30
S TOCHASTIC CALCULUS FOR L ÉVY PROCESSES . Alexandre Popier ENSTA, Palaiseau March 2020 A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 1 / 23

Stochastic calculus for L©vy processes

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

STOCHASTIC CALCULUS FOR LÉVY PROCESSES.

Alexandre Popier

ENSTA, Palaiseau

March 2020

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 1 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 2 / 23

SIMPLE PROCESSES.

GIVEN :

(Ω,F ,P) probability space with a filtration (Ft )t≥0.All processses are supposed to be adapted w.r.t. this filtration.

DEFINITION

A stochastic process (φt )t≥0 is called a simple (predictable) process ifit can be represented as

φt = φ01t=0 +n∑

i=0

φi1]Ti ,Ti+1](t),

where T0 = 0 < T1 < . . . < Tn < Tn+1 are non-anticipating randomtimes and each φi is bounded FTi -measurable r.v..

NOTATION : set of simple processes : S.A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 3 / 23

INTEGRAL OF SIMPLE PROCESSES.

SETTING : X = (Xt = (X 1t , . . . ,X

dt ))t≥0 is a d-dimensional adapted

RCLL process.DEFINE : for 0 ≤ t , and j s.t. Tj < t ≤ Tj+1

Gt (φ) = φ0X0 +

j−1∑i=0

φi(XTi+1 − XTi ) + φj(Xt − XTj )

= φ0X0 +n∑

i=0

φi(XTi+1∧t − XTi∧t )

DEFINITION

The process Gt (φ) is the stochastic integral of φ w.r.t. X and is denotedby :

Gt (φ) =

∫ t

0φudXu.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 4 / 23

INTEGRAL OF SIMPLE PROCESSES.

SETTING : X = (Xt = (X 1t , . . . ,X

dt ))t≥0 is a d-dimensional adapted

RCLL process.

PROPOSITION

If X is a martingale, then for any simple process φ, the stochasticintegral G is also a martingale.

PROPOSITION

Assume that X is a real-valued RCLL process. Let φ and ψ bereal-valued simple processes. Then Yt =

∫ t0 φudXu is an adapted

RCLL process and ∫ t

0ψudYu =

∫ t

0ψuφudXu.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 4 / 23

SEMI-MARTINGALES.

DEFINITION

An adapted RCLL process X is a semi-martingale if the stochasticintegral of simple processes w.r.t. X verifies the following continuityproperty : for every φn and φ in S if

limn→+∞

sup(t ,ω)∈R+×Ω

|φnt (ω)− φt (ω)| = 0, (1)

then in probability :∫ T

0φn

udXu −→n→+∞

∫ T

0φudXu = GT (φ).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 5 / 23

EXAMPLES.

A finite variation process.A (locally) square integrable (local) martingale.An adapted RCLL decomposable process X :

Xt = X0 + Mt + At ,

withM0 = A0 = 0,M locally square integrable martingale,A is RCLL, adapted, with paths of finite variation on compacts.,

CONSEQUENCE : all Lévy processes are semi-martingales.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 6 / 23

STOCHASTIC INTEGRAL FOR LCRL PROCESS.

DEFINITION

Let X be a semi-martingale. The continuous linear mappingG = GX : Lucp → Ducp obtained as the extension of G : S→ D is calledthe stochastic integral.

THEOREM

1 Let T be a stopping time. Then

G(φ)T = (G(φ)t∧T )t≥0 = G(φ1[0,T ]) = GX T (φ).

2 The jump process ∆(G(φ)) is indistinguishable from φ(∆X ).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 7 / 23

STOCHASTIC INTEGRAL FOR LCRL PROCESS.

THEOREM

If X is a semi-martingale, and if φ is an adapted LCRL process then

Yt =

∫ t

0φudXu : semi-martingale.

If ψ is another adapted LCRL process, then∫ t

0ψudYu =

∫ t

0ψuφudXu.

If X is a (locally) square-integrable (local) martingale, Y is a(locally) square-integrable (local) martingale.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 7 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 8 / 23

SPECIAL CASE : JUMP-DIFFUSION PROCESS.

JUMP-DIFFUSION PROCESS :

Xt = X0 +

∫ t

0ΓsdWs +

∫ t

0Θsds + Jt ,

with1 X0 : deterministic initial condition ;

2 It =

∫ t

0ΓsdWs : Itô’s integral of Γ w.r.t. to the Brownian motion W ;

3 Rt =

∫ t

0Θsds : Riemann’s integral of a process Θ ;

4 J : right-continuous pure-jump process.The stochastic integral of Φ w.r.t. X is defined∫ t

0ΦsdXs =

∫ t

0ΦsΓsdWs +

∫ t

0ΦsΘsds +

∑0<s≤t

Φs∆Js.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 9 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 10 / 23

INTEGRAL W.R.T. A POISSON RANDOM MEASURE.

