String Vibration

Embed Size (px)

Citation preview

  • 7/25/2019 String Vibration

    1/41

    String Vibration

    Chapter 8

  • 7/25/2019 String Vibration

    2/41

    Distributed Parameter Systems

    Distributed mass and stiffness

    Infinite DOF

    Functional analysis

    Exact solution for simple problems

  • 7/25/2019 String Vibration

    3/41

    f(x, t)(x),T(x)

    y(x, t)

    f(x, t)dx

    T(x)

    T(x) + T(x)x

    dx

    y(x,t)x

    y(x,t)x +

    2

    y(x,t)x2 dx(x)dx

    dx

  • 7/25/2019 String Vibration

    4/41

    T(x) +

    T(x)

    x dx

    y(x, t)

    x +

    2y(x, t)

    x2 dx+

    f(x, t)dx T(x)y(x, t)x

    =(x)dx2y(x, t)

    t2

    f(x, t)dx

    T(x)

    T(x) + T(x)x

    dx

    y(x,t)

    x

    y(x,t)x

    + 2y(x,t)x2

    dx(x)dx

    dx

  • 7/25/2019 String Vibration

    5/41

    T(x)

    2y(x, t)

    x2 +

    T(x)

    x

    y(x, t)

    x + f(x, t) =(x)

    2y(x, t)

    t2

    x

    T(x)y(x, t)

    x

    + f(x, t) =(x)2y(x, t)

    t2

    y(0, t) = 0y(L, t) = 0

  • 7/25/2019 String Vibration

    6/41

    Initial (unforced) Response

    x

    T(x)

    y(x, t)

    x

    =(x)

    2y(x, t)

    t2

    y(0, t) = 0 y(L, t) = 0

    y(x, t) =Y(x)F(t)

    ddx

    T(x) dY(x)

    dx F(t)

    =(x)Y(x) d

    2F(t)dt2

    Y(0) = 0 Y(L) = 0

  • 7/25/2019 String Vibration

    7/41

    1

    (x)Y(x)

    d

    dxT(x)

    dY(x)

    dx= 1

    F(t)

    d2F(t)

    dt2 =

    2

    d2F(t)

    dt2 + 2F(t) = 0

    F(t) =A sint + B cost=Ccos(t + )

    ddx

    T(x) dY(x)dx

    = 2(x)Y(x)

    Y(0) = 0 Y(L) = 0

  • 7/25/2019 String Vibration

    8/41

    d

    dxT(x) dY(x)

    dx= 2(x)Y(x)

    Y(0) = 0 Y(L) = 0

    For constant mass distribution and tension

    d2Y(x)

    dx2 +

    2

    T Y(x) = 0

    d2Y(x)

    dx2 + 2Y(x) =0 2 =2

    TY(0) = 0 Y(L) = 0

  • 7/25/2019 String Vibration

    9/41

    d2Y(x)

    dx2 + 2Y(x) =0

    Y(0) = 0 Y(L) = 0

    Solution : Y(x) =A sinx + B cosxBCs : Y(0) =B= 0 Y(L) =A sinL= 0

    rL=r, r= 1, 2,

    r =rs

    TL2

    , r = 1, 2,

    Yr(x) =Arsinrx

    L , r = 1, 2,

  • 7/25/2019 String Vibration

    10/41

    Free Vibration Solutions

    Possible Solutions:y(x, t) =Y(x)F(t)

    yr(x, t) =Yr(x)Fr(t), r= 1, 2,

    =CrsinrxL cosrs T

    L2t + r!

    y(x, t) =

    Xr=1 yr(x, t)

    =

    Xr=1 C

    rYr(x)cos(rt + r)

  • 7/25/2019 String Vibration

    11/41

    Orthogonality

    d

    dxT(x) dYr(x)

    dx=2r(x)Yr(x)

    Ys(x)d

    dx

    T(x)dY

    r(x)

    dx

    =2r(x)Ys(x)Yr(x)

