192
I N S T I T U T E O F W A T E R A C O U S T I C S, S O N A R E N G I N E E R I N G A N D S I G N A L T H E O R Y Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 1 Stochastic Signals and Systems Contents 1 Probability Theory 2 Stochastic Processes 3 Parameter Estimation 4 Signal Detection 5 Spectrum Analysis 6 Optimal Filtering

Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 1

Stochastic Signals and SystemsContents1 Probability Theory2 Stochastic Processes3 Parameter Estimation4 Signal Detection5 Spectrum Analysis 6 Optimal Filtering

Page 2: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 2

1 Probability Theory 5

1.1 Terminology 5

1.2 Definition of Probability 71.2.1 Relative Frequency and Probability 71.2.2 Axiomatic Approach to Probability 81.2.3 Classical Definition of Probability 10

1.3 Conditional Probability 11

1.4 Random Variables 14

1.5 Distribution Functions 171.5.1 Purely discrete case 211.5.2 Purely continuous case 25

1.6 Some Special Distributions 301.6.1 Discrete Distributions 301.6.2 Continuous Distributions 38

Page 3: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 3

1.7 Bivariate Distribution 551.7.1 Bivariate Distribution Function 561.7.2 Bivariate Density Function 591.7.3 Marginal Distribution and Density Function 601.7.4 Conditional Distribution and Density Function 621.7.5 Independent Random Variables 681.7.6 Bivariate Normal Distribution 69

1.8 Transformations of Random Variables 751.8.1 Function of One Random Variable 751.8.2 One Function of Two Random Variables 841.8.3 Two Functions of Two Random Variables 86

1.9 Expectation Operator 911.9.1 Expectation for Univariate Distributions 911.9.2 Expectation for Bivariate Distributions 1071.9.3 Mean Square Estimation 132

Page 4: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 4

1.10 Vector-valued Random Variables 1381.10.1 Multivariate Distributions 138 1.10.2 Transformation of Vector-valued Random Variables 1441.10.3 Expectations for Vector-valued Random Variables 1491.10.4 Mean Square Estimation 1591.10.5 Multivariate Normal Distribution 166

1.11 Sequences of Random Variables 1791.11.1 Convergence Concepts 1791.11.2 Laws of Large Numbers 1861.11.3 Central Limit Theorems 189

References to Chapter 1 192

Page 5: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 5

1 Probability Theory1.1 TerminologyE: random experiment (activity where the outcome is

randomly influenced)X: sample space (set of all possible outcomes of E

which may consist of a finite, infinite countable or uncountable number of elements)

x : elementary event (possible outcome of E, i.e. xÎX)

Ø: impossible event (empty set Ø= { })

Page 6: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 6

E: event (collection of some of the possible outcomesof E, i.e. E Ì X )

S : s -field, i.e. a system of subsets of X satisfying 1) X ÎS2) if E ÎS then = X \E ÎS3) if EiÎS for i = 1,2,… then

Corollary: 1) ØÎS2) if E1,E2 ÎS then E1 Ç E2 ÎS and E1\E2 ÎS3) if EiÎS for i = 1,2,… then

(X,S): measurable space

Eii=1

∞∪ ∈S

Eii=1

∞∩ ∈S

E

Page 7: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 7

1.2 Definition of Probability1.2.1 Relative Frequency and ProbabilityIf a random experiment is performed n times and where the event of interest E is observed with frequency hn(E), then the relative frequency of the occurrence of E is de-fined by

Empirical law of large numbersFor sufficiently large n we can write with a high degree of certainty that

( )( ) with 0 ( ) 1.nn n

h EH E H En

= £ £

).()( EHEP n@

Page 8: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 8

1.2.2 Axiomatic Approach to ProbabilityConsider an experiment E with measurable space (X,S).A probability measure P is then defined as a mapping

P : S® Rwhich satisfies the following axioms

1) if E Î S then P(E) ³ 0

2) P(X) = 13) if EiÎS for i =1,2,… and EiÇEj =Ø for i ¹ j then

å¥

=

¥

=

=÷÷ø

öççè

æ

11)(

ii

ii EPEP !

Page 9: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 9

The triple (X,S,P) is called probability space.

Implications:1) P(Ø) = 0 2) if E1, E2 ÎS with E1ÌE2 then

P(E1) £ P(E2)3) if E1, E2 Î S then

P(E1ÈE2) = P(E1) + P(E2) - P(E1ÇE2)

Page 10: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 10

1.2.3 Classical Definition of ProbabilitySuppose that an experiment has a finite number n of pos-sible outcomes, x1, x2,…, xn and we are interested in an event E = {xi1,xi2,…,xim} with {i1, i2,…, im} Ì {1,2,…,n}. If we assume that all outcomes x1, x2,…, xn are equally likely, then

This is a basic result which assigns probabilities to events purely on the basis of combinatorial arguments.However, its application is strictly limited to experiments of a finite number of equally likely outcomes.

.outcomes of number total

to favorable outcomes of number)(nmEEP ==

Page 11: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 11

1.3 Conditional ProbabilityLet (X,S,P) be a probability space with E1, E2 ÎS and P(E2) > 0. The conditional probability of E1 given that E2 occurred is defined by

One can easily show that the conditional probability sat-isfies the axioms of a probability measure.

)()()|(

2

2121 EP

EEPEEP Ç=

Page 12: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 12

Implications:1) Bayes’ Formula

P(E2 | E1 ) = P(E1 | E2) P(E2) / P(E1)

Furthermore, assuming

we can derive the Total Probability

!i

iji EEjiEE ̹=Ç and,Ø

å=i

ii EPEEPEP )()|()(

Page 13: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 13

and the generalised Bayes’ Formula

2) Two events E1 and E2 are called independent ifP(E1 | E2) = P(E1)

holds. Consequently, we can stipulateP(E1 Ç E2) = P(E1) P(E2)

( ) ( | )( | ) , ( ) 0( ) ( | )k k

ki ii

P E P E EP E E P EP E P E E

= >å

Page 14: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 14

1.4 Random VariablesA mapping

X: X ® R,

such that to each x Î X there corresponds a unique real number X(x) Î R, is called random variable or measura-ble function with respect to S, if for each set B Ì R the inverse image

X -1(B) = {x : X(x) Î B}is element of S.

Page 15: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 15

To assign probabilities to random variables one has to translate statements about the values of random varia-bles as follows.

PX (B) = P(X -1(B)) = P({x : X(x) Î B })

Furthermore, a s -field has to be defined over R. One can show that such a s -field should include all intervals of the kind (-¥,x]. The power set P(R) includes the desired intervals but its cardinality is to high to be able to implement the meas-urability properties.

Page 16: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 16

However, one can show that a particular s -field exists, called Borel-field B, that is the smallest possible includ-ing all the intervals (-¥, x] and that guarantees the meas-urability of all sets element of B.

Thus, we can define by(R,B) the measurable space

and (R,B,PX) the probability space

of a random variable X.

Page 17: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 17

1.5 Distribution FunctionsGiven a random variable X, the distribution of X, FX (x), is defined by

FX (x) = PX ((-¥,x]) = P({x : X(x) £ x}) = P(X £ x).

One can show that FX (x) uniquely determines all the probabilistic properties of the random variable X.In particular, for any a,b Î R with a £ b we have

P(X £ b) = P(X £ a) + P(a < X £ b),

cf. Axiom 3. Hence P(a < X £ b) = P(X £ b) - P(X £ a) = FX (b) - FX (a).

Page 18: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 18

Distribution functions have the properties:(1) 0 £ FX (x) £ 1 for all x Î R

(since FX (x) is a probability)

(2) limx®-¥ FX (x) = 0, limx®¥ FX (x) = 1(since limx ®-¥ X -1((-¥, x]) = Ø Ù limx®¥ X -1((-¥, x]) = X)

(3) FX (x) is a non-decreasing function, i.e. for any h ³ 0 and all x, FX (x+h) ³ FX (x) (since FX (x + h) - FX (x) = P(x < X £ x + h) ³ 0)

(4) FX (x) is right-continuous, i.e. for all xlimh®0+ FX (x+h) = FX (x)

(the limit h ® 0 is taken through positive values only)

Page 19: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 19

Any distribution function FX (x), can be expressed byFX (x) = a1 FX,1 (x) + a2 FX,2 (x) + a3 FX,3 (x),

where ai ³ 0 for i = 1,2,3, a1 + a2 + a3 = 1

and FX,1 (x) is continuous everywhere and differentia-ble for almost all x, i.e. absolute continuous,FX,2 (x) is a step-function with a finite or counta-ble infinite number of jumps,FX,3 (x) is a singular function, that is continuouswith zero derivative almost everywhere.

Page 20: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 20

FX,1 (x) and FX,2 (x) correspond to the two basic types of probability distributions one usually encounters in prac-tise, i.e. the

continuous and discrete distribution,respectively.Since FX,3 (x) is highly pathological, it can be safely as-sumed that it does not arise in real applications. In practice we therefore ignore FX,3 (x) and assume that all distribution functions can be simply represented by

FX (x) = lFX,1 (x) + (1 – l ) FX,2 (x)with 0 £ l £ 1.

Page 21: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 21

1.5.1 Purely discrete case (l = 0)The distribution function FX (x) = FX,2 (x) is a simple step-function with jumps pi at the points xi for i = 1,2,3,… FX (x) would typically have the form

-6 -4 -2 0 2 4 60

0.2

0.4

0.6

0.8

1

x2

p2

p3

p4

p5

x3x1 x4

p1

x5

FX(x)

x

Page 22: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 22

If an interval (a,b] does not contain any of the jump pointsxi, then clearly

P(a < X £ b) = FX (b) - FX (a) = 0.

Hence, X cannot take any value lying between to succes-sive jump points.

For each i and any small h > 0 we can write

P(xi - h < X £ xi + h) = FX (xi + h) - FX (xi - h) = pi .

Letting h ® 0, we obtainP(X = xi) = pi i = 1,2,3,…

Page 23: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 23

Thus the only values X can take are those correspond-ing to the jump points. Therefore, X is called discrete ran-dom variable.The jump pi at point xi represents the probability that Xtakes the value xi. Furthermore, (x1,p1),(x2,p2),… are usedto define the so-called probability mass function pX (x).

x2

pX (x2) = p2

pX (x3) = p3

pX (x4) = p4

pX (x5) = p5

x3x1 x4

pX (x1) = p1

x5x

pX (x)

-6 -4 -2 0 2 4 60

0.1

0.2

0.3

Page 24: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 24

Discrete distribution functions possess the properties:

(1) , where the summation extents over all values of i for which xi £ x

(2) 0 £ pX (x) £ 1(since pX (x) is a probability mass function)

(3)

(since limx®¥ FX (x) = Si pX (xi) = 1)

pX (xi )i∑ = 1

FX (x) = pX (xi )i,xi≤x∑

Page 25: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 25

1.5.2 Purely continuous case (l = 1)The distribution function FX (x) = FX,1(x) is absolutely con-tinuous, i.e. differentiable for almost all x. FX (x) would typically possess a graph as shown below.