SETTING :

J : Poisson random measure on [0,T ]× Rd with intensity dtν(dx),

J(A) = J(A)− ν(A) = J(A)− E(J(A)) : compensated randommeasure.

RECALL : for A ⊂ Rd s.t. ν(A) < +∞,Jt (A) = J([0, t ]× A) : counting process,

Jt (A) = J([0, t ]× A)− tν(A) : martingale (⇒ semi martingale),if A ∩ B = ∅, Jt (A) and Jt (B) independent.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 11 / 23

INTEGRAL W.R.T. A POISSON RANDOM MEASURE.

SIMPLE PROCESSES :

φ(t , x) =n∑

i=1

m∑j=1

φij1]Ti ,Ti+1](t)1Aj (y)

whereT1 ≤ T2 ≤ . . . ≤ Tn adapted random times,φij : bounded FTi -measurable r.v.Aj disjoint subsets with µ([0,T ]× Aj) < +∞.

INTEGRAL :∫ t

0

∫Rdφ(s, y)J(ds,dy) =

n,m∑i,j=1

φij

[JTi+1∧t (Aj)− JTi∧t (Aj)

]

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 11 / 23

INTEGRAL W.R.T. A POISSON RANDOM MEASURE.

PROPOSITION

For any simple process φ, the process (Xt )t∈[0,T ]

Xt =

∫ t

0

∫Rdφ(s, y)J(ds,dy)

is a square integrable martingale and verifies the isometry formula

E |Xt |2 = E[∫ t

0

∫Rd|φ(s, y)|2dsν(dy)

].

For a random function φ s.t. E∫ T

0

∫Rd|φ(s, y)|2dsν(dy) <∞, there

exists a sequence of simple processes φn s.t.

E∫ T

0

∫Rd|φ(s, y)− φn(s, y)|2dsν(dy) −→

n→+∞0.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 11 / 23

INTEGRAL W.R.T. A POISSON RANDOM MEASURE.

PROPOSITION

For any RLLC process φ s.t.

E∫ T

0

∫Rd|φ(s, y)|2dsν(dy) <∞,

the process (Xt )t∈[0,T ]

Xt =

∫ t

0

∫Rdφ(s, y)J(ds,dy)

is a square integrable martingale and verifies the isometry formula

E |Xt |2 = E[∫ t

0

∫Rd|φ(s, y)|2dsν(dy)

].

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 11 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 12 / 23

REALIZED VOLATILITY.

FRAMEWORK :

X semi-martingale, adapted RCLL process with X0 = 0,time grid π = t0 = 0 < t1 < t2 < . . . < tn+1 = T.

REALIZED VARIANCE :

VX (π) =n∑

i=0

(Xti+1 − Xti )2

= X 2T − 2

n∑i=0

Xti (Xti+1 − Xti )

Convergence in probability :

[X ,X ]T = X 2T − 2

∫ T

0Xu−dXu.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 13 / 23

QUADRATIC VARIATION.

DEFINITION

The quadratic variation process of a semi-martingale X is the adaptedRCLL process defined by :

[X ,X ]t = |Xt |2 − 2∫ t

0Xu−dXu.

PROPOSITION (PROPERTIES)

X 20 +

n∑i=0

(Xti+1 − Xti )2 −→‖π‖→0

[X ,X ]T in ucp.

([X ,X ]t )t∈[0,T ] is a non-decreasing process with [X ,X ]0 = X 20 .

Jumps of [X ,X ] : ∆[X ,X ]t = |∆Xt |2.If X is continuous and has paths of finite variation, then [X ,X ] = 0.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 14 / 23

CROSS VARIATION.DEFINITION

Given two semi-martingales X, Y , cross variation process [X ,Y ]

[X ,Y ]t = XtYt − X0Y0 −∫ t

0Xs−dYs −

∫ t

0Ys−dXs.

PROPOSITION

[X ,Y ] is an adapted RCLL process with finite variations.Polarization identity :

[X ,Y ] =12

([X + Y ,X + Y ]− [X ,X ]− [Y ,Y ]).

[X ,Y ]0 = X0Y0 and ∆[X ,Y ] = ∆X∆Y.Convergence (in probability) :

X0Y0 +n∑

i=0

(Xti+1 − Xti )(Yti+1 − Yti ) −→‖π‖→0[X ,Y ]T .

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 15 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 16 / 23

RECALL.

SETTING :

Xt = σWt + µt + Jt where J compound Poisson process and WBrownian motion ;f ∈ C2(R).

FORMULA :

f (Xt ) = f (X0) +

∫ t

0f ′(Xs)dX c

s +σ2

2

∫ t

0f ′′(Xs)ds

+∑

0<s≤t

f (Xs)− f (Xs−)

= f (X0) +

∫ t

0f ′(Xs)dXs +

σ2

2

∫ t

0f ′′(Xs)ds

+∑

0<s≤t

f (Xs)− f (Xs−)−∆Xsf ′(Xs−)

.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 17 / 23

ITÔ FORMULA FOR SEMI-MARTINGALES.

