividers, mixers, pipes and Test-points to complete the natural (or assisted) water circulation system, starting from the HP-drum with the provided down comers, feeding through the dividers at the bottom all the evaporator elements, assembling the water-vapour mixtures on top and returning back to the HP-drum via a number of risers. The Test-points are used to represent the start-and end connection at the HP-drum, whereby the start-test-points must be defined as first element. How all the geometric data of the HRSG are introduced in the simulation will be explained in a separate chapter, further in this document. A typical piping arrangement for the natural circulation system is used in our set-up.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    26 of 60

    Depending on the detailed construction of the HRSG, the interconnecting piping may be different from this example.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    27 of 60

    2.1.7 Construction of the detailed IP-RH Water Circuit

    Similar as for the HP Water circuit, the Water-scheme for the IP-RH circuit can be established.

    To complete the IP-RH circuit following Water side elements need to be added and connected, besides the already created pressure parts (62), :

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    28 of 60

    This result in following completed scheme. Item” IP-RH System In” is set as first element (63)

    2.1.8 Construction of the of the IP-RH-DRUM-Evaporator Scheme

    Same procedure as before, starting from the shortcut to schemes (64).

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    29 of 60

    2.1.9 Construction of the natural circulation of the IP-system

    The scheme for the natural circulation of the IP-system is quite similar to that of the LP-system, as explained before.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    30 of 60

    3 Integration of the several control loops 3.1 Control loop for fuel-supply to ductburner

    In this model, the heat capacity of the duct burner must keep the flue gas temperature at a constant value, i.e. 600°C at the outlet of the Ductburner. The fuel supply will be controlled in function of the measured flue gas temperature at test point TP1. Form the shortcut to schemes we select the “DDuuccttbbuurrnneerr..FFuueell SScchheemmee” and from the element list we select the CCoonnttrrooll EElleemmeennttss.. The element “FFuueellCCttrrll” is dragged into the Fuel scheme and connected to the fuel supply with the connection “ccoonnnnFFuueell”. This control element is further called in the AllData_1FlueGasScheme with the meanwhile known procedure with right mouse button click on the background Properties add/delete model. The “Ductburner Ctrl” element is in this scheme connect via “ CCoonnnnGGaassTTeessttPPooiinntt” to the Test-Point “TP1” in the flue gas scheme. To define and activate the control-loop, see next image.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    31 of 60

    3.2 Control loops in the overall AllData_1.Water Scheme. 3.2.1 Water level control LP-Drum

    The control-element is specific for level control, and can only been used for this function. Don’t forget to put the control valve in active mode by ticking the white box.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    32 of 60

    3.2.2 Control of water inlet-temperature of the Condensate Heater

    To avoid flue gas condensation in the condensate heater, water temperature should be above dew point, in our case ≥ 60°C. As the boiler-feedwater (condensate) is about 40°C, temperature at the heater-inlet is lifted to 60°C by recycling a fraction of the water flow from the outlet of the heater. The used control valve is a multi-purpose element that can be used to control different values as :

    o Input temperature gas o Input temperature H20 o Set volume flow o Set Weight flow o Set Weight flow gas-side o Steam content o Temperature over evaporator temperature ….

    In our example we select option “IInnppuutt TTeemmpp HH22OO” for this control loop, and fill in 60°C as set-value for “tt HH22OO SSVV”.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    33 of 60

    3.2.3 Control of outlet pressure of the LP-SUPERHEATER

    With double click on the controller, we can fill in the input data. Put the switch for the controller “oonn” and introduce the set-value for the outlet pressure of the LP-Superheater. To visualize the set-values of the controllers, we can drag and drop the value into the water-scheme, so that we can always check these values during the calculation process, or modify the set value by a simple double click on the value in the scheme.

    3.2.4 Water Level Control of IP and HP-Drums Both IP and HP systems are fed with saturated water from the LP-Drum, so the test point connection of the respective pressure controller has to be made in different System Water schemes.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    34 of 60

    3.2.5 Water-Level Control Loop of the IP-RH System Water Scheme

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    35 of 60

    With the meanwhile known procedure, we add the already created IP-DRUM level controller and connect the “ CCoonnnnDDrruumm” link with the IP-DRUM.