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

FX(x)

x

Page 26: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 26

X can, in general, take any value either on a finite or an infinite interval and is therefore called continuous ran-dom variable.Thus continuous random variables are suitable models for measuring physical quantities such as pressures, volt-ages, temperatures, etc.

Furthermore, FX (x) can be represented by

where fX (x) is said to be the probability density function (PDF) of X.

FX (x) = fX ( ′x ) d ′x−∞

x

∫ ,

Page 27: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 27

If fX (x) is continuous at x, then

exists. For a small interval (x,x+Dx] we can now write

or

where o(Dx) represents a term of smaller order of magni-tude than Dx.

′FX (x) =dFX (x)dx

= fX (x)

P(x < X ≤ x + Δx) = FX (x + Δx)− FX (x) = fX ( ′x )d ′xx

x+Δx

P(x < X ≤ x + Δx) = fX (x)Δx + o(Δx),

Page 28: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 28

The latter equation forms the basis for interpreting fX (x) as a density function, namely, fX (x) defines the density of probability in the neighbourhood of the point x.Remarks:

§ fX (x) itself does not represent a probability§ fX (x) × Dx has a probabilistic interpretation, § fX (x) completely determines FX (x) and therefore

completely specifies the properties of a continu-ous random variable.

Page 29: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 29

Probability density functions satisfy the properties:(1) fX (x) ³ 0 for all x Î R

(since FX (x) is a non-decreasing function)

(2)(since )

(3) For any a,b Î R with a £ b

f (x)dx−∞

∫ = 1

limx→∞F(x) = f (x)dx

−∞

∫ = 1

P(a < X ≤ b) = FX (b)− FX (a) = fX (x)dxa

b

Page 30: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 30

1.6 Some Special Distributions1.6.1 Discrete DistributionsBinomial distributionConsider an experiment which has only two possible out-comes, “success” and “failure”, with probability p and(1-p), respectively.

The number of “successes” occurring in n independent repetitions of the experiment is a random variable X that can take the values k = 0,1,…,n. Within a sequence of n independent trials, k successes can occur in

Page 31: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 31

different arrangements. The probability of a specific ar-rangement is obviously

Thus, the probability for observing k successes in n inde-pendent trials is given by

The bn,p(k) (k = 0,1,…,n) are called binomial probabilities.

nk

⎛⎝⎜

⎞⎠⎟= n!k !(n − k)!

pk 1− p( )n−k .

P ξ : X (ξ) = k{ }( ) = P X = k( ) = nk

⎛⎝⎜

⎞⎠⎟pk 1− p( )n−k = bn,p(k).

Page 32: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 32

Exploiting the binomial theorem one can verify that

Thus, the distribution function of the so-called binomial distribution B (n,p) can be defined by

where m = ëxû Î Z, i.e. m £ x < m+1 (Gauss bracket).

FX (x) = P(X ≤ x) = bn,p(k)k=0

m

∑ =nk

⎛⎝⎜

⎞⎠⎟pk (1− p)n−k

k=0

m

∑ ,

bn,p(k)k=0

n

∑ =nk

⎛⎝⎜

⎞⎠⎟pk (1− p)n−k

k=0

n

∑ = p + (1− p)⎡⎣ ⎤⎦n= 1.

Page 33: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 33

0 5 10 15 20 250

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

b np(k )

binomial probabilities

0 5 10 15 20 250

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F X(x

)

binomial distribution function

p = 0.5

Page 34: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 34

Poisson distributionConsider the limiting form of the binomial probabilities when n®¥ and p®0 in such a way that np=an®a, a positive constant.Substituting p by an /n, we obtain

bn,αnn

(k) = n!k ! n − k( )!

αn

n⎛⎝⎜

⎞⎠⎟

k

1−αn

n⎛⎝⎜

⎞⎠⎟

⎝⎜

⎠⎟

n−k

= nn⋅ n−1n!n−k +1n

1−αn

n⎛⎝⎜

⎞⎠⎟

⎝⎜

⎠⎟

−k

1−αn

n⎛⎝⎜

⎞⎠⎟

⎝⎜

⎠⎟

nαnk

k !

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪.

Page 35: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 35

As n tends to infinity, we have

The pa (k) (k = 0,1,…) are called Poisson probabilities.

Note that the sum of the infinitely many but countable Poisson probabilities satisfies

for all a.

bn,αnn

(k) n→∞⎯ →⎯⎯ e−α α k

k != pα (k).

0 0( ) 1

!

k

k kp k e e e

ka a a

aa¥ ¥

- -

= =

= = =å å

Page 36: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 36

Hence, the distribution function of the so-called Poisson distribution P (a) is given by

where m = ëxû Î Z, i.e. m £ x < m+1 (Gauss bracket).

In practice, the Poisson distribution is used for approxi-mating the binomial distribution in cases, where in a large number of independent trials (large n) the number of oc-currences of a rare event (small p) is of interest.

FX (x) = P(X ≤ x) = pα (k)k=0

m

∑ = e−α α k

k !k=0

m

∑ ,

Page 37: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 37

0 10 20 30 40 500

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

k

p a(k

)

Poisson probabilities

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F X(x

)

Poisson distribution function

a = 25

Page 38: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 38

1.6.2 Continuous DistributionsUniform (rectangular) distributionA continuous random variable X is uniformly distributed on the interval [a,b] (in abbreviated form X ∼ R(a,b)), if the probability density function is defined by

where 1M (x) denotes the indicator function of the set M Ì R, i.e.

fX (x) =1

b − a1[a,b](x) x ∈!,

1M (x) =1 x ∈M0 otherwise⎧⎨⎩

.

Page 39: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 39

The distribution function can be expressed as follows:

A uniformly distributed random variable X ∼ R(-p,p) is often used for modelling a random initial phase of a si-nusoidal signal.

FX (x) = fX ( ′x ) d ′x−∞

x

∫ = 1b − a

1[a,b]( ′x ) d ′x−∞

x

=0 x ≤ a(x − a) (b − a) x ∈[a,b]1 x ≥ b

⎨⎪

⎩⎪

.

Page 40: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 40

-1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

x

f X(x

)

density function

-1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

x

F X(x

)

distribution function

a = 0, b = 1

Page 41: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 41

Normal (Gaussian) distributionA continuous random variable X is said to be normally distributed with parameters µ Î R and s 2 (X∼N(µ,s 2)), if the probability density function is defined by

The normal distribution function

can not be expressed in explicit form.

fX (x) =12πσ 2

exp − (x − µ)2

2σ 2

⎧⎨⎩⎪

⎫⎬⎭⎪

x ∈!.

FX (x) = fX ( ′x ) d ′x−∞

x

∫ = 1

2πσ 2exp − ( ′x − µ)2

2σ 2

⎧⎨⎩⎪

⎫⎬⎭⎪d ′x

−∞

x

Page 42: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 42

However, to check that fX (x), where fX (x) > 0 "xÎR, rep-resents a valid form of a probability density function we have to show that

With the substitution x = (x' - µ) /s we can derive

Since fX (x) > 0 "x Î R, it is equivalent to proof that

1

2πσ 2exp −

′x − µ( )22σ 2

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪−∞

∫ d ′x = 1

2πexp − x

2

2⎧⎨⎩⎪

⎫⎬⎭⎪−∞

∫ dx.

fX (x) dx−∞

∫ = 1.

1

2πexp − x

2

2⎧⎨⎩⎪

⎫⎬⎭⎪−∞

∫ dx⎛

⎝⎜⎞

⎠⎟

2

= 1.

Page 43: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 43

1

2πexp(−x2 2)

−∞

∫ dx⎛⎝⎜

⎞⎠⎟

2

=

= 12π

exp − (x2 + y 2) 2{ } dxdy−∞

∫−∞

∫= 12π

exp(−r 2 2) r dr dφ0

∫0

∫= exp(−r 2 2) r dr

0

∫ = exp −u( ) du0

∫ = 1.

Thus, after introducing a double integral, employing po-lar coordinates and finally substituting u = r2/2, the valid-ity of the equation can be shown:

Page 44: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 44

The special form N (0,1), i.e. µ = 0 and s 2 = 1, is called standardized normal distribution. Its distribution function is usually denoted by F(x), i.e.

There are extensive tables of the function F(x) available in the literature. These tables enable us to evaluate the distribution function of X ∼ N(µ,s 2) as follows.

Φ(x) = 12π

exp − ′x 2

2⎧⎨⎩⎪

⎫⎬⎭⎪−∞

x

∫ d ′x .

Page 45: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 45

Let X ∼ N(µ,s 2) and therefore (X - µ) /s ∼ N(0,1) then

The normal distribution is by far the most important dis-tribution in probability theory and statistical inference.Its prominence is attributed to central limit theorems, which roughly state, that the sum of a large number of (independent) random variables obeys an approximate normal distribution.

FX (x) = P ξ :−∞ < X (ξ) ≤ x{ }( )= P ξ :−∞ < X (ξ)− µ

σ≤ x − µ

σ⎧⎨⎩

⎫⎬⎭

⎝⎜⎞

⎠⎟= Φ x − µ

σ⎛⎝⎜

⎞⎠⎟.

Page 46: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 46

-5 0 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

f X(x

)

Gauss density function

-5 0 50

0.2

0.4

0.6

0.8

1

x

F X(x

)

Gauss distribution function

µ = 0, s 2 = 1

Page 47: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 47

Exponential distributionA continuous random variable X, taking positive values only, is said to satisfy an exponential distribution with pa-rameter l > 0 (X ∼ E (l)), if its probability density func-tion is of the form

Hence, its distribution function is given by

fX (x) = λ exp(−λ x)1[0,∞)(x) x ∈!.

FX (x) = fX ( ′x )−∞

x

∫ d ′x = λ exp(−λ ′x )1[0,∞)( ′x )−∞

x

∫ d ′x

= 1− exp(−λ x)⎡⎣ ⎤⎦1[0,∞)(x).

Page 48: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 48

The exponential distribution is used as a model for the life times of items when ageing processes can be neglected.

x x0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f X(x

)

density function

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

F X(x

)

distribution function

l = 1

Page 49: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 49

Weibull distributionWhen either ageing or initial failures processes have to be taken into account, a suitable model for the life time of an item can be provided by a continuous random va-riable X obeying a Weibull distribution with parameters l > 0,h > 0 (X ∼W(l,h)).

The probability density function of the Weibull distribu-tion is defined by

fX (x) = λ η xη−1exp(−λ xη )1[0,∞)(x) x ∈!.