    Z L0

    Ys(x) d

    dx

    T(x)

    dYr(x)

    dx

    dx=2r

    Z L0

    (x)Ys(x)Yr(x)dx

  • 7/25/2019 String Vibration

    12/41

    Z L0 Y

    s(x)

    d

    dx

    T(x)

    dYr(x)

    dx

    dx

    = Ys(x)T(x)dYr(x)

    dx

    L

    0 +Z L0 T(x)

    dYs(x)

    dx

    dYr(x)

    dx dx

    =Z L0 T(x)

    dYs(x)

    dx

    dYr(x)

    dx dx

    Z L

    0

    T(x)dYs(x)

    dx

    dYr(x)

    dx dx=2r Z

    L

    0

    (x)Ys(x)Yr(x)dx

  • 7/25/2019 String Vibration

    13/41

    Z L

    0

    T(x)dYs(x)

    dx

    dYr(x)

    dx dx=2r Z

    L

    0

    (x)Ys(x)Yr(x)dx

    Z L

    0

    T(x)dYr(x)

    dx

    dYs(x)

    dx

    dx=2s Z L

    0

    (x)Yr(x)Ys(x)dx

    0 = (

    2

    r 2

    s)Z L0 (x)Yr(x)Ys(x)dx

    0 =Z L0

    (x)Yr(x)Ys(x)dx

    0 =Z L0 T(x)

    dYr(x)

    dx

    dYs(x)

    dx dx

  • 7/25/2019 String Vibration

    14/41

    Normalization

    Z L

    0

    T(x) dYr(x)

    dx2

    dx=2r Z L

    0

    (x) [Yr(x)]2 dx

    Z L0

    T(x)dYr(x)

    dx2

    dx=2r

    Select Yr(x) such that :Z L0 (x) [Yr(x)]

    2

    dx= 1

  • 7/25/2019 String Vibration

    15/41

    Modal Expansion

    Eigenvectors:

    Linearly independent Complete set

    Any continuous displacement distributioncan be represented as a linear

    combination of the modal shapes

    y(x, t) =

    Xr=1

    Yr(x)r(t)

  • 7/25/2019 String Vibration

    16/41

    Initial (unforced) Response

    x

    T(x)

    y(x, t)

    x

    =(x)

    2y(x, t)

    t2

    y(0, t) = 0 y(L, t) = 0

    y(x, 0) =y0(x) y(x, 0) =v0(x)

    Xr=1d

    dx

    T(x)

    dYr(x)

    dx r(t) =

    Xr=1(x)Yr(x)

    d2r(t)

    dt2

    BCs Identically Satisfied :Y(0) 0 Y(L) 0

    y(x, t) =

    Xr=1Yr(x)r(t)

    Yr(x) are mass

    normalized

    mode shapes

  • 7/25/2019 String Vibration

    17/41

    Uncoupled Modal EquationsZ L0

    Ys(x)

    Xr=1d

    dx

    T(x)

    dYr(x)

    dx

    r(t)dx=

    Z L0

    Ys(x)

    Xr=1(x)Yr(x)r(t)dx

    Xr=1

    Z L0

    Ys(x) d

    dx

    T(x)

    dYr(x)

    dx

    dxr(t) =

    Xr=1

    Z L0

    (x)Ys(x)Yr(x)dxr(t)

    2

    ss(t) = s(t)

    s(t) + 2

    ss(t) = 0

    s(t) =s(0) cosst+

    s(0)

    s sin st

  • 7/25/2019 String Vibration

    18/41

    Initial Conditions

    y(x, 0) =y0(x) y(x, 0) =v0(x)

    y(x, 0) =

    Xr=1

    Yr(x)r(0) =y0(x)(0)

    Z L0 (x)Ys(x)

    Xr=1

    Yr(x)r(0)dx=Z L0 (x)Ys(x)y0(x)dx

    s(0) =Z L0

    (x)Ys(x)y0(x)dx

    s(0) =Z L0

    (x)Ys(x)v0(x)dx

    Do not forget:

    Yr(x) are mass

    normalized

    mode shapes

  • 7/25/2019 String Vibration

    19/41

    Example

    = 1 Kg/m T = 1 N L= 1 m

    Initial Displacement :y0(x)

    0.25

    0.1

    Initial Velocity :v0(x)

  • 7/25/2019 String Vibration

    20/41

    1= rad/s

    2= 2 rad/s

    3= 3 rad/s

    4= 4 rad/s

    5= 5 rad/s

  • 7/25/2019 String Vibration

    21/41

    Normalized Mode Shapes

    & Initial Condition

    Yr(x) = 2sinrx

    L

    1(0)2(0)3(0)

