51
Strong coupling and strange quark mass from lattice QCD Rainer Sommer IFSC – USP, Sao Carlos, April 3, 2013 Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Strong coupling and strange quark mass from lattice QCD

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Strong coupling and strange quark mass from lattice QCD

Strong coupling and strange quark mass fromlattice QCD

Rainer Sommer

IFSC – USP, Sao Carlos, April 3, 2013

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 2: Strong coupling and strange quark mass from lattice QCD

The talk is based on

I old work [ LPHAACollaboration ]

I Nf = 2 running[Nucl.Phys. B713 (2005) 378, Michele Della Morte, Roberto Frezzotti, Jochen Heitger, Juri Rolf, RS, Ulli

Wolff ][Nucl.Phys. B729 (2005) 117, Michele Della Morte, Roland Hoffmann, Francesco Knechtli, Juri Rolf, RS,

Ines Wetzorke, Ulli Wolff ]

I Scale setting[Strange quark mass and the Lambda parameter in two flavor QCD,

Fritzsch, Leder, Knechtli, Marinkovic, Schaefer, S, Virotta, 2012 ]

I Recent development[Fritzsch & Ramos, arXiv:1301.4388 ]

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 3: Strong coupling and strange quark mass from lattice QCD

Fascinating strong interactions

THEORY

I jets at large energies

Q C D

I hadrons at small energies

Q C D

I nuclei at even smaller energies

Q C D

Believed to be described by a most beautiful theory: Q C D

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 4: Strong coupling and strange quark mass from lattice QCD

Fascinating strong interactions THEORY

I jets at large energies Q C D

I hadrons at small energies Q C D

I nuclei at even smaller energies Q C D

Believed to be described by a most beautiful theory: Q C D

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 5: Strong coupling and strange quark mass from lattice QCD

QCD

LQCD = − 1

2g02trFµνFµν+

Nf∑f =1

ψf D + m0f ψf

I Nf + 1 = 7 (bare) parameters

I at low energy essentially 4 parameters

I in the following: u, d quarks mass-degenerates-quark quenched

3 parameters

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 6: Strong coupling and strange quark mass from lattice QCD

Strong force

A way to define the strong force is

F (r) =d

drV (r) , r = |x− y|

Q_

Q. .

x y

Perturbation theory (Feynman graphs)

F (r) =4

3

1

4πr2g2 + O(g4)

coulombic

r20 F (r)

r/r0 [r0 ≈ 0.5 fm]

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 7: Strong coupling and strange quark mass from lattice QCD

Strong force

A way to define the strong force is

F (r) =d

drV (r) , r = |x− y|

Q_

Q. .

x y

Perturbation theory (Feynman graphs)

F (r) =4

3

1

4πr2g2 + O(g4)

↓coulombic

r20 F (r)

r/r0 [r0 ≈ 0.5 fm]

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 8: Strong coupling and strange quark mass from lattice QCD

Strong coupling

Perturbation theory (Feynman graphs)

F (r) =4

3

1

4πr2g2 + O(g4) coulombic

A way to define the strong coupling is

αqq(µ) =g2qq(r)

4π≡ 3

4r2F (r) , µ ≡ 1/r

It is r -dependent: “it runs”

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

r/r0

αqq(r)=

r2F(r)/C

F

β = 5.3, κ = 0.13638β = 5.5, κ = 0.136713-loop Nf = 24-loop Nf = 2Nf = 0, continuum3-loop Nf = 04-loop Nf = 0

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 9: Strong coupling and strange quark mass from lattice QCD

Strong coupling

Perturbation theory (Feynman graphs)

F (r) =4

3

1

4πr2g2 + O(g4) coulombic

A way to define the strong coupling is

αqq(µ) =g2qq(r)

4π≡ 3

4r2F (r) , µ ≡ 1/r

It is r -dependent: “it runs”

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

r/r0

αqq(r)=

r2F(r)/C

F

β = 5.3, κ = 0.13638β = 5.5, κ = 0.136713-loop Nf = 24-loop Nf = 2Nf = 0, continuum3-loop Nf = 04-loop Nf = 0

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 10: Strong coupling and strange quark mass from lattice QCD

Running and Renormalization Group Invariants

RGE: µ ∂g∂µ = β(g) g(µ)2 = 4πα(µ) .