Page 50: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 50

For the distribution function we obtain

By selecting a value for h, the following three cases can be qualitatively distinguished:h = 1 obviously W(l,1) = E (l)h > 1 ageing process is incorporated 0 < h < 1 initial failure process is considered

FX (x) = fX ( ′x )−∞

x

∫ d ′x = λη ′x η−1 exp(−λ ′x η )1[0,∞)( ′x )−∞

x

∫ d ′x

= 1− exp(−λ xη )⎡⎣ ⎤⎦1[0,∞)(x).

Page 51: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 51

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x

f X(x

)

Weibull density function

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

x

F X(x

)

Weibull distribution function

h = 1/2h = 1h = 2l = 1

Page 52: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 52

Cauchy distributionA continuous random variable X is said to follow a Cauchy distribution with parameters µ Î R and n > 0 (X ∼ C(µ,n)), if the probability density function is given by

The distribution function can be derived as follows:

fX (x) =1π

νν 2 + (x − µ) 2

= 1π ν

1

1+ (x − µ) ν⎡⎣ ⎤⎦2 x ∈!.

FX (x) = fX ( ′x )−∞

x

∫ d ′x = 1π ν

1

1+ ( ′x − µ) ν⎡⎣ ⎤⎦2−∞

x

∫ d ′x =

Page 53: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 53

The Cauchy distribution possess so-called long tails, i.e. its density function decays slowly as x tends either to plus or minus infinity.Consequently, Cauchy distributed random variables are suitable models for experiments where large measure-ment values can be observed with certain likelihood.

= 1π

11+ ′′x 2−∞

(x−µ) ν

∫ d ′′x = 12+ 1πarctan x − µ

ν⎛⎝⎜

⎞⎠⎟.

Page 54: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 54

-10 -5 0 5 100

0.05

0.1

0.15

0.2

0.25

0.3

x

f X(x

)

Cauchy density function

-10 -5 0 5 100

0.2

0.4

0.6

0.8

1

x

F X(x

)

Cauchy distribution function

µ = 0, n = 1

Page 55: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 55

1.7 Bivariate DistributionThe theory of random variables discussed so far dealt only with univariate distributions, i.e. the probability dis-tributions describe the properties of single random vari-ables. However, the modelling of experimental results often re-quires several random variables, e.g. the results of meas-uring the simultaneous values of pressure and tempera-ture in a gas of constant volume have to be described bytwo random variables.

Page 56: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 56

1.7.1 Bivariate Distribution FunctionA bivariate distribution function FXY (x,y) is defined by

FXY (x,y) = P({x : X(x)£x, Y(x)£y}) = P(X£x,Y£y).

It can be computed in discrete and continuous case by

or

respectively, where pXY (x,y) denotes the bivariate prob-ability mass function and fXY (x,y) the bivariate density function.

FXY (x,y) = fXY ( ′x , ′y )d ′x d ′y−∞

y

∫−∞

x

∫ ,

FXY (x,y) = pXY (xi ,y j )j ,y j ≤y∑

i,xi≤x∑

Page 57: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 57

Bivariate distribution functions possess the properties:(1) limx®¥, y®¥ FXY (x,y) = FXY (¥,¥) = 1

(2) limx®-¥ FXY (x,y) = FXY (-¥,y) = 0limy®-¥ FXY (x,y) = FXY (x,-¥) = 0

(3) FXY (x,y) is right-continuous in x and y, respectively,i.e. limh®0+ FXY (x+h,y) = FXY (x,y)limh®0+ FXY (x,y+h) = FXY (x,y)

Page 58: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 58

(4) FXY (x,y) is a non-decreasing function, i.e. for anyh ³ 0 is FXY (x+h,y) ³ FXY (x,y) for all x and any y

FXY (x,y+h) ³ FXY (x,y) for all y and any x

(5) second difference (n-th difference for n = 2)DFXY ((a,b]) == FXY (b1,b2) - FXY (b1,a2) - FXY (a1,b2) + FXY (a1,a2)= P ({x : (X(x),Y(x))TÎ (a,b]}) = P ((X,Y)TÎ (a,b]) ³ 0where

(a,b] = ((a1,a2)T,(b1,b2)T] = (a1,b1] ´ (a2,b2].

Page 59: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 59

1.7.2 Bivariate Density FunctionIf fXY (x,y) is continuous at (x,y), then

exists. Bivariate density functions satisfy the properties:(1) fXY (x,y) ³ 0 for all (x,y)T Î R2

(2)

(3) For any (a,b] = (a1,b1] ´ (a2,b2] Ì R2

fXY (x,y)dxdy−∞

∫−∞

∫ = 1

fXY (x,y) =∂2FXY (x,y)

∂x∂y=∂2FXY (x,y)

∂y ∂x

P (X ,Y )T∈(a,b]( ) = fXY (x,y)dxdya1

b1∫a2

b2∫ ,

Page 60: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 60

1.7.3 Marginal Distribution and Density FunctionFor a given bivariate distribution of (X,Y), the univariate distributions of the individual random variables X and Y can be deduced from the expressions

and

limy→∞FXY (x,y) = FXY (x,∞) = P(X ≤ x,Y ≤ ∞)

= P(X ≤ x) = FX (x)

limx→∞FXY (x,y) = FXY (∞,y) = P(X ≤ ∞,Y ≤ y)

= P(Y ≤ y) = FY (y).

Page 61: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 61

For the marginal distribution and density functions of Xand Y we may write

with

and

with

respectively.

FX (x) = fX ( ′x )d ′x−∞

x

∫ = fXY ( ′x ,y)dy d ′x−∞

∫−∞

x

fX (x) = fXY (x,y)dy−∞

FY (y) = fY ( ′y )d ′y−∞

y

∫ = fXY (x, ′y )dxd ′y−∞

∫−∞

y

fY (y) = fXY (x,y)dx−∞

∫ ,

Page 62: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 62

1.7.4 Conditional Distribution and Density FunctionThe conditional probability of {x : X(x) £ x} knowing that {x : Y(x) £ y} occurred is given by, cf. Section 1.3,

Hence, the conditional distribution function of X under the condition {Y £ y} can be defined by

P(X ≤ x |Y ≤ y) =P {X ≤ x}∩ {Y ≤ y }( )

P(Y ≤ y), if P(Y ≤ y) > 0.

FX (x |Y ≤ y) = P(X ≤ x |Y ≤ y)= P(X ≤ x,Y ≤ y) P(Y ≤ y)= FXY (x,y) FY (y), if FY (y) > 0.

Page 63: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 63

The conditional density function of X under the condition {Y £ y} can be deduced from

such that

If fXY (x,y) is continuous at (x,y), we can also write

fX (x |Y ≤ y) =dFX (x |Y ≤ y)

dx=∂FXY (x,y) ∂x

FY (y).

FX (x |Y ≤ y) = fX ( ′x |Y ≤ y) d ′x−∞

x

∫ = FXY (x,y) FY (y)

= fXY ( ′x , ′y ) d ′y d ′x−∞

y

∫−∞

x

∫ FY (y)

fX (x |Y ≤ y) =fXY (x, ′y )d ′y

−∞

y

∫FY (y)

.

Page 64: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 64

Let now {x : y < Y(x) £ y + Dy} denote an event satisfy-ing P(y < Y £ y + Dy) > 0. Then, we can derive

FX (x | y <Y ≤ y + Δy)

= P(X ≤ x,y <Y ≤ y + Δy)P(y <Y ≤ y + Δy)

= P(X ≤ x,Y ≤ y + Δy)−P(X ≤ x,Y ≤ y)P(Y ≤ y + Δy)−P(Y ≤ y)

=FXY (x,y + Δy)− FXY (x,y)FY (y + Δy)− FY (y)

⋅ ΔyΔy.

Page 65: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 65

Assuming fXY (x,y) to be continuous at (x,y) and fY (y) > 0, the limit

exists and the conditional distribution function of X un-der the condition {Y = y} can be expressed by

limΔy→0

FX (x | y <Y ≤ y + Δy) =∂FXY (x,y) ∂ydFY (y) dy

FX (x |Y = y) =∂FXY (x,y) ∂ydFY (y) dy

=∂FXY (x,y) ∂y

fY (y)

=fXY ( ′x ,y)d ′x

−∞

x

∫fY (y)

=fXY ( ′x ,y)d ′x

−∞

x

∫fXY (x,y)dx−∞

∫.

Page 66: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 66

Furthermore, exploiting

the conditional density function of X under the condition {Y = y} can be represented by

FX (x |Y = y) = fX ( ′x |Y = y) d ′x−∞

x

∫ =fXY ( ′x ,y)fY (y)

d ′x−∞

x

fX (x |Y = y) =fXY (x,y)fY (y)

=fXY (x,y)

fXY (x,y)dx−∞

∫=∂2FXY (x,y) ∂x∂ydFY (y) dy

=dFX (x |Y = y)

dx.

Page 67: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 67

Conditional density functions exhibit the properties:

(1)

(2)Bayes’ Formula:

(3)

fX (x |Y = y) ⋅ Δx =fXY (x,y) ⋅ Δx ⋅ ΔyfY (y) ⋅ Δy

≈ P(x < X ≤ x + Δx,y <Y ≤ y + Δy)P(y <Y ≤ y + Δy)

fXY (x,y) = fX (x |Y = y) fY (y) = fY (y | X = x) fX (x)

fX (x) = fXY (x,y)dy−∞

∫ = fX (x |Y = y)−∞

∫ fY (y) dy

fX (x |Y = y) = fY (y | X = x) fX (x) fY (y), if fY (y) > 0

Page 68: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 68

1.7.5 Independent Random VariablesWe say that two continuous random variables, X and Yare independent if the events {X £ x} and {Y £ y} are in-dependent for all x,y Î R, i.e. cf. section 1.3 that

FXY (x,y) = FX (x) FY (y), fXY (x,y) = fX (x) fY (y)and consequently

FX (x |Y = y) = FX (x), FY (y |X = x) = FY (y),fX (x |Y = y) = fX (x) and fY (y |X = x) = fY (y) .

For notational convenience we define fX (x|y) := fX (x |Y = y), fY (y |x) := fY (y |X = x),FX (x |y) := FX (x |Y = y) and FY (y |x) := FY (y |X = x).

