20
Strange particle production at RHIC… Anthony Timmins for the STAR Collaboration Hot Quarks 26th August 2008 STAR

Strange particle production at RHIC…

  • Upload
    belva

  • View
    34

  • Download
    2

Embed Size (px)

DESCRIPTION

Strange particle production at RHIC…. Anthony Timmins for the STAR Collaboration Hot Quarks 26th August 2008. STAR. Contents. Strangeness as a QGP signature… Strangeness production in light systems… Model comparisons at RHIC energies… Empirical scalings… Discussion… Summary…. - PowerPoint PPT Presentation

Citation preview

Page 1: Strange particle production  at RHIC…

Strange particle production at RHIC…

Anthony Timmins for the STAR Collaboration

Hot Quarks

26th August 2008STAR

Page 2: Strange particle production  at RHIC…

STAR

2/18

Contents

Strangeness as a QGP signature…

Strangeness production in light systems…

Model comparisons at RHIC energies…

Empirical scalings…

Discussion…

Summary…

Page 3: Strange particle production  at RHIC…

STAR

3/18

Strangeness as a QGP signature

Original Predictions…– Strange quark’s dynamical mass

drops in quark gluon plasma (QGP)– s+s production cross section

increases– s+s in QGP would reach thermal

expectations on a small time scale…

QGP saturation time s ~3 fm/c

Hadron gas saturation times (Phys. Rep. 142 (1986) 167)

– ~30 fm/c for Kaons (K)– ~200 fm/c Lambdas () and Xis ()

Heavy-ion collision lifetime at RHIC < 10 fm/c (HBT)…

Phys. Rev. Lett. 48 (1982) 1066

Strangeness saturation times in QGP for various S…

Page 4: Strange particle production  at RHIC…

STAR

4/18

Strangeness as a QGP signature

hadronization

Prior to collision

Initial state

QGP and expansion hadronic phase

…one naively expects final state strange hadron yields to also reach thermal expectations…If strangeness reaches

thermal expectations in a QGP…

Page 5: Strange particle production  at RHIC…

STAR

5/18

Strangeness as a QGP signatureJ. Phys. G32 (2006) S105

Phys. Rev. Lett. 98 (2007) 062301

In heavy-ion collisions, we address this in two ways experimentally…

– Measure enhancement factor E=strangeness yields per participant relative to pp

– Compare to Canonical (thermal) model predictions…

These assume volume <Npart>

– Perform a thermal fit on measured particle ratios and extract the strangeness saturation factor s

Deviation of strangeness production from thermal model expectations…

s=1 strangeness fully equilibrated s=0 strangeness fully suppressed

Page 6: Strange particle production  at RHIC…

STAR

6/18

Strangeness production in light systems…

AGS and SPS energies showed something interesting at lower energies for lighter systems…

– Kaons per <Npart> higher in Si+Al, Si+Au compared to Au+Au with similar <Npart> at ~5 GeV

– K+/ higher in lighter systems compared to expected Pb+Pb values at 17.3 GeV

What happens at RHIC energies?– Cu+Cu collisions can help us

investigate…– What will strangeness

measurements tell us about the current theory?

Phys. Rev. C 60 (1999) 044904

Nucl. Phys. A 715 (2003) 474

Page 7: Strange particle production  at RHIC…

STAR

7/18

Strangeness production in light systems…

Mid-rapidity Cu+Cu 200 GeV yields higher at given <Npart>, contrary to Canonical predictions…

STAR Preliminary

Page 8: Strange particle production  at RHIC…

STAR

8/18

Strangeness production in light systems…

Evidence for extra multi-strange particle production in central Cu+Cu compared to mid-central Au+Au…

particle show above unity enhancement at 200 GeV

– Also contrary to naive interpretation of the Canonical model

E=1 for particles with closed strangeness…

– Differences between Cu+Cu Au+Au not observed within errors…

STAR Preliminary

Page 9: Strange particle production  at RHIC…

STAR

9/18

Further model comparisons at RHIC…

EPOS (Phys. Rev. Lett. 98 (2007) 152301)– Core hadron production

High density region follows statistical emission…

Expands from initial state and freezes out at critical energy density C=0.22 GeV/fm3 to produce hadrons

– Upon hadronization, strangeness oversaturated with s=1.3

– Corona hadron production Superposition of p+p collisions Uses successful p+p/d+Au EPOS generator

which treat hadron production dynamically Strangeness therefore undersaturated with

s<1

Participant density in central Cu+Cu 200 GeV collisions from MC Glauber

STAR Preliminary

Page 10: Strange particle production  at RHIC…

STAR

10/18

Further model comparisons at RHIC… AMPT (Phys.Rev. C72 (2005) 064901):

– HIJING based generator Soft hadron production is

governed by nucleon excitation and string breaking..