    3.2.6 IP-Hot Water Export to external User

    The set value for extracted water flow at the outlet of the IP-Economiser, destined for an external user (i.e. fuel gas heater) can be filled in by double click on the controller.

    3.2.7 Temperature Control Loop Outlet IP-RH1

    The controller for the IP-Desuperheater has a particular control element which can be find in the element list. The set value for the steam temperature at the IP-Reheater Outlet, can be filled by double click on the controller. This set-value of the temperature controller, can be visualized by drag and drop the value into the water-scheme, so that these values always can be checked during the calculation process, or modified by a simple double click on the value in the scheme.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    36 of 60

    3.2.8 Remaining control loops of the HP System Water Scheme Similar as for the IP-RH-System, HP-Drum level control and HP-SH temperature has to be added.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    37 of 60

    4 Introduction of Input Data 4.1 Input Data Report 4.1.1 Input Flue Gas Data at HRSG Inlet

    With a double click on the FG-Inlet element, access is opened to the Input/Output File: • (67) select if further data are mass- or volume related • (68) introduce Flow, Temperature and pressure • (69) fill in the elementary flue gas composition, as detailed as possible • Be sure that sum of all present elements is 100% sharp

    Remark: From the Input/Output file you can drag and drop some values into the Flue Gas Scheme, so that they can easily observed during calculation process.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    38 of 60

    In-en outlet conditions of media Flue gas, Air, Water and steam at each element can be easily visualized by a quare box with a group of 4 units : pressure, flow, enthalpy and temperature. (70) This can be achieved by drag and drop the respective text (i.e. “Flue gas out”) into the scheme and selecting the option mass or volume. Also further specific individual values (e.g. Heat capacity, or O2 concentration) can be visualized, by dragging and dropping this value into the scheme. Which values and their size, colour of the names, digits, dimension or background can also been personalized (see here below).

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    39 of 60

    4.1.2 Input Data HRSG via Report File Although it is possible to develop a personalized input report file, a more practical way is to use available report files, developed by others, e.g. “Innppuuttddaattaa--HHRRSSGG..rrpp”

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    40 of 60

    This Input report file contains 4 windows and several report functions. With the function : “ UUppddaattee RReeppoorrtt ”, the 4 windows are adjusted with the designed HRSG concept. Input data can be introduced in the respective listings, and copied in the schemes with the function :” WWrriittee RReeppoorrtt iinn SSttrruuccttuurree”.

    • Window : OveralData

    • Window : InflowData (extract)

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    41 of 60

    • Window : TubeHeatingSurface

    • Window : Controls

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    42 of 60

    4.1.3 Input Data Natural Circulation via Report File

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    43 of 60

    4.2 Excel Input Data

    An alternative and easier way to introduce the input values into the HRSG structure is via an Excel-file. Once the boiler structure is fixed in the report file, it can be transferred to an Excel-file via the function “ TTrraannssffeerr EExxcceell”. This excel-file can then be named and stored. Changes in design during e.g. an optimisation process, can be inserted in the excel-file and again loaded in the structure the function “ IImmppoorrtt ffrroomm EExxcceell”. (typical layout see below)

    • Excel-sheet : OveralData

    Model/Var Value Dimension DescriptionAllData_1 Construction data : Load 100 % Load of the boiler Construction data : tRef 25 C Reference temperature Construction data : sw radiation loss meth Part of energy input(Load) - sw radiation and convection loss method Construction data : q loss incom comb 0 % heat loss due to incomplete combustion (CO etc ) Construction data : q loss unburned slag 0 % heat loss due to the unburned in the slag Construction data : TypBoiler insert max. useful heat - Type of boiler for calculation the nominal load;6-Input Qmax Construction data : Q_Nom 368000 KW Nominal heat power