Page 69: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 69

1.7.6 Bivariate Normal DistributionTwo continuous random variables X and Y are said to obey a bivariate normal distribution with parameters µX, µY, |r | < 1, sX > 0, sY > 0 if their probability density func-tion is given by

for all x,y Î R.

fXY (x,y) =1

2πσ XσY 1− ρ2exp − 1

2(1− ρ2)⎧⎨⎩

×

x − µXσ X

⎝⎜⎞

⎠⎟

2

−2ρ(x − µX )(y − µY )

σ XσY

+y − µYσY

⎝⎜⎞

⎠⎟

2⎡

⎣⎢⎢

⎦⎥⎥

⎫⎬⎪

⎭⎪

Page 70: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 70

Bivariate Normal Density Function

-20

2

-2

0

2

0

0.05

0.1

0.15

0.2

xy

f X(x

)

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3

xy

µX = 0, µY = 0, s2X = 1, s2

Y = 0, r = 1/2 µX = 0, µY = 0, sX = 1, sY = 1, r = 1/2

Page 71: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 71

Employing vector/matrix notation the bivariate normal density function can be expressed by

where denotes the vector of the expected/mean val-ues and represents the so-called covariance matrix, i.e.

and one writes

fX(x) =1

2π det(ΣX )exp − 1

2(x − µX )

T ΣX−1(x − µX )

⎧⎨⎩

⎫⎬⎭,

µX =µX1µX2

⎝⎜⎜

⎠⎟⎟, ΣX =

σ X1

2 ρσ X1σ X2

ρσ X1σ X2

σ X2

2

⎝⎜⎜

⎠⎟⎟,

µXΣX

X = (X1,X 2)T ∼N2(µX,ΣX ).

Page 72: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 72

Marginal density functionsThe marginal density functions of X and Y are given by

and

Hence, the marginal probability distributions of X and Y are , respectively.

fX (x) = fXY (x, ′y )d ′y−∞

∫ = 1

2πσ X

exp − 12x − µXσ X

⎝⎜⎞

⎠⎟

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

fY (y) = fXY ( ′x ,y)d ′x−∞

∫ = 1

2πσY

exp − 12

y − µyσY

⎝⎜

⎠⎟

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪.

N (µX ,σ X2 ) and N (µY ,σY

2 )

Page 73: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 73

Conditional density functionsThe conditional density function of X under the condition{Y = y} is given by

and we can write in abbreviated form

fX (x |Y = y) =fXY (x,y)fY (y)

= 1

σ X 2π (1− ρ2)×

exp − 12σ X

2 (1− ρ2)x − µX + ρ

σ X

σY

(y − µY )⎛

⎝⎜⎞

⎠⎟⎡

⎣⎢⎢

⎦⎥⎥

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

X |Y = y ∼N µX + ρσ X

σY

(y − µY ),σ X2 (1− ρ2)

⎝⎜⎞

⎠⎟.

Page 74: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 74

Analogous, the conditional density function of Y under the condition {X = x} is given by

Thus, we can write

fY (y | X = x) =fXY (x,y)fX (x)

= 1

σY 2π 1− ρ2( )×

exp − 12σY

2(1− ρ2)y − µY + ρ

σY

σ X

x − µX( )⎛

⎝⎜⎞

⎠⎟⎡

⎣⎢⎢

⎦⎥⎥

2⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪.

Y | X = x∼N µY + ρσY

σ X

(x − µX ),σY2(1− ρ2)

⎝⎜⎞

⎠⎟.

Page 75: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 75

1.8 Transformations of Random Variables1.8.1 Function of One Random VariableLet g : R® R be a measurable function, i.e. "y Î R is

Then, we can define a random variable Y : X ® R by

possessing a distribution function determined by FY (y) = P(Y ≤ y) = P g(X ) ≤ y( )

= P ξ :g X (ξ)( ) ≤ y{ }( ) = P X −1 g−1 (−∞,y ]( )( )( ) .

ξ !Y(ξ) = g X (ξ)( )

g−1 (−∞,y ]( ) = {x :g(x) ≤ y } ∈B.

Page 76: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 76

Strictly Monotonic Functiona) Suppose that g(x) is a strictly monotonic increasing

function. The distribution function can be written as

Moreover, if fX (x) is continuous and g(x) continuously differentiable at x = g -1(y) we can derive the density function fY (y) by applying the chain role of calculus.

FY (y) = P(Y ≤ y) = P g(X ) ≤ y( )= P X ≤ g−1(y)( ) = FX g−1(y)( ) = fX (x)dx−∞

g−1(y )

∫ .

Page 77: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 77

Hence, we obtain

fY (y) = fX g−1(y)( )d g

−1(y)( )dy

for g(−∞) < y < g(∞)

0 elsewhere

⎨⎪

⎩⎪

=

fX g−1(y)( )

dg(x) dxx=g−1(y )

for g(−∞) < y < g(∞)

0 elsewhere

⎨⎪⎪

⎩⎪⎪

Page 78: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 78

b) Let g(x) be a strictly monotonic decreasing function. Consequently, we have

Again, if fX (x) is continuous and g(x) continuously dif-ferentiable at x = g -1(y) the density function fY (y) can be determined by employing the chain role of calculus.

FY (y) = P(Y ≤ y) = P g(X ) ≤ y( ) = P X ≥ g−1(y)( )= 1−P X < g−1(y)( ) = 1− FX g−1(y)− 0( )= 1− fX (x)dx−∞

g−1(y )

∫ = fX (x)dxg−1(y )

Page 79: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 79

Thus, we obtain

fY (y) = − fX g−1(y)( )d g

−1(y)( )dy

for g(−∞) < y < g(∞)

0 elsewhere

⎨⎪

⎩⎪

=−

fX g−1(y)( )

dg(x) dxx=g−1(y )

for g(−∞) < y < g(∞)

0 elsewhere

⎨⎪⎪

⎩⎪⎪

Page 80: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 80

Exploiting the property

the results of case a) and b) can be summarised.Let fX (x) be continuous at x = g -1(y) and g(x) any strictly monotonic function that is continuously differentiable at x = g -1(y). Then fY (y) can be calculated by

dg(x) dx > 0 for g(x) strictly monotonic increasing< 0 for g(x) strictly monotonic decreasing

fY (y) =

fX g−1(y)( )

dg(x) dxx=g−1(y )

for g(−∞) < y < g(∞)

0 elsewhere

⎨⎪⎪

⎩⎪⎪

Page 81: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 81

Exercise 1.8-1: Linear function

Page 82: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 82

Non-Monotonic FunctionTheorem:Let fX (x) denote the continuous density function of the random variable X and let g(x) be a continuously differ-entiable function. Furthermore, suppose that equation y = g(x) may possess n solutions for a particular y, i.e.

Then, fY (y), the continuous density function of the ran-dom variable Y = g(X) can be determined by

fY (y) =fX (xi )

dg(xi ) dx xi=gi−1(y )

i=1

n

y = g(x1) =… = g(xn).

Page 83: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 83

Exercise 1.8-2: Quadratic function

Page 84: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 84

1.8.2 One Function of Two Random VariablesSuppose (X,Y) are random variables with bivariate den-sity function fXY (x,y). Let g(x,y) be a function such that

represents a random variable, i.e. for all z Î R is

Then the distribution function of Z is given by

Z = g(X ,Y )

Dz = (x,y) :g(x,y) ≤ z{ }∈B.

FZ (z) = P(Z ≤ z) = P g(X ,Y ) ≤ z( )= P (X ,Y )∈Dz( ) = fXY (x,y)dxdyDz

∫∫

Page 85: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 85

Exercise 1.8-3: Sum of two random variables

Exercise 1.8-4: Magnitude of the difference of two independent random variables

Page 86: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 86

1.8.3 Two Functions of Two Random VariablesLet (X,Y) be random variables with bivariate density func-tion fXY (x,y). Suppose g1(x,y) and g2(x,y) are functions such that

are random variables, i.e. for all u,v Î R are

and consequently

),(and),( 21 YXgVYXgU ==

Duv = Du ∩Dv = (x,y) :g1(x,y) ≤ u,g2(x,y) ≤ v{ }∈B.

Du = (x,y) :g1(x,y) ≤ u{ }∈B ,Dv = (x,y) :g2(x,y) ≤ v{ }∈B

Page 87: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 87

The bivariate distribution function of (U,V) is given by

Assume that the equation system

has the unique solution (x,y) = g1

−1(u,v),g2−1(u,v)( ).

FUV (u,v) = P(U ≤ u,V ≤ v)

= P g1(X ,Y ) ≤ u,g2(X ,Y ) ≤ v( )= P (X ,Y )∈Duv( ) = fXY (x,y)dxdyDuv

∫∫ .

(u,v) = g1(x,y),g2(x,y)( )

Page 88: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 88

Furthermore, suppose g1(x,y), g2(x,y) have continuous partial derivatives and the determinant of the Jacobian

does not vanish, i.e.

Then the bivariate density function of (U,V) is given by

J(x,y) =∂(g1,g2)∂(x,y)

=∂g1 ∂x ∂g1 ∂y∂g2 ∂x ∂g2 ∂y

⎝⎜

⎠⎟

det J(x,y)( ) ≠ 0.

fUV (u,v) =fXY g1

−1(u,v),g2−1(u,v)( )

det J g1−1(u,v),g2

−1(u,v)( )( ) .

Page 89: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 89

Alternatively, using the Jacobian

and exploiting the well known results

and

we can write

!J(u,v) = J g1−1(u,v),g2

−1(u,v)( )−1

!J(u,v) =∂(g1

−1,g2−1)

∂(u,v)=

∂g1−1 ∂u ∂g1

−1 ∂v

∂g2−1 ∂u ∂g2

−1 ∂v

⎝⎜

⎠⎟ .

fUV (u,v) = fXY g1−1(u,v),g2

−1(u,v)( ) det !J(u,v)( ) .

det !J(u,v)( ) = 1 det J g1−1(u,v),g2

−1(u,v)( )( )

Page 90: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 90

Exercise 1.8-5: Linear transformation

Exercise 1.8-6: Product of two random variables

Exercise 1.8-7: Quotient of two random variables

Exercise 1.8-8:Rayleigh distribution

Page 91: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 91

1.9 Expectation Operator1.9.1 Expectation for Univariate DistributionsExpected Value of a Random VariableThe expected value of a random variable X, also called mean value, is defined by

provided that the sum respectively integral converges absolutely. The two cases can be summarized by introducing the

µX = E(X ) =xi pX (xi ) when X is discrete

i∑

xfX (x) dx−∞

∫ when X is continuous

⎨⎪

⎩⎪

Page 92: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 92

so-called Stieltjes-Integral

Remark:Let a = x0 < x1 < … < xn = b be points that provide a par-tition of [a,b] into n subintervals (xk,xk+1] (k = 0,…,n-1)andThen the Stieltjes-Integral is defined by

µX = E(X ) = x dFX (x)−∞

∫ .

g(x)a

b

∫ dF(x) = limn→∞

maxk(xk+1−xk )→0

g( !xk ) F(xk+1)− F(xk )( )k=0

n−1

∑ .

!xk ∈(xk ,xk+1].

Page 93: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 93

Exercise 1.9-1: Expected value for Poisson distribution

Exercise 1.9-2: Expected value for exponential distribution

Exercise 1.9-3: Expected value for normal distribution

Exercise 1.9-4: Expected value for Cauchy distribution

Page 94: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 94

Expected Value of a Function of a Random VariableFor a measurable function, g(X), of the random variable X, we define the expected value of g(X) by

provided that the sum respectively integral converges absolutely.

