35
® Q&TPS Strained Silicon, Electronic Band Structure and Related Issues. STMicroelectronics, Q&TPS, Device Modeling 850 rue Jean Monnet, BP 16, F-38926 Crolles CEDEX, France D. Rideau, F. Gilibert, M. Minondo, C. Tavernier and H. Jaouen

Strained Silicon, Electronic Band Structure and … · Review for Electronic Band Structure Ab initio vs Empirical methods A strain example: Si on SiGe buffer Lower Dimension Aproximation

Embed Size (px)

Citation preview

®

c Bandsues.

odeling6 Crolles

nd H. Jaouen

Q&TPS

Strained Silicon, ElectroniStructure and Related Is

STMicroelectronics, Q&TPS, Device M850 rue Jean Monnet, BP 16, F-3892

CEDEX, France

D. Rideau, F. Gilibert, M. Minondo, C. Tavernier a

D. RIDEAU

2/35

®

8 APRIL 2005 MOS-AK STRASBOURG

Q&TPS

OUTLOOK (1/4)

Current & Capacitances

STRAIN Matrix

INPUT

DESIRED VALUES

What to do?

Strain matrix

Ansys ...

?

D. RIDEAU

3/35

®

8 APRIL 2005 MOS-AK STRASBOURG

Q&TPS

Electronic Structure upon Strain

Empirical: TB KP EPMAbinitio: LDA RPA GW

Dispersion relation and Gaps

OUTLOOK (2/4)

D. RIDEAU

4/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ng Times: “Fermi Golden rule”“modified” GR Algorithm

Q&TPS

Electronic Structure upon Strain

Empirical: TB KP EPM

Integration over Brillouin Zone

ScatteriDensity of States

Carrier DensityMean Carrier Energy

Linear Response Theory

GR Algorithm

Fermi Dirac Statistics

Kubo-Greenwood formula

Mobility

Abinitio: LDA RPA GW

Dispersion relation and Gaps

G. Gilat and J. Raubenheimer, PR 144, 390 (1966)

OUTLOOK (3/4)

D. RIDEAU

5/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ng Times: “Fermi Golden rule”

MC

“modified” GR Algorithm

Mobility

µαI

Current & Capacitances

Q&TPS

Electronic Structure upon Strain

Empirical: TB KP EPM

Integration over Brillouin Zone

ScatteriDensity of States

Carrier DensityMean Carrier Energy

Linear Response Theory

Poisson Schrodinger

GR Algorithm

Fermi Dirac Statistics

Kubo-Greenwood formula

Current & Capacitances

Mobility

Semiconductor Equation

Abinitio: LDA RPA GW

Dispersion relation and Gaps

G. Gilat and J. Raubenheimer, PR 144, 390 (1966)

Compact Models

OUTLOOK (4/4)

D. RIDEAU

6/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ethod

Q&TPS

Review for Electronic Band Structure

Ab initio vs Empirical methods

A strain example: Si on SiGe buffer

Lower Dimension Aproximation

6X6 KP and Effective mass Hamiltonian

1Review for Electronic Band Structure M

D. RIDEAU

7/35

®

8 APRIL 2005 MOS-AK STRASBOURG

Block Functions

itting parameters

in DamoclesY.M. Niquet et al, PRB 62 5109 (2000) and

(includes SO)

C. Tserbak et al, PRB 47 7104 (1993)

KPEPM

eigenvalues

od

Q&TPS

Troullier-Martins psp from fhi98PPHartwingsen psp including SO

Schrodinger Equation

Wave function BasisPlane WavesGaussian-orbital

Matrix ElementsEvaluation

FAb initio

Kohn-Sham Scheme GW correction

HKS Ec= Vion VHF+ + … Σ ψnk⋅ r3

d∫+

C.Hartwingsen et al, PRB, 58 3641 (1998)

EPM “Best” TB “Best” in

KP (UTOX)

DFT + LDA

TB

Self-consistentevaluation

Simple eigenvalueproblem

Electronic Band Structure, Overlap integral...

Hψnk Enkψnk=

Review for Electronic Band Structure Meth

D. RIDEAU

8/35

®

8 APRIL 2005 MOS-AK STRASBOURG

K G

ABINIT V4.4.3

3641 (1998))

Q&TPS

L G X W K’,U L W X

−10

−8

−6

−4

−2

0

2

4

6E

NE

RG

Y (

eV)

WAVE VECTOR

GWLDA KSS

PSP: Hartwingsen psp (C.Hartwingsen et al, Phys. Rev. B, 58

Ab Initio: vs

D. RIDEAU

9/35

®

8 APRIL 2005 MOS-AK STRASBOURG

K G

HYS. REV. B 14, 556 (1976)

Q&TPS

L G X W K’,U L W X

−10

−8

−6

−4

−2

0

2

4

6

EN

ER

GY

(eV

)