    4(0)5(0)

    =

    0.05400.01910.0060

    0.00000.0022

  • 7/25/2019 String Vibration

    22/41

    0 0.2 0.4 0.6 0.8 1-0.05

    0

    0.05

    0.1

    0.15

    x

    y0

    (x)

    Initial Displacement

    Modal ApproximationMode 1

    Mode 2

    Mode 3

    Mode 4

    Mode 5

  • 7/25/2019 String Vibration

    23/41

    0 0.2 0.4 0.6 0.8 1

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    x

    y(x,

    t)

    Exact

    t = 0.00 st = 0.25 s

    t = 0.50 s

    t = 0.75 s

    t = 1.00 s

    F d R

  • 7/25/2019 String Vibration

    24/41

    Forced Response

    (x)2y(x, t)

    t2

    x

    T(x)

    y(x, t)x

    =f(x, t)

    y(0, t) = 0 y(L, t) = 0y(x, 0) =y0(x) y(x, 0) =v0(x)

    y(x, t) =

    Xr=1Yr(x)r(t)

    Yr(x) are mass

    normalized

    mode shapes

    Xr=1(x)Yr(x)

    d2r(t)

    dt2

    Xr=1d

    dx

    T(x)

    dYr(x)

    dx r(t) =f(x, t)

    BCs Identically Satisfied :Y(0) 0 Y(L) 0

  • 7/25/2019 String Vibration

    25/41

    Uncoupled Modal Equations

    Multiply by Ys(x)

    Integrate over 0 to L

    Z L

    0

    Ys(x)

    Xr=1(x)Yr(x)r(t)dx Z

    L

    0

    Ys(x)

    Xr=1d

    dx

    T(x)

    dYr(x)

    dx r(t)dx

    =

    Z L0

    Ys(x)f(x, t)dx

    s(t) + 2ss(t) =Ns(t)

    Ns(t) =Z L0

    Ys(x)f(x, t)dx

    Do not forget:

    Yr(x) are massnormalized

    mode shapes

    I iti l C diti

  • 7/25/2019 String Vibration

    26/41

    Initial Conditions

    y(x, 0) =y0(x) y(x, 0) =v0(x)

    y(x, 0) =

    Xr=1

    Yr(x)r(0) =y0(x)(0)

    Z L0 (x)Ys(x)

    Xr=1

    Yr(x)r(0)dx=Z L0 (x)Ys(x)y0(x)dx

    s(0) =Z L0

    (x)Ys(x)y0(x)dx

    s(0) =Z L0

    (x)Ys(x)v0(x)dx

    Do not forget:

    Yr(x) are mass

    normalized

    mode shapes

    St d St t H i R

  • 7/25/2019 String Vibration

    27/41

    Steady-State Harmonic Response

    f(x, t) =f(x)cost

    s(t) =

    Ns

    2s 2 cost

    Ns(t) =Nscost where Ns=Z L0 Ys(x)f(x)dx

    y(x, t) =y(x)cost=

    Xr=1

    Yr(x)r(t)

    y(x) =

    Xr=1 Y

    r(x)

    Nr

    2r 2 =

    Xr=1

    Yr(x)

    2r 2Z L0 Yr(x)f(x)dx

    P i t F

  • 7/25/2019 String Vibration

    28/41

    Point Force

    Force at a point a

    Displacement at a point b

    Reciprocal Theorem

    F=F cos(t)

    a b

    Ns= Z L

    0

    Ys(x)F(a)dx=F Ys(a)

    y(b) =FXr=1

    Yr(b)Yr(a)2r 2

  • 7/25/2019 String Vibration

    29/41

    Example

    = 1 Kg/m T = 1 N L= 1 m F= 1 N

    Yr(x) =2sinrx

    L

    a = 0.5; b = 0.5

  • 7/25/2019 String Vibration

    30/41

    0 10 20 30-1

    -0.5

    0

    0.5

    1

    y(b)