E g(X )( ) = g(x) dFX (x)−∞

=g(xi )pX (xi ) when X is discrete

i∑

g(x)fX (x) dx−∞

∫ when X is continuous

⎨⎪

⎩⎪

Page 95: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 95

Let FY (y) denote the distribution function of the random variable Y = g(X), then by using the definition of integra-tion it is easy to establish that

Consequently, the expected value of a function of a ran-dom variable g(X) can be computed directly without de-termining first the distribution function of the random var-iable Y = g(X).

E g(X )( ) = g(x) dFX (x)−∞

∫ = y dFY (y)−∞

∫ = E(Y ).

Page 96: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 96

MomentsIf g(X) = Xk with k > 0, the expected value of g(X), i.e.

is called k-th moment of X provided that the integral con-verges absolutely. For k = 1, we obtain the mean value µX = m1 = E(X).

mk = E(X k ) = xk dFX (x)−∞

=xik pX (xi ) when X is discrete

i∑

xk fX (x) dx−∞

∫ when X is continuous

⎨⎪

⎩⎪

Page 97: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 97

Centralised MomentsSuppose g(X) = (X - µX)k with k > 0, then the expected value of g(X), i.e.

is called k-th centralised moment of X.

ck = E (X − µX )k( ) = E k

m⎛⎝⎜

⎞⎠⎟m=0

k

∑ (−µX )mX k−m⎛

⎝⎜⎞

⎠⎟

=km

⎛⎝⎜

⎞⎠⎟m=0

k

∑ (−µX )mE(X k−m)

Page 98: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 98

For k = 2, the centralised moment given by

is called variance. The positive root of the variance is denoted by sX and is called standard deviation.

Absolute MomentsThe k-th absolute moment of X is defined by

σ X2 = Var(X ) = c2 = E (X − µX )

2( ) = E(X 2)− µX2

E |X |k( ) = |x|k dFX (x)−∞

∫ .

Page 99: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 99

Because of the inequality

we can state that the existence of the k-th absolute mo-ment insures the existence of the (k-1)-th moment.

Chebyschev InequalityLet X be a random variable. For k ³ 1 and any e > 0 the inequality

holds.

|X |k−1≤1+ |X |k for k = 1,2,…,

P |X | ≥ ε( ) ≤ E |X |k( )

ε k

Page 100: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 100

Exercise 1.9-5:Second order moments for Poisson distribution

Exercise 1.9-6: Second order moments for exponential distribution

Exercise 1.9-7:Second order moments for normal distribution

Exercise 1.9-8:Application and proof of the Chebyschev inequality

Page 101: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 101

Characteristic FunctionThe characteristic function of the random variable X is de-fined by taking the expected value of g(X) = e jsX, i.e.

where s Î R.

ΦX(s) =E(e js X) = e js x dFX (x)−∞

=

e js xi pX (xi ) when X is discretei∑

e js x fX (x) dx−∞

∫ when X is continuous

⎨⎪⎪

⎩⎪⎪

Page 102: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 102

Characteristic functions have the properties: § FX (s) is continuous in s

(absolute and uniform convergence of the sum resp. integral)

§ |FX (s)| £ 1 for all s Î R

§ FX (0) = E(e0) = E(1) = 1(characteristic function takes its maximum at s = 0)

Note:

ΦX(s) = e js x fX (x)dx−∞

∫ ≤ e js x fX (x)dx−∞

∫ = fX (x)dx−∞

∫ =1

ΦX(s) = e js xi pX (xi )i∑ ≤ e js xi pX (xi )i∑ = pX (xi )i∑ =1

Page 103: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 103

Moreover, one can easily observe that FX (-w) equals the Fourier transform of fX (x). Hence, the properties of a characteristic function are es-sentially equivalent to the properties of a Fourier trans-form (one-to-one mapping).

Consequently, the probability distribution of a random var-iable is uniquely defined by the inverse Fourier transformof the characteristic function FX (s), i.e.

fX (x) =12π

e− j s xΦX (s)ds−∞

∫ .

Page 104: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 104

Let X be a random variable with characteristic function FX (s) and Y = aX + b. Thus, the characteristic function of Y can be easily determined by

Its probability density function can be derived by apply-ing the inverse Fourier Transform as follows

ΦY (s) = E(ejsY ) = E(e js(aX +b)) = e jbsE(e jas X ) = e jbsΦX (as).

fY (y) =12π

e− j s y

−∞

∫ ΦY (s)ds =12π

e− j s(y−b)

−∞

∫ ΦX (as)ds

= 1a12π

e− j ′s (y−b) a

−∞

∫ ΦX ( ′s )d ′s = 1afX

y − ba

⎛⎝⎜

⎞⎠⎟.

Page 105: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 105

Moment TheoremSuppose that E(Xk) exists for any k ³ 1, i.e. E(|X|k) < ¥, and therefore

holds, i.e. the order of differentiation and integration can be interchanged, we can deduce the so-called moment theorem

dkΦX (s)dsk

= dkE(e js X )dsk

= E ∂k e j s X

∂sk⎛⎝⎜

⎞⎠⎟= j kE(X ke js X ),

mk = E X k( ) = 1j kdkΦX (s)dsk

s=0

Page 106: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 106

Exercise 1.9-9:Characteristic function of univariate normal distributions

Exercise 1.9-10:Higher order moments of univariate normal distributions

Exercise 1.9-11:Non-negative definiteness of the characteristic function

Page 107: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 107

1.9.2 Expectation for Bivariate DistributionsExpected Value of a Function of two Random VariablesFor a measurable function g(X,Y) of the random variables X and Y, the expected value of g(X,Y) is defined by

provided that the sum respectively integral converges ab-solutely.

E g(X ,Y )( ) = g(x,y) d 2FXY (x,y)−∞

∫−∞

∫ =

=

g(xi ,y j ) pXY (xi ,y j ) in the discrete casej∑

i∑

g(x,y)fXY (x,y) dxdy in the continuous case−∞

∫−∞

⎜⎜⎜⎜

Page 108: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 108

FZ (z) may denote the distribution function of the random variable Z = g(X,Y). Then analogue to the univariate case, we can show that

That is, the expected value of a function of two random variables g(X,Y) can be computed directly without deter-mining first the distribution function of the random vari-able Z = g(X,Y).

E g(X ,Y )( ) = g(x,y) d 2FXY (x,y)−∞

∫−∞

∫= z dFZ (z)−∞

∫ = E(Z).

Page 109: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 109

Expected Value of a Linear CombinationThe expected value of a linear combination leads to

Thus, the expected value of a linear combination equals the linear combination of the expected values.

We note in particular that

E ai gi (X ,Y )i∑⎛⎝⎜

⎞⎠⎟= ai gi (x,y)

i∑ d 2FXY (x,y)−∞

∫−∞

∫ =

= ai gi (x,y) d2FXY (x,y)−∞

∫−∞

∫i∑ = aiE gi (X ,Y )( )

i∑ .

E(aX k + bY k ) = aE(X k )+ bE(Yk ) for k ≥1.

Page 110: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 110

Bivariate MomentsThe (k,l)-th moment and centralised moment of discretedistributed random variables are defined by

and

respectively.

mkl = E(XkY l ) = xi

ky jl pXY (xi ,y j )

j∑

i∑ k = 1,2,…; l = 1,2,…

ckl = E X −E(X )( )k Y −E(Y )( )l( ) = E (X − µX )k (Y − µY )

l( )= (xi − µX )

k (y j − µY )l pXY (xi ,y j )

j∑

i∑ ,

k = 1,2,…; l = 1,2,…

Page 111: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 111

In case of continuously distributed random variables, the (k,l)-th moment and centralised moment are defined by

and

respectively.

mkl = E(X kY l ) = xky l fXY (x,y) dxdy−∞

∫−∞

∫ k = 1,2,…; l = 1,2,…

ckl = E X −E(X )( )k Y −E(Y )( )l( ) = E (X − µX )k (Y − µY )l( )= (x − µX )k (y − µY )l fXY (x,y) dxdy

−∞

∫−∞

∫ k = 1,2,…; l = 1,2,…

Page 112: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 112

On setting k = 0 or l = 0, the moments reduce to the cor-responding moments of the marginal distributions of Xand Y. However, if k ³ 1 and l ³ 1, the moments become func-tions of the complete bivariate distribution.

In particular, setting k = l = 1, the centralised moment,called the covariance between X and Y, is given by

and

c11 = Cov(X,Y ) = E (X − µX )(Y − µY )( )= (xi − µX )(y j − µY )pXY (xi ,y j )

j∑

i∑

Page 113: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 113

for the discrete and continuous case, respectively. The covariance can be expressed by first and second or-der moments as follows

Furthermore, we have

c11 = Cov(X,Y ) = E (X − µX )(Y − µY )( )= (x − µX )(y − µY )fXY (x,y) dxdy−∞

∫−∞

c11 = Cov(X,Y ) = E (X − µX )(Y − µY )( ) = E(XY )− µXµY .

c20 = Cov(X,X ) = E (X −µX )2( )

= Var(X ) = E(X 2)−µX2 = σ X

2 .

Page 114: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 114

The covariance measures the degree of linear associa-tion between X,Y; i.e. the larger resp. smaller the mag-nitude of the covariance the larger resp. smaller is the linear association.To achieve an unified understanding about what is large and small, we introduce the normalized quantity

which is called the correlation coefficient between X,Y.

ρ (X,Y ) = Cov(X ,Y )Var(X )Var(Y )

=c11c20 c02

,

Page 115: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 115

Exercise 1.9-12:Covariance and correlation coefficient of bivariate normal distributions

Page 116: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 116

Theorem:For all bivariate distributions with finite second order mo-ments the Cauchy Schwarz inequality

holds and the correlation coefficient satisfies the inequality

where the equality sign is taken, if, with probability 1, a linear relationship between X and Y exists.

E(XY )( )2 ≤E(X 2)E(Y 2)

ρ (X,Y ) ≤1,

Page 117: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 117

Exercise 1.9-13:Proof of the inequalities

Page 118: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 118

Uncorrelatedness, Orthogonality and Independence Let X,Y be random variables. Then X,Y are called

(1) uncorrelated, if

(2) orthogonal, if

(3) independent, if for all x,y Î R

ρ(X,Y ) = 0⇒Cov(X,Y ) = 0⇒E(XY ) = E(X )E(Y )

E(XY ) = xy fXY (x,y) dxdy−∞

∫−∞

∫ = 0

fXY (x,y) = fX (x) ⋅ fy (y)

Page 119: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 119

Implications:1) If X and Y are independent random variables and

g1(x) and g2(y) are measurable functions then U =g1(X) and V = g2(Y) are independent and uncorre-lated random variables.

2) If X and Y are orthogonal random variables then E(X+Y)2 = E(X 2) + E(Y 2) holds.

3) If X and Y are orthogonal random variables and E(X) = 0 or/and E(Y) = 0 then X and Y are uncor-related random variables.