    • Excel-sheet : Controls Model/Var Value DimensionDescriptionLP-P-Ctrl LP-P-Ctrl : swCtrl on - Control switch: 0 - off, 1 - on LP-P-Ctrl : p H2O SV 5 bar(a) Set value Water/Steam pressure (func. fr load 0..1)Rec-Ctrl ConstrReg3pass : sw_RegPPTO Input Temp_H2O - switch for 3-pass valve control element 0 - T_H2O, 1 - T_Gas, 2- equal press, 3 - Qmediuml) ConstrReg3pass : swReversed increase - Reversed operation of the controlled valve: =0 heating; = 1cooling ConstrReg3pass : t gas SV 0 C Set value fluegas temperature (func. fr load 0..1) ConstrReg3pass : t H2O SV 60 C Set value Water/Steam temperature (func. fr load 0..1)Ductburner-Ctrl ConstrRegFuel : swCtrl on - Control switch: 0 - off, 1 - on ConstrRegFuel : swFuelCtrl t Gas - Fuel control on: 0 - h H2O,1 - t H2O, 2 - W H2O, 3 - h gas, 4 - t gas,5-fuel(W_H2O(load))FGH-Ctrl ConstrReg3pass : sw_RegPPTO Set Weightflow - switch for 3-pass valve control element 0 - T_H2O, 1 - T_Gas, 2- equal press, 3 - Qmediuml) ConstrReg3pass : swReversed increase - Reversed operation of the controlled valve: =0 heating; = 1cooling ConstrReg3pass : t gas SV 0 C Set value fluegas temperature (func. fr load 0..1) ConstrReg3pass : t H2O SV 20 C Set value Water/Steam temperature (func. fr load 0..1)IP-RH-Ctrl IP-RH-Ctrl : t H2O SV 567 C Set value Water/Steam temperature (func. fr load 0..1)HP-SH-Ctrl HP-SH-Ctrl : t H2O SV 568 C Set value Water/Steam temperature (func. fr load 0..1)

    • Excel-sheet : Inflow Data

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    44 of 60

    Model/Var Value Dimension DescriptionGT-M701F Construction : swFlowDim Volume based - Flow dimension: 0 - mass based, 1 - volume based Construction : press_medium 39,2 mbar Pressure (gauge) Construction : V_Max 1.836.441 nm^3/h Maximum rate of volumetric flow at standard conditions Construction : W gas max 2.355,98 t/h Maximum Fuel/fluegas flow Construction : Temp_Max 604 C Maximum temperature Construction : N2 74,52 % vol Nitrogen content Construction : O2 14,37 % vol Oxygen content Construction : H2O 6,15 % vol Water content Construction : CO2 4,06 % vol Carbon dioxide content Construction : SO2 0,00 % vol Sulfer dioxide content Construction : SO3 0,00 % vol Sulfer trioxide content Construction : AR 0,90 % vol Argon content Construction : CO 0,00 % vol Carbon monoxide content Construction : H2 0,00 % vol Hydrogen content Construction : He 0,00 % vol Helium content Construction : NH3 0,00 % vol Ammonia content Construction : CL2 0,00 % vol Chlorine content Construction : HCL 0,00 % vol Hydrogen chloride content Construction : CH4 0,00 % vol Methane content volume Construction : C2H6 0,00 % vol Ethane content Construction : C3H8 0,00 % vol Propane content Construction : C4H10 0,00 % vol Butane content Construction : TotalComp 100,00 % Total percentage all componentsBFW ConstrInWater : tempMed_matr 105 C Medium temperature ConstrInWater : W H2O 360 t/h Water/steam flow ConstrInWater : p H2O 100 bar(a) Water/Steam pressureNatural Gas ConstrGas : swFlowDim Volume based - Flow dimension: 0 - mass based, 1 - volume based ConstrGas : GfuelMax 11,22 t/h Maximum rate of mass flow of fuel ConstrGas : GfuelMax 14.724,0 nm^3/h Maximum rate of volumen flow of fuel ConstrGas : LHV 43.397,1 kJ/kg lower heating value ConstrGas : LHV vol 33.075,3 KJ/nm^3 lower heating value ConstrGas : t fuel 0,00 C Fuel temperature ConstrGas : contentCH4 95,00 % CH4 content in flue (stack) gases ConstrGas : contentC2H6 3,00 % C2H6 content in flue (stack) gases ConstrGas : C3H8 1,00 % Propane content ConstrGas : C4H10 0,00 % Butane content ConstrGas : C5H12 0,00 % Pentane content ConstrGas : C2H4 0,00 % Ethylene content ConstrGas : N2 0,00 % Nitrogen content ConstrGas : CO2 1,00 % Carbon dioxide content ConstrGas : CO 0,00 % Carbon monoxide content ConstrGas : H2S 0,00 % Hydrogen sulfide content ConstrGas : O2 0,00 % Oxygen content ConstrGas : H2 0,00 % Hydrogen content ConstrGas : H2O 0,00 % Water content ConstrGas : AR 0,00 % Argon content ConstrGas : humidityFGas 0,00 g/kg Humidity of flue gases