THEOREM

Let X be an n-tuple of semi-martingales, and f : [0,T ]×Rn → R a C1,2

function. Then f (.,X ) is again a semi-martingale, and the followingformula holds :

f (t ,Xt ) = f (0,X0) +

∫ t

0

∂f∂t

(s,Xs)ds +d∑

i=1

∫ t

0

∂f∂xi

(s,Xs−)dX is

+12

d∑i,j=1

∫ t

0

∂2f∂xi∂xj

(s,Xs)d [X i ,X j ]cs

+∑

0<s≤t

f (s,Xs)− f (s,Xs−)−

d∑i=1

∆X is∂f∂xi

(s,Xs−)

.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 18 / 23

DECOMPOSITION.

PROPOSITION

Let X be a Lévy process with characteristic triplet (σ2, ν, γ) andf : R→ R a C2 function s.t. f and its two derivatives are bounded by aconstant C. Then Yt = f (Xt ) = Mt + Vt where M is the martingale partgiven by :

Mt = f (X0) +

∫ t

0f ′(Xs)σdWs +

∫ t

0

∫R

JX (ds,dy)(f (Xs− + y)− f (Xs−)),

and V a continuous finite variation process :

Vt =σ2

2

∫ t

0f ′′(Xs)ds + γ

∫ t

0f ′(Xs)ds

+

∫ t

0

∫R

(f (Xs− + y)− f (Xs−)− yf ′(Xs)1|y |≤1)dsν(dy).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 19 / 23

OUTLINE

1 STOCHASTIC INTEGRAL FOR SEMI-MARTINGALESJump-diffusion processW.r.t. a random measure

2 QUADRATIC VARIATION

3 THE ITÔ FORMULA

4 STOCHASTIC EXPONENTIALS VS. ORDINARY EXPONENTIALS

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 20 / 23

EXPONENTIAL OF A LÉVY PROCESS.

PROPOSITION

Let X be a (σ2, ν, γ) Lévy process s.t.∫|y |≥1

eyν(dy) <∞. Then

Yt = exp(Xt ) is a semi-martingale with decomposition Yt = Mt + Atwhere the martingale part is given by

Mt = 1 +

∫ t

0Ys−σdWs +

∫ t

0

∫R

Ys−(ez − 1)JX (ds,dz);

and the continuous finite variation drift part by

At =

∫ t

0Ys−

[γ +

σ2

2+

∫ ∞−∞

(ez − 1− z1|z|≥1)ν(dz)

]ds.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 21 / 23

DOLÉANS-DADE EXPONENTIAL.

PROPOSITION

Let X be a (σ2, ν, γ) Lévy process. There exists a unique RCLLprocess Z s.t. :

dZt = Zt−dXt , Z0 = 1.

Z is given by :

Zt = exp

(Xt −

σ2t2

) ∏0<s≤t

(1 + ∆Xs)e−∆Xs .

If∫ 1

−1|x |ν(dx) <∞, the jumps of X have finite variation and the

stochastic exponential of X can be expressed as

Zt = exp

(X c

t −σ2t2

) ∏0<s≤t

(1 + ∆Xs).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 22 / 23

DOLÉANS-DADE EXPONENTIAL.

DEFINITION

Z = E(X ) is called the Doléans-Dade exponential (or stochasticexponential) of X .

PROPOSITION

If X is a Lévy process and a martingale, then its stochastic exponentialZ = E(X ) is also a martingale.

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 22 / 23

RELATION BETWEEN THE TWO EXPONENTIALS.

Let X be a Lévy process with triplet (σ2, ν, γ) and Z = E(X ) itsstochastic exponential. If Z > 0 a.s., there exists another Lévy processL s.t. Z = exp(L) where :

Lt = ln Zt = Xt −σ2t2

+∑

0<s≤t

(ln(1 + ∆Xs)−∆Xs).

Its characteristic triplet (σ2L, νL, γL) is given by :

σL = σ,

νL(A) =

∫1A(ln(1 + x))ν(dx),

γL = γ − σ2

2+

∫ [ln(1 + x)1[−1,1](ln(1 + x))− x1[−1,1](x)

]ν(dx).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 23 / 23

RELATION BETWEEN THE TWO EXPONENTIALS.

Let L be a Lévy process with triple (σ2L, νL, γL) and St = exp Lt its

exponential. Then there exists a Lévy process X s.t. S is the stochasticexponential of X : S = E(X ) where

Xt = Lt +σ2t2

+∑

0<s≤t

[1 + ∆Ls − e∆Ls

].

The triplet (σ2, ν, γ) of X is given by :

σ = σL,

ν(A) =

∫1A(ex − 1)νL(dx),

γ = γL +σ2

L2

+

∫ [(ex − 1)1[−1,1](ex − 1)− x1[−1,1](x)

]νL(dx).

A. Popier (ENSTA) Stochastic calculus (part 2). March 2020 23 / 23