6
Steps in Uncertainty Quantification 1

Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

Steps in Uncertainty Quantification

1

Page 2: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

6. Quantification of Model Discrepancy – Thin Beam“Essentially all models are wrong, but some are useful” George E.P. Box

with

Example: Thin beam driven by PZT patches

Euler-Bernoulli Model:

Statistical Model:

Note: 7 parameters, 32 states

For all � 2 V

ZL

0

⇢(x)

@2w

@t

2 + �@w

dt

��dx +

ZL

0

YI(x)

@2w

@x

2 + cI(x)@3

w

@x

2@t

�� 00

dx

= k

p

V (t)

Zx2

x1

� 00dx

⇢(x) = ⇢hb + ⇢p

h

p

b

p

�p

(x) , YI(x) = YI + Y

p

I

p

�p

(x)

cI(x) = cI + c

p

I

p

�p

(x)y(t

i

, q) = w(ti

, x , q)

ti

YiYi = y(ti , q) + "i 2

Page 3: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

Quantification of Model Discrepancy – Thin BeamExample: Good model fit

Note: Observation errors not iid

Model Fit to Data

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

x 10−7

Frequency

Fre

quency

Conte

nt

Mathematical Model y(ti;q)

Data

Reference: Additive observation errors

Yi = y(ti , q) + "i

Yi = y(ti , q) + �(ti , eq) + "i

• M.C. Kennedy and A. O’Hagan, Journal of the Royal Statistical Society, Series B, 2001.

Page 4: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

Quantification of Model Discrepancy – Thin BeamExample: Good model fit

Problem: Observation errors not iid

Result: Prediction intervals wrong

Prediction Intervals and Data

Model Fit to Data

Approaches: • GP Model: Inaccurate for extrapolation• Control-based approaches: difficult to extrapolate.• Problem: correct physics or biology required for extrapolation!

Page 5: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

Quantification of Model Discrepancy – Thin BeamProblem: Measurement errors not iid

Result: Prediction intervals wrong

Prediction Intervals and Data

Model Fit to Data

One Approach: • Determine components of model you trust (e.g., conservation laws) and don’t trust (e.g., closure relations). Embed uncertainty into latter.• T. Oliver, G. Terejanu, C.S. Simmons, R.D. Moser, Comput Meth Appl Mech Eng, 2015.

2018-19 SAMSI Program: Model Uncertainty: Mathematical and Statistical (MUMS)

Page 6: Steps in Uncertainty Quantification · 2019-01-04 · Quantification of Model Discrepancy –Thin Beam Example: Good model fit Note: Observation errors not iid Model Fit to Data 0

Quantification of Model Discrepancy – Thin Beam

Our Solution: “Optimize” calibration interval

• Use damping/frequency domain results to guide.

0.75 0.8 0.85 0.9 0.95 1−60

−40

−20

0

20

40

60

Time (s)

Dis

pla

cem

en

t (µ

m)

2 2.1 2.2 2.3 2.4 2.5−50

0

50

Time (s)

Dis

pla

cem

ent (µ

m)

3 3.1 3.2 3.3 3.4 3.5−40

−30

−20

−10

0

10

20

30

40

Time (s)

Dis

pla

cem

en

t (µ

m)

0 1 2 3−30

−20

−10

0

10

20

30

Time (s)

Dis

pla

cem

ent (µ

m)

0 1 2 3−40

−30

−20

−10

0

10

20

30

Time (s)

Dis

pla

cem

en

t (µ

m)

Note: We have substantially extended calibration regime.Calibrate on [0,1] Calibrate on [0.25,1.25]