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    45 of 60

    • Excel-sheet : TubeHeatingSurfaces Model HP-SH1 IP-RH1 IP-RH2 HP-SH2 HP-SH3 IP-RH3 HP-SH4 HP-EV1 HP-EV2 HP-EV3

    swTubeArr -

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    bank

    of

    stag

    gere

    d tu

    bes

    swFlowType -cr

    oss

    coun

    ter f

    low

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    cros

    s co

    unte

    r flo

    w

    ODtube mm 38,1 57,1 57,1 38,1 38,1 57,1 38,1 50,8 50,8 50,8thkTube mm 4,5 4,5 4 4,5 4,5 4 4 3,6 3,6 3,6pitchTrans mm 103,2 117,5 117,5 103,2 103,2 117,5 103,2 103,2 103,2 103,2pitchLong mm 88,9 101,6 101,6 88,9 88,9 101,6 88,9 88,9 88,9 88,9widthDuct mm 10.650 10.650 10.650 10.650 10.650 10.650 10.650 10.650 10.650 10.650heightDuct mm 17.680 17.680 17.680 17.680 17.680 17.680 17.650 17.680 17.680 17.680NumTubesPerRow - 102 90 90 102 102 90 102 102 102 102NumRows - 3 3 3 3 2 3 2 1 1 1NumRowsPar - 3 3 3 3 2 3 2 1 1 1usage factor - 1 1 1 1 1 1 1 1 1 1Eps_out m^2 K/W 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018fouling inside m^2 K/W 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018 0,00018

    MatTube

    - X 10

    CrM

    oVN

    b 9

    1

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    distTb-W mm 0 0 0 0 0 0 0 0 0 0angleGas Deg 0 0 0 0 0 0 0 0 0 0vertical height difference mm 0 0 0 0 0 0 0 17.680 17.680 17.680length cavity after mm 0 0 0 0 0 0 0 0 0 0swCalcSurface - yes yes yes yes yes yes yes yes yes yesA m^2 6.215,6 6.487,8 7.923,3 6.215,6 4.939,2 9.437,6 4.930,8 3.180,1 3.180,1 3.180,1lengthTube mm 17.680 17.680 17.680 17.680 17.680 17.680 17.650 17.680 17.680 17.680

    TypFin- Se

    rrat

    ed

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    Serr

    ated

    MatFin

    - X 12

    CrM

    o 9

    1

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    St 3

    5.8

    pitchFin mm 5,10 6,40 5,10 5,10 4,20 4,20 4,20 4,24 4,24 4,24heightFin mm 16 16 16 16 16 16 16 16 16 16thkFin mm 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2w_s mm 4 4 4 4 4 4 4 3,97 3,97 3,97distSegmTube mm 5,08 5,08 5,08 5,08 5,08 5,08 5,08 5,08 5,08 5,08

    Switch_LR -

    right

    han

    d (d

    own)

    right

    han

    d (d

    own)

    left

    han

    d (u

    p)

    left

    han

    d (u

    p)

    right

    han

    d (d

    own)

    right

    han

    d (d

    own)

    left

    han

    d (u

    p)

    left

    han

    d (u

    p)

    left

    han

    d (u

    p)

    left

    han

    d (u

    p)

    NumRows heat trans calc - 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5numZone - 5 5 5 5 5 5 5 5 5 5