β(g)g→0∼ −g3

b0 + b1g

2 + b2g4 + . . .

b0 = 1

(4π)2

(11− 2

3Nf

)Λ-parameter (g ≡ g(µ)) = Renormalization Group Invariant= intrinsic scale of QCD

Λ = µ (b0g2)−b1/2b2

0e−1/2b0g 2

exp

−∫ g

0

dg [ 1β(g) + 1

b0g 3 − b1

b20g

]

I there is a similar formula relating mi (µ) and Mi : RGI quark masses

I Λ, Mi have a trivial dependence on the “scheme”scheme↔ definition of g,m

I they are the fundamental parameters of QCD

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 11: Strong coupling and strange quark mass from lattice QCD

Uses of α (or Λ)

I Λ is a fundamental constant of Nature, just likeαem = 1/137.0359997 for atomic physics

I α(µ) at high scale is needed for the search of new particles at theLHC.

E.g. the Higgs.

I It is an important constraint for possible theories at higher energyscales.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 12: Strong coupling and strange quark mass from lattice QCD

“Experimental” determinations of αMS

QCD α (Μ ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkoniae+e– AnnihilationDeep Inelastic Scattering

July 2009

2010

αs (MZ )

There is a considerable spread. Errors seem often too agressive.Theory uncertainties are usually dominating.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 13: Strong coupling and strange quark mass from lattice QCD

“Experimental” determinations of αMS

QCD α (Μ ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkoniae+e– AnnihilationDeep Inelastic Scattering

July 2009 2010

αs (MZ )

There is a considerable spread. Errors seem often too agressive.Theory uncertainties are usually dominating.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 14: Strong coupling and strange quark mass from lattice QCD

Determination of Λ from lattice QCD

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 15: Strong coupling and strange quark mass from lattice QCD

Lattice determination of αqq

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

r/r0

αqq(r)=

r2F(r)/C

F

β = 5.3, κ = 0.13638β = 5.5, κ = 0.136713-loop Nf = 24-loop Nf = 2Nf = 0, continuum3-loop Nf = 04-loop Nf = 0

graph from [Leder & Knechtli, 2011 ]

Nf = 0, continuum limit[Necco & S., 2001 ]

Nf = 2, small lattice spacing[Leder & Knechtli, 2011 ]

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 16: Strong coupling and strange quark mass from lattice QCD

Lambda parameter from αqq

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.40.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

αqq

r 0ΛM

Sba

r

Nf = 0

2−loop3−loop4−loopALPHA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

αqq

r 0ΛM

Sba

r

Nf = 2, O7

2−loop3−loop4−loopALPHA

A realistic estimate of the uncertainty is impossible.(Other members of the group come to a different conclusion

[Jansen, Karbstein, Nagy, Wagner, 2011 ])

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 17: Strong coupling and strange quark mass from lattice QCD

The basic problem

and its solution

L 1

0.2GeV 1

µ∼ 1

10GeV a

↑ ↑ ↑box size confinement scale, mπ spacing

⇓L/a 50

LPHAACollaboration

Solution: L = 1/µ −→ left withL/a 1

[Luscher, Weisz, Wolff ]

Finite size effect as a physical observable; finite size scaling!

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 18: Strong coupling and strange quark mass from lattice QCD

The basic problem and its solution

L 1

0.2GeV 1

µ∼ 1

10GeV a

↑ ↑ ↑box size confinement scale, mπ spacing

⇓L/a 50

LPHAACollaboration

Solution: L = 1/µ −→ left withL/a 1

[Luscher, Weisz, Wolff ]

Finite size effect as a physical observable; finite size scaling!