WAVE VECTOR

EPM (local)

“NON LOCAL EFFECT”

UTOX AFTER J.R. CHELIKOWSKY AND M.L. COHEN, P

D. RIDEAU

10/35

®

8 APRIL 2005 MOS-AK STRASBOURG

KPGW

K G

Q&TPS

KPUTOX

L G X W K’,U L W X

−10

−8

−6

−4

−2

0

2

4

6

EN

ER

GY

(eV

)

WAVE VECTOR

D. RIDEAU

11/35

®

8 APRIL 2005 MOS-AK STRASBOURG

40

(110)

ass Hamiltonian

Structure

Q&TPS

0 20

k(108m−1)

−20 0 20−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

(111) k(108m−1) (100)

Ek (m

eV)

Valence Bands: KP and Effective M

KPMASS

Effective mass approximation for Electronic Band

D. RIDEAU

12/35

®

8 APRIL 2005 MOS-AK STRASBOURG

Mass Hamiltonian

Q&TPS

Hole “curvature mass” for Effective

0 20 40 60 800.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

wafer in−plane orientation (deg.)

Hol

e C

ondu

ctio

n m

ass

(m0

units

)

hhlhsh

D. RIDEAU

13/35

®

8 APRIL 2005 MOS-AK STRASBOURG

e Mass Hamiltonian

Q&TPS

−10 −5 0 5 10

50

100

150

200

250

300

(100) k(108 m−1) (001)

Ek

(me

V)

∆2∆4

Conduction Bands: KP and Effectiv

MASSKP

D. RIDEAU

14/35

®

8 APRIL 2005 MOS-AK STRASBOURG

0 0.1 0.2 0.3 0.40

02

04

06

08

01

12

14

16

x

Si

ε = Strain

Q&TPS

0.0

0.0

0.0

0.0

0.

0.0

0.0

0.0

exx

SiGe lattice larger than Si lattice

STRAIN (STUDIED CASE)

D. RIDEAU

15/35

®

8 APRIL 2005 MOS-AK STRASBOURG

G

EQUIVALENT VALLEY

Q&TPS

L G X,Z G Y,X−3

−2

−1

0

1

2

3

4

ENER

GY

(eV)

RELAXED SILICON

D. RIDEAU

16/35

®

8 APRIL 2005 MOS-AK STRASBOURG

G

Q&TPS

L G X,Z G Y,X−3

−2

−1

0

1

2

3

4

ENER

GY

(eV)

2% TENSILE

D. RIDEAU

17/35

®

8 APRIL 2005 MOS-AK STRASBOURG

AIN

CONDUCTION BANDS

VALENCE BANDS

Q&TPS

ENERGY SHIFT VS . STR

0.97 0.98 0.99 1 1.01 1.02 1.03−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a||/a

0

EN

ER

GY

(eV

)∆2

∆4

LH

HH

SH

D. RIDEAU

18/35

®

8 APRIL 2005 MOS-AK STRASBOURG

(RELAXED )

Q&TPS

CONDUCTION BANDS

D. RIDEAU

19/35

®

8 APRIL 2005 MOS-AK STRASBOURG

(1% TENSILE)

Q&TPS

CONDUCTION BANDS

D. RIDEAU

20/35

®

8 APRIL 2005 MOS-AK STRASBOURG

(1% COMPRESSIVE)

Q&TPS

CONDUCTION BANDS

D. RIDEAU

21/35

®

8 APRIL 2005 MOS-AK STRASBOURG

LAXED )

Q&TPS

VALENCE BANDS (RE

D. RIDEAU

22/35

®

8 APRIL 2005 MOS-AK STRASBOURG

TENSILE)

Q&TPS

VALENCE BANDS (1%

D. RIDEAU

23/35

®

8 APRIL 2005 MOS-AK STRASBOURG

COMPRESSIVE)

Q&TPS

VALENCE BANDS (1%

D. RIDEAU

24/35

®

8 APRIL 2005 MOS-AK STRASBOURG

1% Compressive

0 20 40

k(108m−1) (110)

−20 0 20−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

(111) k(108m−1) (100)

Ek

(meV

)

Q&TPS

VALENCE BANDS

1% Tensile

0 20 40

k(108m−1) (110)

−20 0 20−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

(111) k(108m−1) (100)

Ek

(meV

)

0 20 40

k(108m−1) (110)

−20 0 20−900

−800

−700

−600

−500

−400

−300

−200

−100

0

100

(111) k(108m−1) (100)

Ek

(meV

)