    swFinSpacing - Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Fins

    sp

    acin

    g

    Number of fins per length 1/m 196 156 196 196 238 238 238 236 236 236

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    46 of 60

    • Excel-sheet : WUM-Eingabe

    Model

    ODt

    ube

    thkT

    ube

    Num

    Tube

    s

    leng

    thTu

    be

    vert

    ical

    hei

    ght

    diff

    eren

    ce

    Bend

    s1

    Angl

    e1

    Radi

    us1

    Num

    bers

    of

    Bend

    s2

    Angl

    e2

    Radi

    us2

    Orif

    ice

    exis

    ting

    id O

    rific

    e

    Eule

    r-Fa

    ktor

    sw a

    dditi

    onal

    re

    sist

    ance

    ffIn

    ffO

    ut

    absR

    ough

    ffBe

    nd

    mm mm - mm mm - Deg mm - Deg mm - mm - - - - mm -LP-Downcomer 330 25 2 22000 -21680 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03LP-EVAP 17680 0,35 0,8 0,03 0,2LP-Riser 300 25 12 5000 4000 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-Downcomer 660 50 2 22000 -21680 1 90 1000 0 90 1000 no 0 0 yes 0,35 0,8 0,03 Nozzle-e 219,1 22 6 2000 500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV13 17680 0,35 0,8 0,03 0,2 Riser-c 330 25 4 5000 3500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV14 17680 0,35 0,8 0,03 0,2HP-EV15 17680 0,35 0,8 0,03 0,2 HP-dc-1 660 50 2 400 0 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03 Nozzle-d 219,1 22 6 2000 500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV10 17680 0,35 0,8 0,03 0,2 Riser-c 330 25 4 5000 3500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV11 17680 0,35 0,8 0,03 0,2HP-EV12 17680 0,35 0,8 0,03 0,2 HP-dc-2 660 50 2 400 0 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03 Nozzle-c 219,1 22 6 2000 500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV7 17680 0,35 0,8 0,03 0,2 Riser-c 330 25 4 5000 3500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV8 17680 0,35 0,8 0,03 0,2HP-EV9 17680 0,35 0,8 0,03 0,2 HP-dc-3 660 50 2 400 0 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03 Nozzle-b 219,1 22 6 2000 500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV4 17680 0,35 0,8 0,03 0,2 Riser-b 330 25 4 5000 3500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV5 17680 0,35 0,8 0,03 0,2HP-EV6 17680 0,35 0,8 0,03 0,2 HP-dc-4 660 50 2 400 0 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03 Nozzle-a 219,1 22 6 2000 500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV1 17680 0,35 0,8 0,03 0,2 Riser-a 330 25 4 5000 3500 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03HP-EV3 17680 0,35 0,8 0,03 0,2HP-EV2 17680 0,35 0,8 0,03 0,2HP-MSP 284 20 1 10000 0 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03IP-Downcomer 330 25 2 22000 -21680 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03IP-EVAP 17680 0,35 0,8 0,03 0,2IP-Riser 120 12 6 5000 4000 0 90 1000 0 90 1000 no 0 0 no 0,35 0,8 0,03

    The hydraulic pipe system can be further extended with all interconnecting piping when the piping lay-out is fixed and exact number of piping connections, number of bends and other restrictions are finalised. These input data are not only needed for the natural circulation calculation of the evaporator systems, but also to calculate exact pressure drop with the interconnecting piping between economisers, steam drums, evaporators superheater’s and other equipment in the total water/steam circuit. To perform the natural circulation, the module “Circulation” the calculation option “Circulation” must be ticked in the respective box.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    47 of 60

    4.3 Input data for specific components 4.3.1 Steamturbine

    Turbine stage data, like isentropic efficiency and controlled outlet pressure are preliminary filled in, based on temporarily assumptions or confirmed data from the turbine manufacturer. Bleed steam for other users are possible, but not considered in this example.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    48 of 60

    4.3.2 Generator

    Generator efficiency can also be introduced as a combined electrical and mechanical efficiency,

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    49 of 60

    4.3.3 Condensor

    4.3.4 Booster BFW Pumps

    4.3.5 Condensate extraction Pump

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    50 of 60

    5 Output Data 5.1 Output data report

    Similar as for the input data, the output data can be generated with the report files, further transferred into excel files. (see chapter 4)The report files can be created according to personal wishes, or already created out-put files can be used as basis and modified if needed.

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    51 of 60

    Mod

    el

    t medium

    W gas

    Q

    DQ_LS

    velocity inlet outside

    alfaGasConv

    alfaGasRad

    h inside

    U

    MTD

    A

    swTubeArr

    swFlowType

    Re_FGas

    T_Met

    usage factor

    t gas inlet

    Ct/

    hKW

    KWm

    /sW

    /m^2

    KW

    /m^2

    KW

    /m^2

    KW

    /m^2

    KK

    m^2

    --

    -C

    -C

    GT-

    M70

    1F60

    3,9

    2.35

    6,0

    Div

    erte

    r 60

    3,9

    2.35

    6,0

    H

    P-SH

    158

    9,8

    2.35

    3,6

    10.6

    84,4

    22,3

    14,8

    657

    ,28

    01.