Page 120: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 120

Remarks:§ If X and Y are uncorrelated random variables then

U = g1(X) and V = g2(Y) are not necessarily uncorre-lated random variables.

§ If X and Y are uncorrelated random variables then X and Y are not necessarily independent random var-iables.

§ If X and Y are uncorrelated and normally distributed random variables then X and Y are also independent random variables.

Page 121: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 121

Exercise 1.9-14:Verification of the remarks

Page 122: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 122

Conditional Expected ValueSuppose that X and Y are bivariate distributed continu-ous random variables. The conditional expected value of X, given Y = y, written as EX (X |Y = y) is defined by

provided that the integral converges absolutely. The corresponding expression for the discrete case is obtained with obvious modifications.

EX (X |Y = y) = x fX (x |Y = y) dx−∞

∫ =

= xfXY (x,y)fY (y)

dx−∞

∫ = 1fY (y)

x fXY (x,y) dx−∞

Page 123: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 123

In general, the value of EX (X |Y = y) will vary as we vary the value of y. Thus, EX (X |Y = y) will be a function of y and we can write

where yX (y) is called the regression function of X on Y.

Analogously, the conditional expected value of Y, given X = x, is defined by

where yY (x) denotes the regression function of Y on X.

EX (X |Y = y) =ψ X (y),

EY (Y | X = x) =ψY (x),

Page 124: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 124

More generally, if we consider a measurable function of X, g(X), whose expected value exists, then the conditional expected value of g(X), given Y = y, is given by

Similarly, the conditional expected value of g(Y), given X = x, is defined by

EX g(X ) |Y = y( ) = g(x)fX (x |Y = y) dx−∞

∫= 1fY (y)

g(x)fXY (x,y) dx−∞

∫ =ψ g(X )(y).

EY g(Y ) | X = x( ) =ψ g(Y )(x).

Page 125: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 125

Conditional ExpectationLet us now consider the random variable yg(X)(Y), which we obtain by replacing y by Y in the function yg(X)(×).

The random variable yg(X)(Y) is called the conditional ex-pectation of g(X), given Y, and we write

For the random variable yg(Y)(X), we analogous write

ψ g(X )(Y ) = EX g(X ) |Y( ).

ψ g(Y )(X ) = EY g(Y ) | X( ).

Page 126: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 126

Properties of conditional expectations:(1) EY[EX (X |Y)] = E(X), EX [EY (Y|X)] = E(Y)

or more generally EY [EX (g(X)|Y)] = E(g(X)), EX [EY (g(Y)|X)] = E(g(Y))

(2) Moreover, if h(Y) is a function such that E(g(X)h(Y))exists, thenEX (g(X)h(Y) |Y=y) = h(y)EX (g(X) |Y=y) (conditional on Y=y, h(Y) can be treated as constant) and hence we haveEY [EX(g(X)h(Y) |Y)] = EY [h(Y)EX (g(X) |Y)]

= E(g(X)h(Y))

Page 127: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 127

Exercise 1.9-15:Verification of the properties

Exercise 1.9-16:Determination of E(XY) for bivariate normal distributed random variables

Page 128: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 128

Bivariate Characteristic FunctionThe bivariate characteristic function of the random varia-bles X and Y is defined by

and we can write

and

for the discrete and continuous case respectively.

ΦXY (s1,s2) = exp j s1x + s2y( )( ) fXY (x,y) dxdy−∞

∫−∞

ΦXY (s1,s2) = exp j s1xn + s2ym( )( )m∑ pXY (xn,ym)

n∑

ΦXY (s1,s2) = E exp j s1X + s2Y( )( )( ) with (s1,s2)T ∈!2,

Page 129: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 129

Properties of bivariate characteristic functions: § FXY (s1,s2) is continuous in s1 and s2

§ |FXY (s1,s2)| £ 1 for all (s1,s2)TÎ R2

§ FXY (s1,0) = FX (s1) and FXY (0,s2) = FY (s2)§ FXY (0,0) = E(e0) = E(1) = 1§ FXY (-w1,-w2) is the 2d-Fourier transform of fXY (x,y)

§ the random variables X and Y are independent, iffFXY (s1,s2) = FX (s1) ·FY (s2)

⇒ fXY (x,y) =1

(2π )2e− j s1x+s2 y( )

−∞

∫ ΦXY (s1,s2) ds1ds2−∞

Page 130: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 130

Exercise 1.9-17:Determine the density of Z = X +Y, if X and Y are independent random variables

Page 131: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 131

Moment TheoremSupposing the moments mkl = E(XkY l) exist and therefore

holds, i.e. the order of differentiation and integration can be interchanged, we can deduce the moment theorem

∂k+lΦXY (s1,s2)∂s1

k ∂s2l =

∂k+lE e j (s1X +s2Y )( )∂s1

k ∂s2l

= j k+lE X kY le j (s1X +s2Y )( ),

mkl = E X kY l( ) = 1j k+l

∂k+lΦXY (s1,s2)∂s1

k ∂s2l

s1=0,s2=0

.

Page 132: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 132

1.9.3 Mean Square Error EstimationNon-linear Mean Square Error EstimationWe wish to estimate the random variable Y by a functionof the random variable X. Our aim is to find any functiong(X) such that the mean square error

is minimum. Over the class of all functions g for which the expected value exists, q(g) is minimized by choosing

q(g) = E Y − g(X )( )2( ) = y − g(x)( )2 fXY (x,y) dxdy−∞

∫−∞

g(x) =ψY (x) = EY (Y | X = x) .

Page 133: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 133

Exercise 1.9-18:Proof of the non-linear mean square error estimation result

Page 134: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 134

Linear Mean Square Error EstimationNow we wish to estimate the random variable Y by a lin-ear function of X, i.e. g(X) = a1X + a0. The objective is to minimise the mean square error

by varying the parameters a1 and a0.

That is, we want to solve the minimisation problem

The mean square error is minimum if the equation system

q(a1,a0) = E Y − (a1X + a0)( )2⎡⎣⎢

⎤⎦⎥

a = a1,a0( )T = argmina1,a0

q(a1,a0)( ).

Page 135: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 135

is satisfied. Solving the equation system provides

and

a1 =E(XY )−E(X )E(Y )

E X 2( )− E(X )( )2=m11 −m10m01

m20 −m102 = Cov(X ,Y )

Var(X )

= ρ(X ,Y )σY σ X

∂q(a1,a0) ∂a1∂q(a1,a0) ∂a0

⎝⎜

⎠⎟a1=a1a0=a0

= −2E Y − a1X − a0( )X( )E Y − a1X − a0( )

⎝⎜⎜

⎠⎟⎟= 0

a0 = E(Y )− a1E(X ) =m01 − a1m10 =m20m01 −m10m11

m20 −m102 .

Page 136: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 136

Substitution of a1 and a0 by â1 and â0 in q(a1,a0) gives theminimum mean square error

Moreover, the minimum mean square errors of the linear and non-linear approach obviously satisfy the relationship

q(a1,a0) = E Y − (a1X + a0)( )2( )= E Y −E(Y )− a1 X −E(X )( )( )2⎛

⎝⎞⎠

= Var(Y )−2a1Cov(X ,Y )+ a12 Var(X )

= σY2 1− ρ2(X ,Y )( ).

q(a1,a0) ≥ q(g) .

Page 137: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 137

Exercise 1.9-19:Mean square error estimation for bivariate normal distributed random variables

Page 138: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 138

1.10 Vector-valued Random Variables1.10.1 Multivariate DistributionsMultivariate Distributions and Density FunctionsThe basic ideas of bivariate distributions are easily ex-tended to the general case, where instead of two, n ran-dom variables X1,X2,…,Xn are considered.

Thus, the distribution function of the random vector X =(X1,X2,…,Xn)T is defined by

and the density function is given by

FX(x) = FX1…Xn (x1,…,xn) = P(X1 ≤ x1,…,Xn ≤ xn)

Page 139: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 139

Marginal Distributions and Density FunctionsFor a given multivariate distribution function of X1,X2,…,Xn, the marginal distribution and density function of X1,X2, …,Xk can be expressed by

and

respectively.

FX1…Xk (x1,…,xk ) = FX1…Xk…Xn (x1,…,xk ,∞,…,∞)

fX(x) = fX1…Xn (x1,…,xn) =∂n

∂x1!∂xnFX1…Xn (x1,…,xn).

fX1…Xk(x1,…,xk) = ! fX1…Xk…Xn(x1,…,xk,xk+1,…,xn)dxk+1!dxn−∞

∫−∞

Page 140: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 140

Conditional Distributions and Density FunctionsThe conditional distribution and density function of X1,…,Xk under the condition {Xk+1 = xk+1,…,Xn = xn} is given by

and

FX1…Xk (x1,…,xk | Xk+1 = xk+1,…,Xn = xn) =

= P(X1 ≤ x1,…,Xk ≤ xk | Xk+1 = xk+1,…,Xn = xn)

fX1…Xk(x1,…,xk | Xk+1= xk+1,…,Xn= xn) =fX1…Xn(x1,…,xn)

fXk+1…Xn(xk+1,…,xn)

Page 141: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 141

Notation:

Exercise 1.10-1:Calculations with conditional densities

FX1…Xk (x1,…,xk | xk+1,…,xn) =

= FX1…Xk (x1,…,xk | Xk+1 = xk+1,…,Xn = xn)

and

fX1…Xk (x1,…,xk | xk+1,…,xn) =

= fX1…Xk (x1,…,xk | Xk+1 = xk+1,…,Xn = xn)

Page 142: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 142

Independent Random VariablesThe random variables X1, X2,…, Xn are said to be inde-pendent, if the multivariate distribution or density func-tion breaks down into the product of n marginal distribu-tions or density functions.

Thus X1,X2,…,Xn are independent if the multivariate dis-tribution can be written in the form

(valid for the discrete and continuous case)

FX1…Xn (x1,…,xn) = FXi (xi )i=1

n

Page 143: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 143

or if the density function can be written in the form

(applies for the continuous case).The random variables X1,…,Xk are independent from the random variables Xk+1,…, Xn if the multivariate distribu-tion or the density function can be expressed by

or

FX1…Xn (x1,…,xn) = FX1…Xk (x1,…,xk ) ⋅FXk+1…Xn (xk+1,…,xn)

fX1…Xn (x1,…,xn) = fX1…Xk (x1,…,xk ) ⋅ fXk+1…Xn (xk+1,…,xn).

fX1…Xn (x1,…,xn) = fXi (xi )i=1

n

Page 144: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 144

1.10.2 Transformation of Vector-valued Random Variables

Suppose X1,X2,…,Xn are random variables and g1,…,gmare functions with m £ n such that

are random variables. Then the multivariate distribution of Y1,Y2,…,Ym is given by

Y1 = g1(X1,…,Xn),…,Ym = gm(X1,…,Xn)

FY1…Ym (y1,…,ym) =

= P g1(X1,…,Xn) ≤ y1,…,gm(X1,…,Xn) ≤ ym( ).