Hard hadron production from (mini) jets whose cross sections are governed by pQCD..

– Mini-jet partons and newly produced hadrons allowed to rescatter…

AMPT results reduce to HIJING without such mechanisms…

– Describes various aspects of Au+Au 200 GeV data well…

Central Au+Au 200 GeV collisions..

Page 11: Strange particle production  at RHIC…

STAR

11/18

Further model comparisons at RHIC…

Both models reproduce key qualitative features of the data…

STAR Preliminary

Page 12: Strange particle production  at RHIC…

STAR

12/18

Further model comparisons at RHIC…STAR Preliminary

Predictions for multi-strange particles follow similar trends..

EPOS does a better job for ’s

– Predicts large enhancements for …

Page 13: Strange particle production  at RHIC…

STAR

13/18

Empirical scalings…

, , K0S yields show similar systematics

for Cu+Cu and Au+Au at 200 GeV– Bulk strangeness production must

follow suit…

Approximate total strangeness production at y~0

<Npart> scaling clearly fails for data and theory…– No surprise there given the above

definition..

STAR Preliminary

Page 14: Strange particle production  at RHIC…

STAR

14/18

Empirical scalings…

Test to see if strangeness scales with number of binary collisions <Nbin>…

Hard processes not the dominant contribution to strangeness production ?

– Kharzeev-Nardi hypothesis: Soft production scales with <Npart> Hard production scales with <Nbin> x is energy dependent relative weight of

each process

Fails for strangeness at RHIC…

STAR Preliminary

Page 15: Strange particle production  at RHIC…

STAR

15/18

Empirical scalings…

Test to see if strangeness scales with participants that undergo more than one collision = <Npart>1>…

Data moves most towards a common trend compared to other scalings…

– EPOS lies on common trend– AMPT nearly lies on common

trend..

STAR Preliminary

Page 16: Strange particle production  at RHIC…

STAR

16/18

Discussion… Why does <Npart>1> work best in the models?

– AMPT: String Phenomenology Valence partons in these participants get

more pT kicks When intra-nucleon strings decay,

strangeness production is higher compared to participants with just one collision

– EPOS: Core Size Core production major source of

strangeness Core size scales with <Npart>1> as these

participants sit in high density region…

In both models, these features lead to..– Rising per participant yields for a given system– Higher per participant yields in Cu+Cu at given

<Npart> – Both are reproduced by data…

STAR Preliminary

STAR Preliminary

Page 17: Strange particle production  at RHIC…

STAR

17/18

Discussion… Key question: What do the current comparisons tell us about strangeness production as

a QGP signature?– EPOS

Core aims to represent deconfined matter with differing hadron production scheme compared p+p

If strangeness equilibrates/oversaturates in QGP, not inconceivable that s will be >=1 upon hadronisation..

Are there are other measurements that support core/corona approach?– AMPT

Offers different and more dynamical understanding of particle production in heavy-ion collisions…

Strangeness yield systematics explained via varying levels nucleon excitation E.g. number of participants with more than one collision

In conflict with original hypothesis?– Soft hadron production from independently decaying strings rather than

deconfined coupled medium..– Can these mechanisms also explain s ~1 in heavy-ion collisions?

Both models require further comparisons with data to improve distinguishing power…

Page 18: Strange particle production  at RHIC…

STAR

18/18

Summary…

Strangeness production in light and heavy systems continues to challenge our understanding of QCD in heavy-ion collisions…

Collision geometry key factor in mid-rapidity strangeness production at RHIC…

– Strangeness per <Npart> increases with <Npart> for given system

– Strangeness production higher in Cu+Cu collisions at given <Npart>

Both EPOS and AMPT models reproduce these aspects albeit with differing hadron production mechanisms…

– Fraction of nucleons that undergo more one collision (<Npart>1>) appears key underlying parameter in each case…

Page 19: Strange particle production  at RHIC…

STAR

19/18

Backup..

Kaon to Pion ratios at SPS

Page 20: Strange particle production  at RHIC…

STAR

20/18

Backup..