    918,

    1035

    ,59

    48,2

    96.

    215,

    6ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    10.6

    99,6

    562,

    91,

    0060

    3,9

    I

    P-RH

    158

    0,5

    2.35

    3,6

    6.95

    3,4

    14,5

    17,6

    660

    ,80

    081

    1,19

    33,0

    132

    ,47

    6.48

    7,8

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow18

    .688

    ,656

    5,8

    1,00

    589,

    8

    IP-

    RH2

    562,

    72.

    353,

    613

    .438

    ,228

    ,117

    ,99

    58,4

    10

    765,

    0029

    ,16

    58,1

    67.

    923,

    3ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    19.4

    26,8

    538,

    11,

    0058

    0,5

    D

    uctb

    urne

    r60

    0,0

    2.35

    6,1

    0,0

    H

    P-SH

    257

    6,5

    2.35

    6,1

    17.7

    52,1

    37,1

    14,8

    962

    ,74

    01.

    923,

    9138

    ,26

    74,6

    46.

    215,

    6ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    10.7

    95,8

    536,

    91,

    0060

    0,0

    H

    P-SH

    354

    4,9

    2.35

    6,1

    23.8

    36,2

    49,8

    14,9

    256

    ,38

    03.

    094,

    1337

    ,29

    129,

    424.

    939,

    2ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    11.3

    44,7

    468,

    31,

    0057

    6,5

    I

    P-RH

    351

    2,3

    2.35

    6,1

    24.6

    09,5

    51,5

    17,8

    856

    ,89

    075

    0,16

    26,1

    499

    ,76

    9.43

    7,6

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow20

    .781

    ,847

    6,4

    1,00

    544,

    9

    HP-

    SH4

    475,

    62.