Page 145: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 145

The multivariate density function of Y1,Y2,…,Ym can be determined as follows. In case of m < n we define n- mfunctions (auxiliary variables)

Assume that the equation system

has the unique solution

yi = gi (x1,…,xn) for i = 1,…,myi = xi = gi (x1,…,xn) for i =m +1,…,n.

(x1,…,xn)T = g1

−1(y1,…,yn),…,gn−1(y1,…,yn)( )T .

(y1,…,yn)T = g1(x1,…,xn),…,gn(x1,…,xn)( )T

Page 146: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 146

Furthermore, suppose g1(x1,x2,…,xn),…, gn(x1,x2,…,xn) have continuous partial derivatives and the determinant of the Jacobian

does not vanish, i.e.

J(x1,…,xn) =

∂g1∂x1

!∂g1∂xn

! !∂gn∂x1

!∂gn∂xn

⎜⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟⎟

det J(x1,…,xn)( ) ≠ 0,

Page 147: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 147

then the multivariate density function of Y1,Y2,…,Yn is given by

Finally, integration over ym+1,…,yn provides the multivar-iate density function of Y1,Y2,…,Ym.

fY1…Yn (y1,…,yn) =fX1…Xn (x1,…,xn)

detJ(x1,…,xn) x1=g1−1(y1,…,yn )

!xn=gn

−1(y1,…,yn )

.

fY1…Ym (y1,…,ym) = ! fY1…Yn (y1,…,yn)dym+1!dyn−∞

∫−∞

Page 148: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 148

Exercise 1.10-2:Density of a linear combination of random variables

Page 149: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 149

1.10.3 Expectations for Vector-valued Random Variables

Expected ValueFor a measurable function g(X1, X2,…, Xn) the expectedvalue of g(X1,X2,…,Xn) is defined by

provided that the sum resp. integral converges absolutely.

E g(X1,…,Xn)( ) = ! g(x1,…,xn)dnFX1…Xn(x1,…,xn)−∞

∫−∞

=

! g(x1,i1,…,xn,in) pi1…inin

∑i1

! g(x1,…,xn)fX1…Xn(x1,…,xn)dx1!dxn−∞

∫−∞

⎜⎜⎜⎜

Page 150: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 150

Conditional Expected ValueLet X1, X2,…, Xn are multivariate distributed continuousrandom variables. The conditional expected value of X1, given X2 = x2,…, Xn = xn is defined by

E X1 | X 2 = x2,…,Xn = xn( ) = x1 fX1(x1 | x2,…,xn)dx1−∞

= x1fx1…xn (x1,…,xn)

fx2…xn (x2,…,xn)dx1−∞

∫=ψ X1

(x2,…,xn).

Page 151: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 151

Conditional ExpectationNow, replacing x2,…,xn by X2,…, Xn in yX1

(x2,…,xn) we obtain the random variable

which is called the conditional expectation of X1, given X2,…,Xn.

Properties of conditional expectations:

ψ X1(X 2,…,Xn) = E X1 | X 2,…,Xn( )

E E X1 | X 2,…,Xn( )⎡⎣ ⎤⎦ = E(X1)

E X1X 2 | X3( ) = E E X1X 2 | X 2,X3( ) | X3⎡⎣ ⎤⎦

= E X 2E X1 | X 2,X3( ) | X3⎡⎣ ⎤⎦

Page 152: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 152

Uncorrelated and Orthogonal Random VariablesThe random variables X1,…, Xn are called uncorrelatedresp. called orthogonal if for all i ¹ j

holds. Consequently, if X1,…, Xn are uncorrelated resp. are or-thogonal and

we can write

E XiX j( ) = E Xi( )E X j( ) resp. E XiX j( ) = 0

U = Xii=1

n∑ ,

σU2 = σ Xi

2

i=1

n

∑ resp. E U2( ) = E Xi2( )

i=1

n

∑ .

Page 153: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 153

MomentsLet X1,…, Xn be multivariate distributed continuous ran-dom variables. Then common moments of X1,…, Xn can be determined by

and where the order of the moments is defined by

mk1…kn= E X1

k1,…,Xnkn( )

= x1k1!xn

knfX1…Xn (x1,…,xn)dx1!dxn−∞

r = k1 +!+ kn.

Page 154: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 154

Characteristic FunctionsThe characteristic function of the multivariate distributed random variables X1,…,Xn is given by

Hence, if the random variables X1,…,Xn are independent, we obtain

ΦX(s) = ΦX1…Xn(s1,…,sn)

= E exp j siX ii=1

n

∑⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟= E exp j sTX( )⎡

⎣⎤⎦.

ΦX(s)=E exp jsi X i( )i=1

n

∏⎛⎝⎜⎞⎠⎟= E exp jsi X i( )⎡⎣ ⎤⎦

i=1

n

∏ = ΦXi(si )

i=1

n

Page 155: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 155

Let X1,…,Xn be now independent random variables and

then the characteristic function of U is given by

If in addition, the X1,…,Xn possess the density functions fX1

,…, fXn, the density function of U can be determined by

U = Xii=1

n

∑ ,

ΦU (s) = E exp j sU( )⎡⎣ ⎤⎦ = E exp j sX ii=1

n

∑⎛⎝⎜

⎞⎠⎟

⎝⎜⎞

⎠⎟= ΦXi

(s)i=1

n

∏ .

fU (u) = fX1∗ fX2∗!∗ fXn( ) (u)

Page 156: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 156

Exercise 1.10-3:Sample mean and sample variance of independent normally distributed random variables

Page 157: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 157

Moment TheoremSuppose that the moments exist and therefore

holds, we can deduce the moment theorem

mk1…kn= E X1

k1!Xnkn( ) = 1

j k1+!+kn

∂k1+!+knΦX1!Xn(s1,…,sn)

∂sk1!∂skn s1=0"

sn=0

.

∂k1+!+knΦX1,…,Xn(s1,…,sn)

∂s1k1!∂sn

kn=∂k1+!+knE e j (s1X1+!+snXn )( )

∂s1k1!∂sn

kn

= j k1+!+knE X1k1!Xn

kn e j (s1X1+!+snXn )( ),

mk1…kn= E X1

k1!Xnkn( )

Page 158: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 158

Exercise 1.10-4:Application of the Moment Theorem

Page 159: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 159

1.10.4 Mean Square Error EstimationNon-linear Mean Square Error EstimationTo estimate the random variable X0 by means of the ran-dom variables X1,…, Xn, we want to find any function g(X1,…,Xn) that minimizes the mean square error

Over the class of all functions g for which the expected value exists, q(g) is minimised by choosing

q(g) = E X0 − g(X1,…,Xn)( )2( )= ! x0− g(x1,…,xn)( )2 fX0…Xn(x0,…,xn)dx0!dxn−∞

∫−∞

∫ .

g(x1,…,xn) =ψ X0(x1,…,xn) = EX0 X0 | X1= x1,…,Xn= xn( ) .

Page 160: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 160

Linear Mean Square Error EstimationNow we wish to estimate the random variable X0 by a lin-ear function of X1,…,Xn, i.e.

such that the mean square error

is minimized by varying the parameter vector a.

g(X1,…,Xn) = a1X1 +!+ anXn = aiX ii=1

n

∑ = aTX,

q(a) = q(a1,…,an) = E X0 − aiX ii=1

n

∑ )⎛⎝⎜

⎞⎠⎟

2⎛

⎝⎜⎜

⎠⎟⎟= E X0 − a

TX( )2⎡⎣⎢

⎤⎦⎥

Page 161: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 161

Thus, we have to solve the minimisation problem

The mean square error is minimum if

is satisfied for i = 1,…, n. After some manipulations we obtain the equation system

where

a = (a1,…,an)T = argmin

a1,…,an

q(a1,…,an)( ).

∂q(a)∂ai a=a

= −2E X0 − aTX( )Xi

⎡⎣

⎤⎦ = 0

Ra = r,

R = E(XXT ) and r = E(X0X).

Page 162: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 162

With the estimate the minimum mean square er-ror is given by

q(a) = E X0 − aTX( )2⎡

⎣⎢⎤⎦⎥

= E X0 − (R−1r)TX( )2⎡

⎣⎢⎤⎦⎥= E X0 − r

TR−1X( )2⎡⎣⎢

⎤⎦⎥

= E X0X0 − 2rTR−1XX0 + r

TR−1XXTR−1r( )= E X0

2( )− 2rTR−1r + rTR−1RR−1r

= E X02( )− rTR−1r

a =R−1r

Page 163: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 163

Orthogonality PrincipleThe coefficient vector that minimizes the mean square error satisfies the equation

Thus, the residual

is orthogonal to the observations X1,…,Xn. This is knownas the orthogonality principle.

a

E X0 − aTX( )Xi

⎡⎣

⎤⎦ = 0, i = 1,…,n

R = X0 − aTX = X0 − X0

Page 164: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 164

A geometric interpretation of this result is shown in the figure below, where X0, R and X1,…, Xn are thought of as vectors.

R = X0 − X0

0X

3X2X

1X

XaTX ˆˆ0 =

Page 165: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 165

Consequently, 1) is the orthogonal projection of X0 onto the sub-

space U spanned by the observations X1,…,Xn. 2) R is orthogonal to the subspace U and therefore or-

thogonal to the observations X1,…,Xn.3) if and only

if X0 lies within the subspace U, i.e. X0 is linearly de-pendent on X1,…,Xn, thus .

4) if and only if X0 is or-thogonal to the subspace U.

X0

X0 = aTX

q( a) = E (X0 − X0)2( ) = E (X0 − X0)X0( ) = 0

q( a) = E (X0 − X0)X0( ) = E X02( )

Page 166: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 166

1.10.5 Multivariate Normal DistributionCharacteristic Function of a Normally Distributed Vector-valued Random VariableLet U1,…, Um be m independent standardized normally distributed random variables, i.e. Uk ∼ N(0,1).

The characteristic function of Uk is given by

cf. exercise 1.9-9. Consequently, the characteristic function of the random vector U = (U1,…,Um)T is

ΦUk(rk ) = exp −

rk2

2

⎝⎜⎞

⎠⎟,

Page 167: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 167

Transformation of the random vector U by a (n´m) ma-trix A provides the random vector

that possesses the characteristic function

ΦU(r) = E exp( j rTU)( ) = E exp( j rkUk )

k=1

m

∏⎛⎝⎜⎞⎠⎟

= E exp( j rkUk )( )k=1

m

∏ = ΦUk(rk )

k=1

m

= exp − 12

rk2

k=1

m

∑⎛⎝⎜

⎞⎠⎟= exp − 1

2rTr

⎛⎝⎜

⎞⎠⎟

V = V1,…,Vn( )T = AU

Page 168: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 168

where

represents the covariance matrix of V.