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 19: Strong coupling and strange quark mass from lattice QCD

The step scaling function

It is a discrete β function:

σ(g2(L)) = g2(2L)

determines thenon-perturbative running:

u0 = g2(Lmax)

↓σ(uk+1) = uk

↓uk = g2(2−kLmax)

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 20: Strong coupling and strange quark mass from lattice QCD

The step scaling function: σ(u) = g 2(2L) with u = g 2(L)

On the lattice:additional dependence on the resolu-tion a/L

g0 fixed, L/a fixed:

g2(L) = u, g2(2L) = u′ ,

Σ(u, a/L) = u′

continuum limit:

Σ(u, a/L) = σ(u) + O(a/L)

everywhere: m = 0 (PCAC mass defined in (L/a)4 lattice)

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 21: Strong coupling and strange quark mass from lattice QCD

Continuum limit (Nf = 4)

0 0.02 0.04 0.06 0.08

1

1.5

2

2.5

3

3.5

(a/L)2

Σ(2

) (u,a/L)

I Constant fit:

Σ(2)(u, a/L) = σ(u)

for L/a = 6, 8

I Global fit:

Σ(2)(u, a/L) = σ(u)+ρ u4 (a/L)2

for L/a = 6, 8→ ρ = 0.007(85)

I L/a = 8 data:

σ(u) = Σ(2)(u, 1/8)

[ LPHAACollaboration (S., Tekin & Wolff, 2010); update: M. Marinkovic, 2013 ]

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 22: Strong coupling and strange quark mass from lattice QCD

Non-perturbative running of α

[ LPHAACollaboration , 2005 ]

[ LPHAACollaboration , 2001 ]

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 23: Strong coupling and strange quark mass from lattice QCD

Non-perturbative running of α

[ LPHAACollaboration , 2005 ] [ LPHAA

Collaboration , 2001 ]

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 24: Strong coupling and strange quark mass from lattice QCD

Non-perturbative running of α

[ LPHAACollaboration , 2005 ] [ LPHAA

Collaboration , 2001 ]

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 25: Strong coupling and strange quark mass from lattice QCD

Non-perturbative running of α

[ LPHAACollaboration , 2005 ] [ LPHAA

Collaboration , 2001 ]

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 26: Strong coupling and strange quark mass from lattice QCD

Non-perturbative running of α

[ LPHAACollaboration , 2005 ] [ LPHAA

Collaboration , 2001 ]

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

T

time

0

space

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 27: Strong coupling and strange quark mass from lattice QCD

The master formula of the LPHAACollaboration strategy

Λ(2)

MS

FK=

1

FKLmax× Lmax

Lk× Lk Λ

(2)SF ×

Λ(2)

MS

Λ(2)SF

``

``

``

``

``

``

``

pppp

pppp

pppp

p p p pp p p pp p p p` ` ` `` ` `pppp pppp ppppp p p pp p p pp p p p ` ` ` `` ` `pppp pppp ppppp p p pp p p pp p p p

Γ(K → µνµ)

aFK Lmax/a

g2(Lmax)-non-perturbative SSF’s

massless Nf = 2 theory g2(Lk )-3-lp

Λ(2)SF

61-lp (exact)

Λ(2)

MS

∞MZmbµ = 0

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 28: Strong coupling and strange quark mass from lattice QCD

Setting the scale

Λ(2)

MS

FK=

1

FKLmax× Lmax

Lk× Lk Λ

(2)

MS

I FK has been missing

I FKmK = 〈K (p = 0)|sγ0γ5u|0〉

I needs K-meson → “large” volume: L > 2 fm , 4/mπ

I issues

I extracting ground state “plateau”I autocorrelations (sufficient statistics)

and error analysisI extrapolation to physical quark massesI renormalization . . .

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 29: Strong coupling and strange quark mass from lattice QCD

Setting the scale

Λ(2)

MS

FK=

1

FKLmax× Lmax

Lk× Lk Λ

(2)

MS

I FK has been missing

I FKmK = 〈K (p = 0)|sγ0γ5u|0〉

I needs K-meson → “large” volume: L > 2 fm , 4/mπ

I issues

I extracting ground state “plateau”I autocorrelations (sufficient statistics)

and error analysisI extrapolation to physical quark massesI renormalization . . .