    356,

    127

    .225

    ,656

    ,913

    ,86

    55,6

    80

    4.64

    0,18

    40,0

    113

    8,01

    4.93

    0,8

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow12

    .007

    ,039

    1,1

    1,00

    512,

    3

    H

    P-EV

    145

    1,5

    2.35

    6,1

    17.8

    10,5

    37,2

    16,9

    449

    ,72

    052

    .328

    ,69

    42,1

    013

    3,03

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow20

    .378

    ,434

    6,9

    1,00

    475,

    6

    H

    P-EV

    243

    1,5

    2.35

    6,1

    14.7

    03,5

    30,7

    16,4

    049

    ,13

    047

    .473

    ,00

    41,6

    411

    1,05

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow20

    .799

    ,134

    4,0

    1,00

    451,

    5

    H

    P-EV

    341

    5,1

    2.35

    6,1

    12.1

    49,9

    25,4

    15,9

    648

    ,49

    043

    .082

    ,65

    41,1

    392

    ,89

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow21

    .160

    ,034

    1,7

    1,00

    431,

    5

    H

    P-EV

    440

    1,4

    2.35

    6,1

    10.0

    94,3

    21,1

    15,6

    048

    ,07

    039

    .151

    ,35

    40,7

    877

    ,83

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow21

    .468

    ,533

    9,8

    1,00

    415,

    1

    H

    P-EV

    538

    9,8

    2.35

    6,1

    8.35

    5,4

    17,5

    15,3

    047

    ,45

    035

    .542

    ,64

    40,2

    865

    ,23

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow21

    .740

    ,033

    8,2

    1,00

    401,

    4

    H

    P-EV

    638

    0,1

    2.35

    6,1

    6.94

    8,5

    14,5

    15,0

    547

    ,11

    032

    .342

    ,52

    39,9

    854

    ,65

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow21

    .983

    ,333

    6,9

    1,00

    389,

    8

    H

    P-EV

    737

    2,1

    2.35

    6,1

    5.79

    0,2

    12,1

    14,8

    446

    ,86

    029

    .361

    ,80

    39,7

    445

    ,82

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .190

    ,433

    5,8

    1,00

    380,

    1

    H

    P-EV

    836

    5,4

    2.35

    6,1

    4.83

    3,5

    10,1

    14,6

    746

    ,65

    026

    .752

    ,25

    39,5

    238

    ,46

    3.18

    0,1

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .366

    ,033

    4,9

    1,00

    372,

    1

    H

    P-EV

    935

    9,7

    2.35

    6,1

    4.05

    9,1

    8,5

    14,5

    546

    ,42

    024

    .452

    ,12

    39,2

    532

    ,30

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .556

    ,033

    4,1

    1,00

    365,

    4

    H

    P-EV

    1035

    5,0

    2.35

    6,1

    3.39

    2,9

    7,1

    14,4

    346

    ,27

    022

    .106

    ,20

    39,0

    627

    ,13

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .682

    ,733

    3,5

    1,00

    359,

    7

    H

    P-EV

    1135

    1,1

    2.35

    6,1

    2.84

    0,1

    5,9

    14,3

    346

    ,15

    020

    .147

    ,25

    38,8

    822

    ,81

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .789

    ,933

    3,0

    1,00

    355,

    0

    H

    P-EV

    1234

    7,8

    2.35

    6,1

    2.37

    9,7

    5,0

    14,2

    546

    ,04

    018

    .375

    ,77

    38,7

    119

    ,20

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .880

    ,433

    2,5

    1,00

    351,

    1

    H

    P-EV

    1334

    5,0

    2.35

    6,1

    1.99

    4,4

    4,2

    14,1

    945

    ,95

    016

    .388

    ,92

    38,5

    216

    ,17

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .956

    ,833

    2,2

    1,00

    347,

    8

    H

    P-EV

    1434

    2,7

    2.35

    6,1

    1.67

    4,3

    3,5

    14,1

    345

    ,87

    014

    .864

    ,55

    38,3

    513

    ,63

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow23

    .021

    ,333

    1,9

    1,00

    345,

    0

    H

    P-EV

    1534

    0,7

    2.35

    6,1

    1.40

    6,1

    2,9

    14,0

    945

    ,81

    013

    .539

    ,92

    38,1

    811

    ,50

    3.20

    2,0

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow23

    .075

    ,733

    1,6

    1,00

    342,

    7

    HP-

    ECO

    131

    8,7

    2.35

    6,1

    15.8

    74,3

    33,2

    12,1

    355

    ,98

    012

    .148

    ,26

    44,2

    814

    ,10

    25.4

    27,7

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow20

    .184

    ,831

    7,4

    1,00

    340,

    7

    IP-

    SH31

    6,4

    2.35

    6,1

    1.63

    4,7

    3,4

    11,1

    346

    ,27

    077

    5,82

    28,5

    629

    ,48

    1.94

    1,4

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow19

    .418

    ,329

    1,0

    1,00

    318,

    7

    LP-

    SH31

    2,0

    2.35

    6,1

    3.16

    2,9

    6,6

    10,8

    349

    ,94

    036

    4,32

    24,3

    285

    ,30

    1.52

    4,5

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow19

    .033

    ,526

    5,2

    1,00

    316,

    4

    HP-

    ECO

    228

    0,0

    2.35

    6,1

    22.7

    31,6

    47,5

    11,6

    155

    ,38

    011

    .074

    ,17

    44,2

    720

    ,19

    25.4

    27,7

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow20

    .984

    ,627

    7,5

    1,00

    312,

    0

    IP-

    EVAP

    262,

    12.

    356,

    112

    .544

    ,626

    ,29,

    9257

    ,84

    08.

    230,

    2144

    ,25

    28,7

    09.

    878,

    4ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    15.1

    48,5

    246,

    61,

    0028

    0,0

    I

    P-EC

    O25

    7,1

    2.35

    6,1

    3.55

    7,1

    7,4

    9,61

    45,0

    40

    5.76

    9,66

    35,4

    440

    ,64

    2.46

    9,6

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow15

    .377

    ,320

    9,0

    1,00

    262,

    1

    HP-

    ECO

    324

    1,9

    2.35

    6,1

    10.6

    60,6

    22,3

    10,5

    754

    ,21

    010

    .377

    ,56

    43,4

    214

    ,48

    16.9

    51,8

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow22

    .289

    ,223

    6,8

    1,00

    257,

    1

    HP-

    ECO

    420

    6,7

    2.35

    6,1

    24.7

    30,9

    51,7

    10,2

    954

    ,15

    09.