Relaxed

D. RIDEAU

25/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ZONE

Q&TPS

Density Of States and DOS masses

Scattering Rates

Carrier Density

1

2

3

INTEGRATION OVER BRILLOUIN

Electronic Structure

Empirical: TB KP EPMAbinitio: LDA RPA GW

Dispersion relation and Gaps

D. RIDEAU

26/35

®

8 APRIL 2005 MOS-AK STRASBOURG

Q&TPS

DENSITY OF STATES

ρE E( ) δk BZ∈

∑ E En k( )–[ ]n∑=

W

L

K

X

U

1/48 1/8

G. Gilat and J. Raubenheimer, PR 144, 390 (1966)

DENSITY OF STATES

SYMMETRIES

Electronic Structure

Empirical: TB KP EPMAbinitio: LDA RPA GW

Dispersion relation and Gaps

INTEGRATION

D. RIDEAU

27/35

®

8 APRIL 2005 MOS-AK STRASBOURG

−4 −2 0 2 4 6E (eV)

Q&TPS

−12 −10 −8 −60

1

2

3

4

5

g E (

1022

cm

−3 e

V−

1 )

DENSITY OF STATES

−12 −10 −8 −6 −4 −2 0 2 4 60

1

2

3

4

5

g E (

1022

cm

−3 e

V−

1 )

E (eV)

EPM (LINES)KP (LINES)

GW (DASHED LINES)GW (DASHED LINES)

D. RIDEAU

28/35

®

8 APRIL 2005 MOS-AK STRASBOURG

EFF MASSES)

CTRONS

Q&TPS

DENSITY OF STATES (FB VS.

ELEHOLES

D. RIDEAU

29/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ture masses and valence band

EPMd

1.170.21

0.916

4.270.315

1.3867

Q&TPS

MASSES

Table 1 Experimental and theoretical band gap, conduction band curvaLuttinger parameters for Silicon.

Exp.a

k.p GWc

(eV) 1.170 1.17 1.1

(mo)0.191 0.194 0.191

(mo)0.916 0.916 0.921

4.27 4.27b 4.27 0.32 0.315b 0.315

1.458 1.386b 1.386

Eg

mt

ml

γ1

γ2

γ3

a Ref.[11]; b Fit for the 6-level k.p;c with ABINIT V4.3.3 [3]; d Ref. [17].

D. RIDEAU

30/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ALENCE BANDS)

0 200 400 600 8000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

msh

(D

OS

)

T (K)

x=0x=0.1x=0.2x=0.3

Q&TPS

DOS MASSES INSI/SIGE (V

0 200 400 600 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m(D

OS

)

T (K)

x=0x=0.1x=0.2x=0.3

0 200 400 600 8000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

mlh

(D

OS

)

T (K)

x=0x=0.1x=0.2x=0.3

KP (UTOX)

D. RIDEAU

31/35

®

8 APRIL 2005 MOS-AK STRASBOURG

IN :

.1 0.2 0.3 0.4 0.5−E

F (eV)

Q&TPS

CARRIER DENSITY VS. STRA

−0.2 −0.1 0 010

15

1016

1017

1018

1019

1020

1021

1022

EV

p (/

cm3)

FB 1.5% tensileOB 1.5% tensileFB relaxed SiOB relaxed Si

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.510

15

1016

1017

1018

1019

1020

1021

1022

EF−E

C (eV)

n (/c

m3)

FB 1.5% tensileOB 1.5% tensileFB relaxed SiOB relaxed Si

UTOX AFTER M. V. FISCHETTI ET AL . IN DAMOCLES

D. RIDEAU

32/35

®

8 APRIL 2005 MOS-AK STRASBOURG

ENTS)

0 0.5 1 1.5VG (V)

PMOS

x=0.2

relaxed

Q&TPS

CAPACITANCE (MEASUREM

−1.5 −1 −0.5 0 0.5 1

0.006

0.008

0.01

0.012

0.014

0.016

0.018

VG (V)

C (

µF/m

m2)

−1 −0.5

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

C (

µF/m

m2)

NMOS

D. RIDEAU

33/35

®

8 APRIL 2005 MOS-AK STRASBOURG

D CURVES)

0 0.5 1 1.5VG (V)

Q&TPS

−1.5 −1 −0.5 0 0.5 1

0.006

0.008

0.01

0.012

0.014

0.016

0.018

VG (V)

C (

µF/m

m2)

CAPACITANCE (SIMULATE

Charge Sheet Model Density Gradient

x=0.2

relaxed

−1 −0.50.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

C (

µF/m

m2)

D. RIDEAU

34/35

®

8 APRIL 2005 MOS-AK STRASBOURG

iile

Q&TPS

CURRENT (LOW FIELDS )

1 1.2 1.4 1.6 1.8 2 2.2

10−11

10−10

10−9

10−8

10−7

10−6

10−5

VG−VFB(V)

ID(A

/µm

2)

UTOX relaxed SUTOX 1.5% tens

D. RIDEAU

35/35

®

8 APRIL 2005 MOS-AK STRASBOURG

re

Q&TPS

CONCLUSIONS

❍ Methods for Band Structure

❍ STRAINED SILICON Band Structu

❍ DOS and Scattering times

❍ Capacitances