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 30: Strong coupling and strange quark mass from lattice QCD

Plateaux 643128 lattice mπ = 270MeV

I mπ

x0

aM

eff

xmin010 20 30 40 50 60

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

I PCAC quarkmass

t

aM

pcac

10 20 30 40 50 60 70 80 90 100 1102

2.1

2.2

2.3x 10

−3

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 31: Strong coupling and strange quark mass from lattice QCD

Error analysis, FK, 643128 lattice mπ = 270MeV

I Done as proposed inCritical slowing down and error analysis in lattice QCD simulations[Schaefer, S, Virotta, 2011 ]

I Autocorrelationfunction

0 50 100 150 200−0.05

0

0.05

0.1

0.15

0.2

0.25

t

ρf K(t)

W lW u

I The tail contributes about 60% of the error.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 32: Strong coupling and strange quark mass from lattice QCD

Extrapolation to physical light quark masses

Strategies

1) R =m2

K

F 2K

= constant

2) Ms = constant

Mlight

Mstrange

MPhys

Mstrange = constR = const

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 33: Strong coupling and strange quark mass from lattice QCD

Extrapolation to physical light quark masses

y1

afK

0 0.05 0.1 0.15

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08β = 5.2β = 5.3β = 5.5

y1 =m2

π

8π2F 2K

I systematic expansion includingM,M log(M), a2, not M × a2 [there are some checks]

I agreement also with simple linear extrpolation (no M log(M))

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 34: Strong coupling and strange quark mass from lattice QCD

FKLmax

combine Lmax/a = L1/a with aFK

(afK)2

L1fK

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10−3

0.29

0.3

0.31

0.32

0.33

0.34

0.35

strategy 1strategy 2

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 35: Strong coupling and strange quark mass from lattice QCD

Similar for the RGI mass of the strange quark

y1

(Ms+

M)/fK

0 0.05 0.1 0.15

0.55

0.6

0.65

0.7

(afK)2

Ms/fK

0 1 2 3 4

x 10−3

0.55

0.6

0.65

0.7 strategy1strategy2linear

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 36: Strong coupling and strange quark mass from lattice QCD

Results for the strange quark mass (no complete review of results)

Nf ms(2GeV) Experiment Theory

0 97(4) mK + scale LGT, LPHAACollaboration

2 103(4) mK + scale LGT, LPHAACollaboration

3 96(3) mK + scale LGT, BMW

I Firm results

I Before lattice gauge theory, (still in the 90’s ) values between100MeV and 200MeV were given

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 37: Strong coupling and strange quark mass from lattice QCD

Nf dependence of ΛMS and comparison to phenomenology

ΛMS[MeV]

Nf : 0 2 3 4 5Experiment TheoryMK , K → l2, l3 SF [ LPHAA

Collaboration ] 238(19) 310(20)

MK ,Mρ SF [PACS-CS ] 362(23)(25) 239(10)(6)(-22)

DIS, HERA PT, PDF-fits [ABM11 ] 234(14) 160(11)

DIS, HERA PT, PDF-fits [MSTW09 ] 285(23) 198(16)

“world av. ”[2011 ] PT 212(12)

e+e− → had (LEP) 4-loop PT 275(57)

I Non-trivial, non-perturbative Nf -dependence.

I Small errors are cited, but overall consistency is not that great.

I More precision and rigor (PT only at high energy) will be veryuseful.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 38: Strong coupling and strange quark mass from lattice QCD

Towards even better precision: Gradient Flow and SF

I Gradient flow [Luscher, 2010; Luscher & Weisz, 2011 ]

new observables

I UV finite (proven to all orders of PT)I excellent numerical precisionI renormalized coupling in finite volume with pbc [BMW, 2012 ]

I Flow in finite volume, SF [Fritzsch & Ramos, arXiv:1301.4388 ]

I lowest order PT to define a new couplingI numerical investigation shows excellent precision

I General idea

x = (x0, x) , t = flow time

Aµ(x) = quantum gauge fields : Z =

∫D[Aµ(x)] ...