    819,

    3943

    ,30

    33,7

    016

    .951

    ,8ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    23.0

    65,2

    194,

    41,

    0024

    1,9

    L

    P-EV

    AP17

    0,0

    2.35

    6,1

    25.3

    93,7

    53,1

    9,60

    53,1

    10

    5.30

    6,28

    40,7

    027

    ,60

    22.6

    02,4

    bank

    of s

    tagg

    ered

    tube

    scr

    oss c

    ount

    er fl

    ow24

    .314

    ,116

    1,7

    1,00

    206,

    7

    CO

    ND-

    HTR

    95,5

    2.35

    6,1

    51.2

    47,7

    107,

    28,

    8951

    ,52

    06.

    551,

    2640

    ,55

    24,8

    550

    .855

    ,3ba

    nk o

    f sta

    gger

    ed tu

    bes

    cros

    s cou

    nter

    flow

    26.6

    97,9

    111,

    41,

    0017

    0,0

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    52 of 60

    6 Final Outlook of the different Schemes The final presentation of the different schemes can be personalized, A typical example is shown on the next pages.

    • General Flue Gas scheme

    • General Water-Steam scheme

    • Flue Gas scheme HP-Evaporator

    • Water-Steam scheme HP-system

    • Water-Steam scheme IP-system

    • Natural circulation HP-system

    • Natural circulation IP-System

    • Natural circulation LP-System

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    53 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    54 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    55 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    56 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    57 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    58 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    59 of 60

  • Presented by: Project:

    3 Pressure HRSG Step-by-step Manual

    REVISION :

    20/09/2016 10:50

    Issued b:

    MPE

    Step-by-Step HRSG -rev 02.doc Page

    60 of 60

    Step-by-step MANUALTo Develop a typical Triple Pressure HRSG Boiler Scheme on Gas turbine with Duct burner1 Construction of the Flue Gas Circuit of the HRSG1.1 Introduction of the heat source1.2 Introduction of diverter damper and bypass stack1.3 Consideration of possible mal flow distribution1.4 Considered Concept of triple pressure HRSG boiler1.5 Introduction of the duct burner1.6 Selection of the fuel for the duct burner1.7 Incorporation of the remaining modules after the duct burner

    2 Construction of the Water/Steam circuit of the HRSG2.1 Overall Water/Steam Circuit with steam turbine2.1.1 Boiler Feedwater Inlet2.1.2 Construction of the overall Water/steam circuit, incl. LP-circuit2.1.3 Construction of the natural circulation of the LP-system (44)2.1.4 Construction of the detailed HP-Water Circuit2.1.5 Construction of the of the HP-DRUM-Evaporator Scheme2.1.6 Construction of the natural circulation of the HP-system2.1.7 Construction of the detailed IP-RH Water Circuit2.1.8 Construction of the of the IP-RH-DRUM-Evaporator Scheme2.1.9 Construction of the natural circulation of the IP-system

    3 Integration of the several control loops3.1 Control loop for fuel-supply to ductburner3.2 Control loops in the overall AllData_1.Water Scheme.3.2.1 Water level control LP-Drum3.2.2 Control of water inlet-temperature of the Condensate Heater3.2.3 Control of outlet pressure of the LP-SUPERHEATER3.2.4 Water Level Control of IP and HP-Drums3.2.5 Water-Level Control Loop of the IP-RH System Water Scheme3.2.6 IP-Hot Water Export to external User3.2.7 Temperature Control Loop Outlet IP-RH13.2.8 Remaining control loops of the HP System Water Scheme

    4 Introduction of Input Data4.1 Input Data Report4.1.1 Input Flue Gas Data at HRSG Inlet4.1.2 Input Data HRSG via Report File4.1.3 Input Data Natural Circulation via Report File

    4.2 Excel Input Data4.3 Input data for specific components4.3.1 Steamturbine4.3.2 Generator4.3.3 Condensor4.3.4 Booster BFW Pumps4.3.5 Condensate extraction Pump

    5 Output Data5.1 Output data report

    6 Final Outlook of the different Schemes