    ;

    a = 0.5; b = 0.33333

  • 7/25/2019 String Vibration

    31/41

    0 10 20 30-1

    -0.5

    0

    0.5

    1

    y(b)

    a = 0.1; b = 0.1

  • 7/25/2019 String Vibration

    32/41

    0 10 20 30-1

    -0.5

    0

    0.5

    1

    y(b)

  • 7/25/2019 String Vibration

    33/41

    Similar Problem: Axial Vibrationsf(x, t)

    m(x),EA(x) u(x, t)

    f(x, t)dxP(x, t) P(x, t) + P(x,t)x

    dxm(x)dx

    P(x, t) =A=EA=EAu(x,t)x

  • 7/25/2019 String Vibration

    34/41

    P(x, t) +P(x, t)

    x

    dx+ f(x, t)dx P(x, t) =m(x)dx2u(x, t)

    t2

    P(x, t)

    x + f(x, t) =m(x)

    2u(x, t)

    t2

    u(0, t) = 0 P(L, t) = EA(x)u(x, t)x

    x=L

    = 0

    x

    EA(x)u(x, t)

    x

    + f(x, t) =m(x)

    2u(x, t)t2

  • 7/25/2019 String Vibration

    35/41

    Free Vibration

    u(0, t) = 0 P(L, t) = EA(x)u(x, t)

    x

    x=L

    x

    EA(x)

    u(x, t)

    x =m(x)

    2u(x, t)

    t2

    u(x, t) =U(x)F(t)

    d

    dx

    EA(x)dU(x)

    dx F(t)

    =m(x)U(x)d2F(t)

    dt2

    U(0) = 0

    dU(x)

    dxx=L = 0

    1 d dU( ) 1 d2F (t)

  • 7/25/2019 String Vibration

    36/41

    1

    m(x)U(x)

    d

    dxEA(x)

    dU(x)

    dx= 1

    F(t)

    d2F(t)

    dt2

    =2

    d2F(t)

    dt2 + 2

    F(t) = 0 F(t) =A sint + B cost=Ccos(t + )

    d

    dxEA(x) dU(x)

    dx= 2m(x)U(x)

    U(0) = 0 dU(x)

    dxx=L

    = 0

    d

    EA(x)dU(x)

    2m(x)U(x)

  • 7/25/2019 String Vibration

    37/41

    For constant mass distribution and cross-sectional stiffness

    dx

    EA(x)

    dx = 2m(x)U(x)

    U(0) = 0 dU(x)

    dx

    x=L

    = 0

    d

    2

    U(x)dx2 + 2

    mEAU(x) = 0

    d2

    U(x)dx2

    + 2U(x) =0 2 = 2

    mEA

    U(0) = 0

    dU(x)

    dxx=L = 0

    Fixed-Free

  • 7/25/2019 String Vibration

    38/41

    Fixed-Free

    Solution : U(x) =A sinx + B cosx

    rL= r 1

    2, r= 1, 2,

    BCs : U(0) =B = 0

    dU(x)

    dxx=L

    =Acos L= 0

    Ur(x) =Arsin r 1

    2x

    L

    r =

    r 1

    2rEA

    mL2 , r= 1, 2,

    , r= 1, 2,

    Fixed-Fixed

  • 7/25/2019 String Vibration

    39/41

    Fixed-Fixed

    Solution : U(x) =A sinx + B cosx

    BCs : U(0) =B = 0 U(L) =A sin L= 0

    rL=r, r= 1, 2,

    r =r

    rEA

    mL2 , r= 1, 2,

    Ur(x) =Arsinrx

    L , r = 1, 2,

    S

  • 7/25/2019 String Vibration

    40/41

    Similar Problem: Torsional Vibrations

    (x, t)

    I(x), GJ(x)

    (x, t)

    (x, t)dxT(x, t) + T(x,t)

    x dxT(x, t)

    I(x)dx

    T(x, t) =GJ(x)(x,t)x

    T ( ) 2( t)

  • 7/25/2019 String Vibration

    41/41

    T(x) +T(x)

    x

    dx +(x, t)dx T(x) =I(x)dx2(x, t)

    t2

    T(x)

    x + (x, t) =I(x)

    2(x, t)

    t2

    x

    GJ(x)(x)

    x

    + (x, t) =I(x)

    2(x, t)t2

    (0, t) = 0 T(L, t) = GJ(x)(x, t)x

    x=L

    = 0