ΦV(s) = E exp( j sTV)( ) = E exp( j sTAU)( )

= ΦU (sTA)T( ) = exp − 1

2sTA sTA( )T⎛

⎝⎜⎞⎠⎟

= exp − 12sTAATs

⎛⎝⎜

⎞⎠⎟= exp − 1

2sTΣs

⎛⎝⎜

⎞⎠⎟,

Σ = E VVT( ) = E AU AU( )T( ) = E AUUTAT( )= AE UUT( ) AT = AIAT = AAT

Page 169: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 169

Translation of the random vector V by a constant vectorleads to the random vector

The characteristic function of W can be expressed by

FW (s) represents the characteristic function of the nor-mally distributed random vector, where and denote the vector-valued expected value and the symmetric and

W = W1,…,Wn( )T = V + µ = AU+ µ .

ΦW(s) = E exp( j sTW)( ) = E exp( j sT (V+ µ))( )

= exp( j sTµ)E exp( j sTV)( ) = exp j sTµ − 12sTΣs

⎛⎝⎜

⎞⎠⎟.

µ Σ

µ = µ1,…,µn( )T

Page 170: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 170

non-negative definite covariance matrix, respectively, i.e.

and

Theorem:Let and Y =AX + b, where the entries of the (n´m) matrix A and the (n´1) vector b are constants. Then with

and

E (W − µ)(W − µ)T( )= E VVT( )= Σ = ΣT,

sTΣs ≥ 0 ∀s ∈!n.

E(W) = E(V + µ) =E(V)+ µ = µ

ΣY = E (Y − µY )(Y − µY )T( ) = AΣX A

T .

µY = E(Y) = AµX +b

X∼Nm(µX,ΣX )

Y∼Nn(µY,ΣY )

Page 171: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 171

Exercise 1.10-5:Proof of the Theorem

Page 172: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 172

Density Function of a Normally Distributed Vector-valued Random VariableLet U1,…, Um be m independent standardized normally distributed random variables, i.e. Uk∼ N (0,1).

Thus, the density function of the random vector U = (U1, …,Um)T can be written as

fU(u) = fUk (uk )k=1

m

∏ = 1

2πexp − 1

2uk2⎛

⎝⎜⎞⎠⎟

⎝⎜⎞

⎠⎟k=1

m

= (2π )−m2 exp − 1

2uk2

k=1

m

∑⎛⎝⎜

⎞⎠⎟= (2π )

−m2 exp − 1

2uTu

⎛⎝⎜

⎞⎠⎟

Page 173: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 173

Now, we transform the random vector U by

where A denotes a regular (m´m) matrix, i.e. det(A)¹0.With the inverse transform

the determinant of the Jacobian

the well known identities

V = V1,…,Vm( )T = AU+ µ ,

U = A−1(V − µ),

det J(u)( ) = det ∂ v1,…,vm( )∂ u1,…,um( )

⎝⎜

⎠⎟ = det(A),

Page 174: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 174

and the result derived for determining the density of a transformed random vector

det(A) = det AT( )det(Σ) = det AAT( )

= det(A)det AT( ) = det(A)( )2 > 0Σ−1 = AAT( ) −1 = AT( ) −1A −1 = A−1( )T A−1

fV(v) =fU(A

−1(v − µ))det(A)

,

Page 175: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 175

we obtain

fV(v) = (2π )−m2 det(A)

−1exp − 1

2A−1(v − µ)( )T A−1(v − µ)

⎛⎝⎜

⎞⎠⎟

= (2π )−m2 det(A)

−1exp − 1

2(v − µ)T A−1( )T A−1(v − µ)

⎛⎝⎜

⎞⎠⎟

= (2π )−m2 det(A)

−1exp − 1

2(v − µ)T AAT( )−1(v − µ)

⎛⎝⎜

⎞⎠⎟

= (2π )−m2 det(Σ)

− 12 exp − 1

2(v − µ)T Σ−1(v − µ)

⎛⎝⎜

⎞⎠⎟.

Page 176: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 176

Exercise 1.10-6:Transformation to standardized normal distribution

Page 177: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 177

Composed Vector-valued Random VariablesTheorem:Let X be a random vector composed of the random vec-tors X1, X2 and obeying the distribution

Then X1 and X2 possessing the marginal distributions

and the conditional distribution

X =X1X2

⎝⎜

⎠⎟ ∼Nk µ =

µ1µ2

⎝⎜

⎠⎟ , Σ =

Σ11 Σ12Σ21 Σ22

⎝⎜

⎠⎟

⎝⎜

⎠⎟ .

X1∼Nk1µ1,Σ11( ), X2 ∼Nk2

µ2,Σ22( )

X1 |X2 = x2 ∼Nk1µ1 + Σ12Σ22

−1(x2 − µ2),Σ11 − Σ12Σ22−1Σ21( ).

Page 178: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 178

Exercise 1.10-7:Proof of the Theorem

Exercise 1.10-8:Mean square error estimation

Page 179: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 179

1.11 Sequences of Random Variables1.11.1 Convergence ConceptsLet (Xn) = X1, X2,… be a sequence of random variables. For any specific x, (Xn(x)) is a sequence that might or might not converge and where the notion of convergence can be given several interpretations.

Recall, that a deterministic sequence (xn) tends to a limit x, if for any given e > 0, we can find a number Ne such that

|xn - x | < e for every n > Ne

Page 180: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 180

Convergence (everywhere)If the sequence (Xn(x)) tends to a number X(x) for everyx Î X, then we say that the random sequence (Xn) con-verges everywhere to the random variable X and we write this as

Convergence almost surely (a.s.)If the probability of the set of all events x that satisfy limn®¥Xn(x) = X (x), equals 1, i.e.

limn→∞

Xn = X or Xn → X

P ξ : limn→∞

Xn(ξ) = X (ξ){ }( ) = P limn→∞

Xn = X( ) = 1

Page 181: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 181

or equivalently

then we say that the random sequence (Xn) converges almost surely (with probability 1) to the random variable X and we write this as

Convergence in Mean Square (m.s.)Let (Xn) be a sequence of random variables. We say that the sequence converges in mean square to a random variable X if

limn→∞

Xn = X or Xna.s.⎯ →⎯⎯ X .

limm→∞

P supn≥m

Xn − X ≥ ε⎛⎝

⎞⎠ = 0 for every ε > 0

Page 182: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 182

holds and we write this as

where l.i.m. denotes the limit in mean.

Convergence in Probability (p)A sequence of random variables (Xn) is said to converge in probability to a random variable X if for every e > 0, we have

and we write this as

l.i.m.n→∞

Xn = X or Xnm.s.⎯ →⎯⎯ X ,

limn→∞E Xn − X( )2⎡⎣⎢

⎤⎦⎥= 0

limn→∞P Xn − X ≥ ε( ) = 0

Page 183: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 183

where p lim denotes the limit in probability.

Convergence in Distribution (d)Let be the sequence of distribution functions of the sequence of random variables (Xn). Then (Xn) is said to converge in distribution (or in Law) to a random variable X with the distribution function Fx if

at all continuity points of Fx. Such a convergence is ex-pressed by

p limn→∞

Xn = X or Xnp⎯ →⎯ X ,

FXn n→∞⎯ →⎯⎯ FX

Xnd⎯ →⎯ X or Xn

L⎯ →⎯ X .

(FXn )

Page 184: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 184

Relationships among the various types of convergence1) Convergence with probability 1 implies convergence in

probability2) Convergence with probability 1 implies convergence in

mean square, provided second order moments exist. 3) Convergence in mean square implies convergence in

probability

4) Convergence in probability implies convergence in dis-tribution

Page 185: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 185

Exercise 1.11-1:Proof of statement 1) and 3)

Page 186: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 186

1.11.2 Laws of Large NumbersChebyschev’s Theorem (Weak Law of Large Numbers) Let (Xk) be a sequence of pairwise uncorrelated random variables with

Then we have

where

E(Xk ) = µk , Var(Xk ) = σ k2 and lim

n→∞

1n2

σ k2

k=1

n

∑ = 0.

Xn =1n

Xkk=1

n

∑ and limn→∞

1n

µkk=1

n

∑ = µ.

Xnm.s.n→∞⎯ →⎯⎯ µ,

Page 187: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 187

Exercise 1.11-2:Proof of Chebyschev’s Theorem

Page 188: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 188

Kolmogorov’s Theorem (Strong Law of Large Numbers)Let (Xk) be a sequence of independent and identically distributed (i.i.d.) random variables. Furthermore, the mo-ments E(Xk) exist and are equal to µ. Then we have

where

Xna.s.n→∞⎯ →⎯⎯ µ,

Xn =1n

Xkk=1

n

∑ .

Page 189: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 189

1.11.3 Central Limit Theorems Lindeberg-Levy’s TheoremLet (Xk) be a sequence of independent and identically distributed random variables, such that E(Xk) = µ and Var(Xk)=s 2¹0. Then the distribution function of the ran-dom variable

tends to that of a standardized normal distribution as napproaches infinity, i.e.

Yn = nXn − µσ

⎛⎝⎜

⎞⎠⎟

FYn (y) n→∞⎯ →⎯⎯ Φ(y).

Page 190: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 190

Exercise 1.11-3:Proof of Lindeberg-Levy’s Theorem

Page 191: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 191

Liaponov’s TheoremLet (Xk) be a sequence of independent distributed ran-dom variables, such that E(Xk) = µk, Var(Xk) =sk

2 ¹ 0 and E|Xk - µk|3 = bk. Furthermore, let

Then the distribution function of the random variable

tends to that of a standardized normal distribution as napproaches infinity, i.e.

Bn = βkk=1

n∑( )1 3 , Cn = σ k2

k=1

n∑( )1 2 and limn→∞Bn Cn = 0.

Yn =1Cn

Xk − µk( )k=1

n∑

FYn (y) n→∞⎯ →⎯⎯ Φ(y).

Page 192: Stochastic Signals and Systemshomepages.hs-bremen.de/~krausd/iwss/SSS1.pdf · IN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI G N A L T H

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 1 / Stochastic Signals and Systems / Prof. Dr.-Ing. Dieter Kraus 192

References to Chapter 1[1] J.F. Böhme, Stochastische Signale, Teubner, 1998[2] M. Fisz, Probability Theory and Mathematical Statistics,

Krieger Publishing Company, 1980[3] G. Hänsler, Statistische Signale, Springer, 2001 [4] S. Kay, Intuitive Probability and Random Processes using

MATLAB, Springer, 2006[5] A. Papoulis, Probability, Random Variables and Stochastic

Processes, McGraw-Hill, 1991[6] C.R. Rao, Linear Statistical Inference and Its Application,

John Wiley, 1973[7] G. Wunsch, H. Schreiber, Stochastische Systeme,

VEB-Verlag Technik, 1982