Bµ(x , t) = smoothed gauge fields , Bµ(x , 0) = Aµ(x)dBµ(x,t)

dt= DνGνµ(x , t) + gauge fixing

∼ − δSYM [B]δBµ

correlation functions of B-fields at arbitrary points are finite

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 39: Strong coupling and strange quark mass from lattice QCD

Gradient Flow

dBµ(x ,t)dt ≡ Bµ(x , t) = DνGνµ(x , t)︸ ︷︷ ︸

+Dµ∂νBν(x , t)︸ ︷︷ ︸↑

(∗)

∼ − δSYM [B]δBµ

eliminate by a t-dependent gauge trafo

in PT: Aµ(x) = g0Aµ(x)

Bµ(x , t) = Bµ,1(x , t)g0 + Bµ,2(x , t)g20 + . . .

Gνµ = [∂νBµ,1 − ∂µBν,1] g0 + O(g20 ) , Dν = ∂ν + O(g0)

→ Bµ,1(x , t) = ∂ν∂νBµ,1(x , t)

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 40: Strong coupling and strange quark mass from lattice QCD

Gradient Flow

I in PT: Aµ(x) = g0Aµ(x)

Bµ(x , t) = Bµ,1(x , t)g0 + Bµ,2(x , t)g20 + . . .

Gνµ = [∂νBµ,1 − ∂µBν,1] g0 + O(g20 ) , Dν = ∂ν + O(g0)

→ Bµ,1(x , t) = ∂ν∂νBµ,1(x , t)

I heat equation

Bµ,1(x , t) =

∫dD p eipx bµ(p, t)

bµ = −p2bµ → bµ(p, t) = bµ(p, 0)e−p2t

Bµ,1(x , t) =

∫dD y Kt (x − y) Aµ(y) , Kt (z) = (4πt)−D/2e−z2/(4t)

I smoothing over a radius of√

8t

I gaussian damping of large momenta

I all correlation functions of Bµ are finite (t > 0) [Luscher & Weisz, 2011 ]

in particular 〈E(t)〉 , E(t) = − 12trGµνGµν

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 41: Strong coupling and strange quark mass from lattice QCD

Gradient Flow

I in PT: Aµ(x) = g0Aµ(x)

Bµ(x , t) = Bµ,1(x , t)g0 + Bµ,2(x , t)g20 + . . .

Gνµ = [∂νBµ,1 − ∂µBν,1] g0 + O(g20 ) , Dν = ∂ν + O(g0)

→ Bµ,1(x , t) = ∂ν∂νBµ,1(x , t)

I heat equation

Bµ,1(x , t) =

∫dD p eipx bµ(p, t)

bµ = −p2bµ → bµ(p, t) = bµ(p, 0)e−p2t

Bµ,1(x , t) =

∫dD y Kt (x − y) Aµ(y) , Kt (z) = (4πt)−D/2e−z2/(4t)

I smoothing over a radius of√

8t

I gaussian damping of large momenta

I all correlation functions of Bµ are finite (t > 0) [Luscher & Weisz, 2011 ]

in particular 〈E(t)〉 , E(t) = − 12trGµνGµν

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 42: Strong coupling and strange quark mass from lattice QCD

Gradient Flow

For 〈E 〉 , E = − 12 trGµνGµν

〈E 〉 = E0 g20 + E0 g

40 + . . .

E0 = 〈tr[∂µBν,1∂µBν,1 − ∂µBν,1∂νBµ,1]〉

∼∫

p

e−p22t [p2δµν − pµpν ]Dµν(p) finite (also with cutoff reg’n)!

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 43: Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-coupling

use the flow in finite volume (SF): T × L3 world with Dirichlet BC in time, T = L

define

〈E (t)〉 ≡ − 12 〈trGµνGµν(x , t)〉x0=T/2 = N

t2 g2MS(µ) (1 + c1g

2MS + . . .)

g2GF(L) ≡ N−1 t2〈E (t)〉

∣∣∣t=c2L2/8

This is a family of schemes characterized by c (dimensionless)

N (c) = c4(N2−1)128

n,n0

e−c2π2(n2+14

n20)

× 2n2s2n0

(T/2)+(n2+34

n20)c2

n0(T/2)

n2+14

n20

I the lattice version is known (and needed)

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 44: Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-coupling

use the flow in finite volume (SF): T × L3 world with Dirichlet BC in time, T = L

define

〈E (t)〉 ≡ − 12 〈trGµνGµν(x , t)〉x0=T/2 = N

t2 g2MS(µ) (1 + c1g

2MS + . . .)

g2GF(L) ≡ N−1 t2〈E (t)〉

∣∣∣t=c2L2/8

This is a family of schemes characterized by c (dimensionless)

N (c) = c4(N2−1)128

n,n0

e−c2π2(n2+14

n20)

× 2n2s2n0

(T/2)+(n2+34

n20)c2

n0(T/2)

n2+14

n20

I the lattice version is known (and needed)

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 45: Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-couplingstatistical precision: variance

relative variance =〈E 2〉 − 〈E 〉2〈E 〉2

should be finite as a→ 0, L/a→∞

Numerically, Fritzsch & Ramos:

10−5

10−4

10−3

10−2

10−1

0.02 0.05 0.1 0.2 0.4 0.6c

rel.

vari

ance

ofE

L/a = 6

L/a = 8

L/a = 10

L/a = 12

L/a = 16

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 46: Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-couplingstatistical precision

autocorrelations scale as expected: τint ∝ a−2

0 0.1 0.2 0.3 0.4 0.5 0.6

0.5

1

1.5

c

τ int/τ m

eas

L/a = 6

L/a = 8

L/a = 10

L/a = 12

L/a = 16

5 10 15 20 25 30 35 400

0.005

0.01

0.015

0.02

0.025

L/a

(a/L

)2·τ

int/10

MD

U

c = 0.3

c = 0.4

c = 0.5

Statistical precision is good and theoretically understood.There will be no surprises on the way to the continuum limit.

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 47: Strong coupling and strange quark mass from lattice QCD

Gradient Flow and SF-couplingsystematic precision

keeping old SF-coupling gSF(L) fixed (defines L), compute

Ω(u; c, a/L) =[N−1(c, a/L) · t2〈E(t,T/2)〉

]g2SF=u,m=0

t=c2L2/8

c = 0.3

c = 0.4

c = 0.5

0 0.005 0.01 0.015 0.02 0.0254

4.5

5

5.5

6

6.5

7

7.5

8

(a/L)2

Ω(u; c, a/L)

Ω(u; c, a/L)

0 0.005 0.01 0.015 0.02 0.025

0

0.1

0.2

(a/L)2

R(u; 0.3, a/L)

R(u; 0.4, a/L)

R(u; 0.5, a/L)

0.3 0.35 0.4 0.45 0.5

5

6

7

c

ω(u; c)

I small cutoff effects −→ ready for applications −→ . . .→ precise Λ-parameter

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 48: Strong coupling and strange quark mass from lattice QCD

Summary

The fundamental parameters of QCD

Λ, Mi

I refer to the asymptotic high energy behavior of QCDand therefore Nature

I nevertheless they can be connected non-perturbativelythrough lattice simulations to hadron masses (and properties)

I firm and precise results can be obtained

I the precision will be improved even further in the near future

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 49: Strong coupling and strange quark mass from lattice QCD

Summary

The fundamental parameters of QCD

Λ, Mi

I refer to the asymptotic high energy behavior of QCDand therefore Nature

I nevertheless they can be connected non-perturbativelythrough lattice simulations to hadron masses (and properties)

I firm and precise results can be obtained

I the precision will be improved even further in the near future

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 50: Strong coupling and strange quark mass from lattice QCD

Summary

The fundamental parameters of QCD

Λ, Mi

I refer to the asymptotic high energy behavior of QCDand therefore Nature

I nevertheless they can be connected non-perturbativelythrough lattice simulations to hadron masses (and properties)

I firm and precise results can be obtained

I the precision will be improved even further in the near future

Rainer Sommer Strong coupling and strange quark mass from lattice QCD

Page 51: Strong coupling and strange quark mass from lattice QCD

Summary

The fundamental parameters of QCD

Λ, Mi

I refer to the asymptotic high energy behavior of QCDand therefore Nature

I nevertheless they can be connected non-perturbativelythrough lattice simulations to hadron masses (and properties)

I firm and precise results can be obtained

I the precision will be improved even further in the near future

Rainer Sommer Strong coupling and strange quark mass from lattice QCD